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Abstract—Evaluation of oscillatory stability in power systems 

traditionally relies on model-based analysis. Recent interest has 

shifted towards the measurement-based techniques such as 

ringdown analyzers and mode meters. These approaches have 

limitations when noise is present in measurements or short 

windows of time-series data are analyzed, respectively. In this 

paper we show how to overcome these disadvantages by using 

decision trees to directly map synchrophasor measurements to 

one of four predefined stability states. The proposed approach is 

illustrated using synthetic data from simulations on an IEEE 

test system, and PMU measurements collected from field 

substations. Decision tree performance is compared to that of 

artificial neural networks and support vector machines. Results 

indicate that the proposed measurement-based approach 

complements the traditional model-based approach, enhancing 

situational awareness of control center operators in real time 

stability monitoring and control. 

Index Terms--Decision tree, electromechanical oscillation, PMU, 

power system stability, synchrophasor measurement 

I. INTRODUCTION 

Power system oscillatory stability assessment is the task of 
monitoring the rotor angle synchronism of generators at 
different locations [1-2]. The recent trend in the electric power 
industry is to interconnect transmission lines linking small 
autonomous systems into large integrated systems, some of 
which span the entire continent. For example, in the United 
States and Canada generators which are located thousands of 
miles apart are operated simultaneously and synchronously. 
As a consequence inter-area electromechanical oscillations are 
becoming a more common occurrence. Since modern systems 
are optimally run near their stability threshold, the estimation 
of the distance of an operating point from instability region is 
critical for stable operation. 

Traditional oscillatory stability assessment methods may 
not satisfy the online monitoring requirements because: 1) 
they are based on time-domain model simulations which are 
computationally intensive and time-consuming; 2) they use 
data collected from Supervisory Control and Data Acquisition 

(SCADA) systems, or state estimation functions, both of 
which are updated relatively infrequently.  

With improved data acquisition technology, such as 
temporal synchronization of measurements at different 
locations, it may be possible to detect the onset of instability 
more accurately. The ability of synchrophasors to capture 
system-wide dynamics shows their potential in real-time 
system stability monitoring applications [3]. 

The advantages of a measurement-based approach include 
lower computational complexity, reduced knowledge 
requirements about system model parameters, and the 
potential to provide system stability assessment in real time. 
Most measurement-based approaches use appropriate signal 
processing or spectral analysis techniques to extract 
information from periodically collected power systems data. 
One such method is Prony analysis, which has been 
investigated by Kumaresan et al. in exponentially damped 
signal analysis [4-5], and later applied to power systems by 
Hauer et al. in oscillatory stability assessment [6-7]. Prony 
analysis is a powerful tool for mode parameter identification 
of electromechanical oscillations. However, if noise is present 
in measurements it performs poorly [5]. Another shortcoming 
of Prony’s method is that it is only suitable for transient, or 
ringdown, data analysis, and cannot be applied to ambient data 
such that the system is excited by random load variations [8]. 
Therefore it is termed a ringdown analyzer that operates 
specifically on transient portion of a measured signal. 

Alternatively, several mode meters, such as the Yule-
Walker method [8], autoregressive moving average 
(AR/ARMA) model [9], and subspace estimation method [10-
11], have been extensively studied in the past two decades in 
order to estimate mode parameters from both ambient data and 
transient data. While in previous efforts accurate estimation 
has been achieved for oscillation mode frequency, the problem 
of identifying mode damping, a more important task in terms 
of stability assessment, has not been satisfactorily resolved, 
although encouraging results were reported under certain test 
scenarios [6-12]. 
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In this paper, a data mining approach is used to estimate 
oscillatory stability in real time. The decision tree (DT) 
method proposed by Breiman et al. [13] is deployed to map 
system operating point at each moment to one of several pre-
defined stability states. Compared to previous research [3] 
[14], the proposed approach casts the task as a multi-class 
classification problem, as detailed in Section III. In Section IV 
we show the results of the proposed method using the IEEE 
39-bus test system. Finally, the data mining approach is 
evaluated on field PMU measurements from Salt River Project 
(SRP), a public electrical utility in Phoenix, Arizona, U.S.A. 

II. THEORETICAL BACKGROUND 

A. Oscillatory Stability Assessment 

Oscillatory stability is related to Hopf Bifurcation [1]. An 

instability event occurs when, following a small disturbance, 

the damping torques are insufficient to bring the system back 

to a steady-state operating condition, identical or close to the 

pre-disturbance condition. 

Power system oscillations may be classified into four 

categories in terms of frequency: 1) speed governor band, 

from 0.01 to 0.15 Hz; 2) inter-area electromechanical band, 

from 0.15 to 1.2 Hz; 3) local electromechanical band, from 

1.2 to 5 Hz; and 4) torsional dynamics band, from 5 to 15 Hz. 

This work focuses on the second category: the low-frequency 

inter-area oscillations. 

B.  Model-based Analysis 

Traditionally, the stability of inter-area oscillations is 

evaluated through modal analysis of the system’s non-linear 

differential algebraic equations (DAE) using detailed system 

model parameters [15], 
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where x is the state vector, y is the output vector, and u is the 

control vector. A linearization of (1) will result in 
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From modal analysis theory, each pair of complex 

conjugate eigenvalues of matrix A stands for an oscillation 

mode. For the i
th

 oscillation mode the following conjugate 

pair may be termed, 
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Then the mode’s damping ratio (DR) is calculated as 
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The inter-area oscillation modes that carry significant 

amount of energy but with insufficient DR are critical among 

all modes and need to be closely monitored.  

C. Mode Identification without System Model  

In contrast to the model-based approach, the measurement-

based approach does not require detailed system model 

information. Recent efforts take measurements from different 

locations during the same period of time, and identify 

oscillation mode parameters through signal processing 

techniques. The mode parameters that can be estimated 

include frequency, f, damping, , amplitude, A, and phase, , 

as shown in Fig. 1. 

 

Figure 1. Mode parameters identified from power system measurements 

There are three types of relevant power system 

measurements: ambient data, transient (ringdown) data, and 

probing data. Fig. 2 shows the ambient and ringdown 

measurements. The probing data is beyond the scope of this 

work and will not be discussed further. For ambient data an 

AR/ARMA model is used to derive mode parameters while 

Prony analysis is used for ringdown data. 

 

Figure 2. Model-based and measurement-based methods 

D. Data Mining Approach 

The DT algorithm has been used as a classification tool for 

online oscillatory stability estimation. The DT is created by 

sequentially splitting the training data set at each tree node, 



starting from the root. The node splitting rule is determined 

by searching all candidate attributes, and finding the split 

which gives the largest decrease in class impurity. A terminal 

node is reached when maximum purity has been achieved. 

In the experimental section we compared results obtained 
using DTs with those obtained using artificial neural networks 
(ANNs) and support vector machines (SVMs). An ANN may 
be characterized by the number of neurons and the weights of 
connections between them. The SVM and its variants can 
make accurate predictions for non-linear problems in kernel 
space, and is resilient to the presence of noise in data. 

Compared to ANNs and SVMs, the advantage of the DT 
method lies in the relatively simple model structure and fast 
analysis. The method is particularly appealing because the DT 
uses a more transparent model which makes the results easy to 
interpret and replicate. The OP is related to its stability state 
through a unique top-down path. The splitting rule at each 
node that belongs to a given path represents an operational 
threshold. Based on the combination of splitting rules along 
the path, preventive and corrective control strategies could be 
formulated and initiated. 

In this work the commercial data mining software CART 
[16] is used to train the DTs. MATLAB [17] is used to 
implement the neural networks and support vector machines. 
Synchrophasors collected from Phasor Measurement Units 
(PMUs) are used as the input attributes to data mining tools. 

III. PROPOSED APPROACH 

A. Framework 

A framework of the proposed measurement-based scheme 

is shown in Fig. 3. The model-based approach, which was 

investigated by the authors in [3] and [18], is also shown in 

the figure for comparison purposes. 
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Figure 3. Model-based (left) and measurement-based (right) methods 

For each power system, several stability thresholds are 

specified with respect to the typical damping ratio of the 

critical oscillation mode (DRcrit), and a set of stability states is 

defined accordingly. As shown in Fig. 4, for the given 

oscillatory stability thresholds θSTB and θALT (θSTB > θALT), 

operating points (OPs) will be labeled as ‘Good’ if they 

satisfy DRcrit ≥ θSTB; “Fair” if they satisfy θSTB > DRcrit ≥ 

θALT; “Alert” if they satisfy θALT > DRcrit  ≥ 0; and ‘Unstable’ 

when 0 > DRcrit. In practice, the values of θSTB and θALT are 

usually around 10% and 5% respectively. 

 

Figure 4. Classification of oscillatory stability states 

B. Mode Parameter Identification 

Fig. 5 illustrates the online application procedures of the 

proposed scheme. As the first step, a knowledge base needs 

to be created in order to train the classification tree. Included 

in the knowledge base are the input PMU measurements at 

each system operating point (OP), as well as the oscillatory 

stability state corresponding to each OP. 

 

Figure 5. Online application of the proposed scheme 

The procedure is initialized with a window scanning of the 

historical PMU measurements. An Oscillation Detector (OD) 



is designed to detect whether a transient event occurs by 

monitoring the presence of a sudden deviation in recorded 

measurements. If there are no abnormal changes, the OD 

suggests that the system is operated under a steady state, and 

an AR/ARMA model is employed to estimate the mode 

parameters in a sliding window manner. The required 

window length for ambient data analysis varies from 5 

minutes to half an hour, depending on the variation level of 

system loads. If a sudden deviation is detected, but only 

limited to fewer than 5 data points, the corresponding 

measurements are considered outliers caused by sensor or 

communication error, and are discarded from consideration. 

If a continued deviation has been observed, the OD will 

report that a transient process is potentially occurring, and 

Prony analysis is applied to scan the transient data using a 

sliding window with a length of 5 to 10 seconds, depending 

on the critical mode frequency of the inter-area 

electromechanical oscillation. 

C. Classification Tree for Stability Assessment 

In order to overcome the limitations of Prony and ARMA 

methods, the ringdown data is pre-processed using a low-pass 

filter, and the window length of AR/ARMA model is 

sufficiently large to assure accurate estimation. Once a 

sufficient number of cases have been accumulated, the 

knowledge base is used to train the classification trees. The 

derived optimal DT is then applied online. As shown in Fig. 

5, new PMU measurements are dropped down through the 

tree to predict the oscillatory stability status of each OP in 

real time. 

One of the key challenges of embedding DTs in online 

applications is the problem of evolving system operating 

conditions. Due to variations in system generation and 

loading patterns, and changes in system topology, the DRcrit 

of inter-area electromechanical oscillations may also change. 

To deal with this eventuality, the classification tree derived in 

CART needs to be periodically refreshed in order to reflect 

the most current system operating conditions. This is done by 

updating the knowledge base using the most recent PMU 

measurements, and re-training the DT. 

 

IV. CASE STUDY 

The IEEE 10-machine 39-bus test system (New England 

system) [19] is used to implement the proposed scheme. Its 

one-line diagram is shown in Fig. 6. Firstly the oscillation 

mode parameters are estimated through model-based 

eigenvalue analysis. They will be used later to validate the 

results of the measurement-based approach. 

The 39-bus system is modeled in MATLAB/SIMULINK. 
As shown in Fig. 7, the Network Solution Module initializes 
the time-domain simulation, calculates power flow, and 
provides real time network solutions using dynamic model 
parameters.  

 

Figure 6. One-line diagram of IEEE 39-bus test system 

 

Figure 7. Simulink model of the IEEE 39-bus test system 

The low-frequency oscillation modes with insufficient 
DRs are listed in Table I. They are obtained from model-
based eigenvalue analysis of the IEEE 39-bus system. Also 
listed in this table are the dominant generators that participate 
in the correlated oscillation modes. 

TABLE I. LOW-FREQUENCY OSCILLATION MODES OBTAINED FROM MODEL 

INITIALIZATION OF THE IEEE 39-BUS SYSTEM 

 Mode #1 Mode #2 Mode #3 Mode #4 Mode #5 

Frequency 
(Hz) 

1.21 1.13 1.03 0.96 0.58 

Damping 

Ratio (%) 
1.06 4.62 1.87 8.81 6.35 

Dominant 

Generator 
G1, G3 G4, G6 G3 G10 G2 

 
In this work the Mode #5 with a frequency of 0.58 Hz is 

targeted for monitoring. To simulate the load variations, 
Gaussian noise with Mean = 0.05 and Signal to Noise Ratio 
(SNR) = 20 dB has been introduced to four system loads. The 
time-domain simulation has been performed for 15 minutes. 
To create transient signal, a fault that caused the line between 



Bus 26 and Bus 28 to trip has been simulated. The fault 
occurred at t = 700s, and lasted for 0.02s. The resulting 
measurements from all system buses are recorded. In 
particular, the voltage magnitudes and phase angles at Bus 7 
and Bus 39 are shown in Fig. 8 and Fig. 9. 
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Figure 8. Voltage magnitude signals 
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Figure 9. Phase angles and their difference 

Prony analysis has been applied to the Bus 39 voltage 
magnitude signal during the transient process. The sliding 
window has a length of 5 seconds and the Prony model order 
is set to be N=30. 
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Figure 10. Damping ratios estimated from ambient measurements 

TABLE II. ESTIMATE MODE #5 BY APPLYING AR TO AMBIENT DATA 

 Order Frequency (Hz) Damping Ratio (%) 

AR 

N=30 0.5622 4.391 

N=60 0.5819 5.637 

N=90 0.5753 6.224 

Prony N=30 0.5787 5.185 

 
The AR model has been applied to the phase angle 

difference between Bus 7 and Bus 39, which is shown in Fig. 
9. The ambient data before the fault are treated using a sliding 
window with a length of 10 minutes. Different model orders 

have been deployed to compare the results. The mode 
damping ratios estimated by AR of order N=60 are drawn in 
Fig. 10. The Mean of the damping ratios estimated with 
different model orders have been summarized in Table II. 
Table II shows that the mode frequency estimated from AR 
and Prony are very close to the eigen-analysis results in Table 
I. The damping ratio estimated by AR is approaching the 
actual value when increasing the model order. The DR 
estimated by Prony analysis is different due to the change in 
system topology. 

By varying the load disturbance level and fault scenario, 
the time-domain simulations have been replicated and a total 
of 4938 OPs with their corresponding stability states are 
included in the knowledge base. A classification tree has been 
developed in CART using 80% of the cases, and the rest 20% 
has been used in new case testing. The classification accuracy 
is evaluated as follows, 
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The DT accuracy is summarized in Table III. It is 
observed that an overall prediction accuracy as high as 
98.38% has been achieved.  

TABLE III. CLASSIFICATION TREE PERFORMANCE 

 Good Fair Alert Accuracy 

Good 610 8 2 0.9839 

Fair 3 349 1 0.9887 

Alert 0 2 13 0.8667 

Accuracy 0.9951 0.9721 0.8125 0.9838 

 

V. APPLICATION TO FIELD PMU MEASUREMENTS 

 

 

Figure 11. Field voltage magnitude measurements from PMUs 

The field PMU measurements received from a public 
electrical utility in Phoenix, Arizona, U.S.A., the Salt River 
Project (SRP), have been used to evaluate the proposed 



scheme. The data include synchronized voltage and current 
phasor measurements, under both ambient and transient 
conditions. The transient data recorded two consecutive brake 
insertion applications at a major transmission substation. The 
voltage magnitude measured at another substation has been 
divided into two 5-minute signals as shown in Fig. 11. Each of 
the signals includes one transient process. 

A knowledge base has been created by applying the same 
procedure introduced in Section IV to the field measurements 
from PMUs. The resulting DT performance has been 
summarized in Table IV. Two other data mining tools, the 
ANN and SVM, have also been used to compare the results. 

From Table IV, the DT-based prediction model achieved 
similar accuracy to other data mining tools. Compared to 
black-box models, the DT provides a more transparent 
structure with a clearer cause-effect relationship. Its piece-
wise structure and node splitting rules enable the identification 
of the critical variables and thresholds that should be analyzed 
to gain insight into the oscillatory stability of a system. 

TABLE IV. RESULTS COMPARISON 

Data 

Mining 

Tools 

Misclassification Rate Overall 
Accuracy Good Fair Alert 

DT 0.0219 0.0667 0.0737 0.9739 

ANN 0.0034 0.0902 0.1852 0.9873 

SVM 0.0008 0.0738 0.0602 0.9940 

 

VI. CONCLUSIONS 

The use of Decision Trees for online stability assessment 
without the knowledge of system model parameters has been 
investigated in this paper. Several conclusions have been 
reached: 

 The proposed scheme is a measurement-based method 

that complements the traditional model-based approach. 

It is particularly useful when system model parameters 

are not readily available; 

 The proposed approach is able to provide control center 

operators with real time support by making use of the 

quickly updated PMU measurements; 

 Once trained using the knowledge base, the DT-based 

predictor can achieve high accuracy in online oscillatory 

stability estimation; 

 The data mining tools are capable of reflecting the 

evolving system operating conditions when the most 

recent PMU measurements and corresponding knowledge 

base are used; 

 With almost identical prediction accuracy, compared to 

ANNs and SVMs, the DT approach enables a more 

transparent model and provides engineering insight in 

support of the decision-making process. 
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