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Abstract— Frequency, amplitude and phase angle are three 

major parameters describing a stationary sinusoidal signal. In 
power system, many applications such as the state monitoring 
and protective relaying measure these parameters as 
performance indices or critical variables in the algorithm criteria 
respectively.  This paper proposes a new method for estimating 
the power system frequency and phasors in real time based on a 
recursive wavelet transform. The frequency estimation algorithm 
is capable of accurately estimating the frequency within three 
samples of an input signal. It features fast response and achieves 
accurate frequency estimation over a wide range of frequency 
changes. For estimating phasors, the signal sampling rate and 
data window length can be selected to meet desirable applications 
requirements such as high accuracy and low computational 
burden. Simulation results demonstrate that the proposed 
method achieves good performance. 
 

Index Terms—Power system frequency, phasor estimation, 
recursive wavelet transform (RWT), TVE (Total Vector Error) 

I.  INTRODUCTION 
N power system, many real-time applications measure 
frequency and phasors  of voltage and current for the 

purpose of monitoring, control or protection. Power system 
frequency as a key index of power quality can be indicative of 
system abnormal conditions and disturbances. The frequency 
and phasor parameters including amplitude and phase angle 
are critical variables used by the algorithms. How to rapidly 
and accurately estimate frequency and other phasor 
parameters is still a contemporary research topic of interest. 

A variety of techniques for the real time estimation of 
power system frequency have been developed and evaluated 
in past two decades. As an example, Fourier algorithm, i.e. 
discrete Fourier transform (DFT) has been extensively applied 
to this field due to its low computation requirement. However, 
the implicit data window in DFT approach causes errors when 
frequency deviates from the nominal value [1]. To improve 
the performance of DFT based approaches, some adaptive 
methods based on feedback loop by turning the sampling 
interval [2], adjusting data window length [3], changing the 
nominal frequency used in DFT iteratively [1], and correcting 
the gains of orthogonal filters recursively [4] are proposed. 
Because of the inherent limitation in DFT, at least one cycle 
of analyzed signal is required, which hardly meets the demand 
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of high-speed protection schemes. On the basis of stationary 
signal model, some non-linear curve fitting techniques, 
including extended Kalman filter [5] and recursive Least 
Squares algorithm [6], are adopted to estimate fundamental 
frequency. The accuracy is only reached in a narrow range 
around nominal frequency due to the truncation of Taylor 
series expansions of nonlinear terms. Some artificial 
intelligence techniques, such as genetic algorithm [7] and 
neural networks [8] have been used to achieve precise 
frequency estimation over a wide range with fast response. 
Although better performance can be achieved by these 
optimization techniques, the implementation algorithm is more 
complex and intensive in computation.  

Conventional Fourier algorithm based phasor estimation 
approaches use fixed length of observation window and the 
resulting accuracy for a given signal is independent of 
sampling rate [9]. For some applications which require high 
speed response but moderately low accuracy, such as 
transmission line protection, or require high level accuracy but 
low output rate, such as calibration and testing the functions 
of intelligent electronic devices (IEDs) [10] and off-line 
power system disturbance analysis [11], those methods hardly 
satisfy the requirements. 

Recursive wavelet approach has been introduced in 
protective relaying for a long time [12]-[14]. The improved 
model with single-direction recursive equations is more 
suitable for the application to real-time signal processing [13]. 
The band energy of any center frequency can be extracted 
through recursive wavelet transform (RWT) with moderately 
low computation burden.  

RWT based power system frequency and phasor estimation 
method is proposed in this paper. The frequency estimation 
algorithm can produce the output using three continuous 
samples of an input signal, and the resulting accuracy is 
independent of the signal sampling rate. It responds quite fast 
although the time delay brought by pre-filters may be applied. 
The convergence analysis indicates that to achieve a certain 
level of accuracy measured as TVE (total vector error 
described in [15]), the higher sampling rate one uses, the 
shorter data window the computation needs, and vice versa. 
For example, to limit the error within 1% TVE, the algorithm 
converges within 0.5 cycle of input signal at 18 kHz sampling 
frequency.  

The rest of the paper is organized as follows. Section II 
introduces the concept of wavelet, the recursive wavelet 
transform and its characteristics both in time and frequency 
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domain. The frequency estimation algorithm is described in 
Section III. The methods for estimating phasor and analyzing 
the convergence characteristics are given in Section IV. 
Section V presents the details of performance evaluation. 
Conclusions are outlined at end. 

II.  RECURSIVE WAVELET TRANSFORM 
Mother wavelet function is defined as a function ψ(t) which 

satisfies the admissibility condition: 
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where Ψ(ω) is the Fourier transform of ψ(t).  
 A set of wavelet functions can be derived from ψ(t) by 
dilating and shifting the mother wavelet, as given below: 

0),()( 2/1
, >−⋅= − a

a
btatba ψψ  

where a and b are scaling (dilation) factor and time shifting 
(translation) factor, respectively. 

A mother wavelet function is given as: 

)()
1563

()( )(
554433

0 tuetttt tj −−−−= + ωσσσσψ  

One can see that this wavelet is a complex function whose 
expression in frequency domain contains the real part and 
imaginary part. The Fourier transform is expressed as follows: 
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Setting 3/2πσ = , πω 20 = makes the function ψ(t) 

admissible, i.e. 0|)( 0 =Ψ =ωω . 
Fig. 1 and Fig. 2 give the time and frequency domain 

waveforms (real and imaginary parts) of ψ(t) and Ψ(ω), 
respectively. The complex wavelet exhibits good time-
frequency localization characteristics. The time-domain center 
t* and radius Δt are -1.53 s and 0.48 s respectively. It features 
a band-pass filter, as shown in Fig. 2, with the frequency-
domain center ω* and radius Δω are 6.28 (2π) rad and 1.09 
rad. The quality factor Q, defined as the ratio of frequency 
center ω* and band width 2Δω, is constant Q =ω*/2Δω = 2.87.  

To obtain the center frequency fc of the band-pass filter, 
which is defined as the frequency in which the function 
reaches the maximum magnitude, we have the Fourier 
transform for the dilated wavelet function ψ(t/a) : 

[ ]

∗

⎭
⎬
⎫

⎩
⎨
⎧

−+
−−=Ψ 6

0

2
0

35

)(
)(26)(

ωωσ
ωωσσω

aj
aa  

|Ψ(aω)| reaches the maximum value when a·ω = ω0, i.e.   
a·2π·f c = 2π. Thus, we have f c = 1/a. That is the scale factor a 
is reciprocal to the center frequency fc of the band-pass filter. 
 

 
Fig. 1 Time domain waveforms of ψ(t) 

 
Fig. 2 Frequency domain waveforms of Ψ(ω) 

 
The wavelet transform coefficient in scale a for a given 

signal x(t) can be expressed as below: 
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Let ΔT be the sampling period, thus t = kΔT. Then we have 
the discrete wavelet transform for the signal x(kΔT) [13]: 
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In formula (2), f represents the center frequency which is 
reciprocal to the scale factor a. To extract the frequency band 
energy centered in 60 Hz, for instance, simply apply f = 60 to 
(2). One can notice that wavelet transform coefficients can be 
calculated recursively with the historical data. Thus, this type 
of transform is so-called the recursive wavelet transform 
(RWT).  
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III.  FREQUENCY ESTIMATION 
The recursive wavelet (RW) features a complex wavelet 

whose wavelet coefficients (real part and imaginary part) 
contain the phase information of the input signal, based on 
which the algorithm for estimating the power system 
frequency is derived. 

Consider a sinusoidal signal expressed in complex form: 
0)( )( ≥= + teAtx tj

m
ϕω                                                

(3) 
where Am is the amplitude, φ is the phase angle and ω = 2π·f. 
 Apply RWT to signal x(t) in scale a using (1). As derived in 
Appendix, we obtain, 
 0),,(),( )(
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One can see that Wx(t)(a, b) contains the same expression of 
input signal as (3), as well as the frequency information in 
coefficient E(a, b, ω). Thus E can be obtained by dividing x(b) 
from Wx(t), i.e. )(/)( bxWE tx= . Calculate the derivative of E 

with respect to b, we have, 
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Apparently, F is real number. Thus, 
ωωθ ⋅−⋅= babb /)( 0  

Differentiate θ with respect to b, we obtain, 
θωω ′−= a/0  

i.e. πθω 2/)/( 0 ′−= af  
Assume the sampling period ΔT, then formulas for E, θ and f 
can be written in discrete forms: 
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 Based on formulae (4), (5) and (6), we can conclude that to 
calculate the frequency only three continuous samples of input 
signal x(k) are needed. Hence the data window length for 
estimating the frequency of a sinusoidal signal is three times 
the sampling period (3ΔT). Furthermore, the sampling rate of 
signal being analyzed has no impact on the method accuracy. 
Flow chart in Fig. 3 illustrates the implementation procedures 
of the proposed frequency estimation approach. It should be 
noted that the frequency f (corresponding to the scale factor a) 
can be initialized with any value when calculating RWT 
coefficients W(k) using (2). Estimation result is independent 
of the initial value, thus we pick fundamental frequency 60 Hz 
(or 50 Hz) as the initial value in power system applications. 
 

 
Fig. 3 Flow chart of the frequency estimation 

IV.  PHASOR ESTIMATION 

A.  RWT Based Phasor Estimation Method 
Use the same sinusoidal signal model as expressed in (3), 

and apply RWT to x(t) in scale a using (1). Derivation of the 
wavelet transform coefficient is given in the Appendix. We 
have, 
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One should note that the coefficients E and G have the same 
expression except that the signal frequency ω is known 
variable to G. 

Dividing Wx(t) by G we have, 
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Thus, the formulae for computing the amplitude Am and phase 
angle φ are: 
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where a, ω are constant, and b is time variable. 

Discrete forms can be derived by introducing the sampling 
period ΔT. Assume the sampling frequency rate is Ns times of 
the signal frequency f, i.e. f = 1/ (Ns·ΔT). 
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where Wx(kΔT)(f,k) is the discrete IRW coefficient in scale f 
calculated using (2). G(f,k) is a constant vector whose 
expression is given in the Appendix. 

B.  Analysis of the Convergence Characteristics 
Theoretically, the phasor (amplitude and phase angle) of a 

sinusoidal signal can be accurately calculated using formula 
(7) and (8) with two samples, i.e. the algorithm converges to 
the real value within two samples. Then the length of the data 
window is 2ΔT, and the result is independent from the signal 
sampling rate. The studies indicate that both sampling rate and 
window length affect the convergence characteristics because 
of two factors. One is that formula (7) and (8) are derived 
based on the assumption that the error resulting from the 
discrete computation is negligible. Another is the error 
introduced by the inherent settling process in recursive 
equations.  

To analyze the convergence characteristics, we define the 
window length ls as the cycle of the input signal, which is 
independent of the signal sampling rate fs defined as Ns times 
of signal frequency f in Hz. Apparently ls and fs determine the 
number of samples N within a data window, i.e. N = ls·fs / f = 
ls·Ns. Total vector error (TVE) is used to measure the phasor 
accuracy. Once the amplitude error ΔAm (in percent of real 
value) and the phase error Δφ (in degrees) are available, the 
expression for TVE is given 
by 22 )573.0/()(TVE θΔ+Δ= v , where 0.573 is the arcsine 
of 1% in degree. 

Relationship between TVE and two variables ls and fs is 
illustrated in Fig. 4, in which the signal sampling frequency is 
simulated from 3 kHz to 24 kHz while the window length is 
from 0.5 cycle to 2 cycles. To make the result less than certain 
accuracy, for example 1% TVE, the sampling frequency must 
be 9 kHz or higher once the window length is fixed at 1 cycle, 
and the data window can be shortened to 0.5 cycle once the 
sampling rate is 18 kHz or higher.  

 
Fig. 4 Convergence characteristics of phasor estimation 

 
As we know the signal sampling rate is relevant to the 

hardware cost while the window length determines the time 
interval for the first phasor calculation outcome. RWT based 
phasor estimation method provides the feature that the 
sampling rate and data window length can be selected in terms 
of the applications requirements. Besides, the result accuracy 
is predictable. Fig. 5 gives the flow chart of the 
implementation procedures. 

 
Fig. 5 Flow chart of the phasor estimation 

 
 In practice, as shown in Fig. 5 for a given data window with 
N samples, vector Wx(k) (k=1, 2, …, N) can be calculated using 
recursive equation (2). Coefficient G at the last point N, i.e. 
G(f,N), can be computed once signal frequency f is estimated. 
Then, Am(N) and φ(N) for the given data window can be 
calculated using Wx(k)(N) and G(f,N). As one can see the 
computation burden is fairly low. It can satisfy the time 
response requirement of time-critical applications. 

V.  PERFORMANCE EVALUATION 
In this section, performances of the frequency and phasor 

estimation algorithm are evaluated with a stationary sinusoidal 
signal model.  

A.  Frequency Estimation 
A stationary signal model with constant frequency given in 

(9) is used for testing the frequency estimation algorithm. In 
simulation, we assign Am = 1 p.u., φ = 60º, sampling rate Ns = 
50, i.e. fs = 3 kHz. 

)2()( ϕπ +⋅⋅= tfj
meAtx                                                        (9) 

For the given signal, f varies from 40 Hz to 70 Hz in 2 Hz 
steps. Fig. 6 depicts the results, in which fe represents the 
estimated frequency. Table I gives some of the simulation 
results. We can see that the estimation errors, defined 

as %100×= −
f

ff eErr , are zeros for the given signal model. 
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Fig. 6 Test results for frequency estimation 

 
TABLE I 

TEST RESULTS FOR FREQUENCY ESTIMATION 
 

f (Hz) 40 46 50 56 60 66 70 

fe (Hz) 40.00 46.00 50.00 56.00 60.00 66.00 70.00 

Err (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

B.  Phasor Estimation 
The signal model in (9) is used to evaluate the performance 

of the phasor estimation algorithm. In simulation, signal 
frequency f is constant assigned with fundamental frequency 
60 Hz, the window length ls = 0.5 cycle. Referring to the Fig. 
4, we select sampling frequency fs = 18 kHz to guarantee the 
error measured with TVE below 1%.  

Tests are performed with the amplitude Am varying from 0.4 
to 1.4 in 0.1 step and the phase angle φ varying from 0º to 
180º in 20º steps. Find the maximum TVE for each case and 
record it as the error for the corresponding case. Test results 
are given in Fig. 7. For the given signal model with its 
parameters varying over broad range, phasors can be calculate 
in 0.5 cycle and the errors can be limited within 1% TVE. 
 

 
Fig. 7 Test results for phasor estimation 

VI.  CONCLUSIONS 
A new method for estimating in real-time power system 

frequency and phasor based on recursive wavelet transform is 
proposed. The frequency estimation algorithm features rapid 
response and accurate result over a wide range of frequency 
deviations. It uses only three subsequent samples for 
outputting frequency calculation result for a stationary 
sinusoidal signal. For estimating phasor, sampling rate and 
observation window length can be chosen to meet selected 
applications requirements. Analysis of the algorithm 

convergence characteristics indicates that to achieve a certain 
level of accuracy measured as TVE, the higher the sampling 
rate one uses, the shorter the computation data window  and 
the faster the rate the method outputs phasor, and vice versa. 
Performance evaluation shows that the proposed approach is 
capable of outputting precise frequency over a broad range. 
Selecting sampling frequency at 18 kHz, phasor can be 
computed within 0.5 cycle of input signal and the error is 
limited within 1% TVE. Besides, the computation requirement 
is fairly low, thus it can satisfy the time critical demand of the 
high speed protection schemes. 

VII.  APPENDIX 
The RWT coefficient of a given signal x(t) is: 
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The RWT coefficient of the signal x(t) is: 
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The discrete form ),( kfG has the same expression with a=1/f 
and b=kΔT instead. 
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