
Risk Assessment of Transformer Loss-of-Life due to 
PEV Charging in a Parking Garage with PV Generation

Carolina M. Affonso 
Faculty of Electrical Engineering 

Federal University of Para 
Belem, Para, Brazil 

Qin Yan, Student Member, IEEE 
Mladen Kezunovic, Life Fellow, IEEE 

Department of Electrical and Computer Engineering 
Texas A&M University 

College Station, Texas, U.S.A. 
 

Abstract—This paper presents a probabilistic risk assessment 
methodology to evaluate distribution transformer loss-of-life in a 
commercial building parking garage, in the presence of plug-in 
electric vehicle (PEV) charging stations and local photovoltaic 
generation. The Monte Carlo method is applied to address the 
uncertainties resulting from PEV charging, photovoltaic 
generation and garage load. A risk matrix combining the severity 
measures and associated probability distribution function is used 
to quantify the risk of transformer loss-of-life. The results show a 
significant reduction in transformer loss-of-life risk when 
connecting photovoltaic generation, resulting in saving avoiding 
transformer aging and early replacement. Based on the findings, 
the proposed method can be a helpful tool in the decision making 
process that needs to balance the risk and investment costs. 

Index Terms—plug-in electric vehicles, loss-of-life, Monte Carlo, 
photovoltaic generation, risk assessment, transformer. 

I. INTRODUCTION 
Plug-in electric vehicles (PEVs) are gaining much 

popularity nowadays due to environmental issues and the 
necessity to reduce greenhouse gas emission. A variety of PEV 
models from different companies is available in the market, and 
the penetration level of these vehicles will continue to grow in 
the coming years bringing new challenges for their proper 
integration into grid. PEVs charging represents an additional 
demand to the existing distribution transformer, especially 
under high penetration level. These transformers usually do not 
have monitoring capability, and when operated in a continuous 
overload condition its temperature increases exponentially, 
which may shorten transformer service life, representing extra 
costs due to the necessity of early replacement [1]. 

Some papers have already addressed the issues regarding 
PEVs charging demand and transformer loss-of-life (LOL). 
Reference [2] analyzes the impact of PEV charging on 
distribution transformers loss-of-life at residential level. 
Reference [3] proposes a smart charging algorithm based on 
estimated transformer temperatures, considering that all PEVs 
charge exclusively from a home charging station. Reference [4] 
proposes a strategy to charge and discharge PEV in a residential 
neighborhood, in order minimize the total cost of operation, and 
uses transformer temperature as a constraint in the problem 

formulation to avoid transformer LOL. In [5], the impact of 
PEVs’ demand on distribution transformer overload and LOL 
in the presence of rooftop solar photovoltaic (PV) is 
probabilistically quantified. In this paper, most PEVs charge at 
the end of the day when arriving home from work. Reference 
[6] presents a study to evaluate the impact of PEV charging on 
distribution transformer life in the presence PV units. The 
system considered comprises residential customers and 
assumes the PEVs charge at home. In [7], a methodology to 
determine the proper transformer capacity in a PEV charging 
station in order to minimize transformer LOL is proposed.  

Most of the previous work has focused on proposing smart 
charging algorithm or developing probabilistic techniques to 
model PEV demand and analyze its impact on transformer 
LOL. However, none of them has introduced a risk analysis of 
transformer LOL, which considers the severity and probability 
of occurrence of the resulting conditions, especially in the 
presence of PEV charging and PV generation. Most of the 
studies consider residential consumer, which exhibit a different 
demand and charging profile as compared with commercial 
consumers. This is more relevant nowadays with the significant 
increase of new PEV charging station in workplace, malls, 
business parks and other common-use facilities.  

Our paper proposes a risk assessment methodology to 
quantify the risk of distribution transformer LOL due to PEV 
charging demand in a commercial building parking garage in 
the presence of PV generation. The novelty is the use of Monte 
Carlo (MC) method to consider a wide variety of uncertainties 
due to PEVs charging, PV generation and commercial building 
load forecasts. We developed a risk matrix to assess the risk of 
transformer LOL, considering the severity of transformer 
aging using the probabilistic means. The impact of the local 
PV generation on the risk of transformer LOL is assessed. 

The remainder of the paper is organized as follows. Section 
II describes system modeling under uncertainties due to PEV 
charging demand, PV generation and load. Section III presents 
transformer LOL evaluation. The proposed risk assessment 
methodology is developed in Section IV, followed by Section 
V where an analysis of the results is presented. The 
conclusions of the paper are addressed in Section VI. 
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National Research Fund (a member of Qatar Foundation). The statements made 
herein are solely the responsibility of the authors. 



II. MODELING SYSTEM UNCERTAINTIES 
The system under study is a commercial building connected 

to the distribution network through a 150 kVA transformer as 
shown in Fig. 1. The building is integrated with PV generation 
and PEVs charging stations in a parking garage. The PV system 
may be installed on the roof of the building or parking lot, and 
can supply power to the charging station at the parking garage. 
Since PEVs charging increases the transformer demand, the use 
of local PV generation has a significant role in decreasing the 
transformer load, and as a consequence, transformer loss-of-
life. Due to many uncertainties involved in modelling the 
transformer load profile, a probabilistic analysis is more 
suitable instead of a traditional deterministic approach. The 
uncertainties considered in this study are correlated with the 
building load, PV generation, and PEVs charging demand. 

 

 

 

 

 

  
Figure 1.  Commercial building configuration. 

A. Building load 

The building load is equivalent to the electric load 
excluding PEV charging demand, and the corresponding 
power factor is assumed to be 0.9. The forecasted load is 
assumed to follow a typical weekday curve for a small 
commercial customer, as shown in Fig. 2 (a). The building load 
profiles to be used in the probabilistic analysis can be 
generated with a normal distribution, which is the most 
common technique to model electricity loads [8]. The mean µ 
is assumed to be equal to the forecasted load, and the standard 
deviation σ is taken as 3% of the mean. 

B. PV generation 

The solar generation profile used in this paper is obtained 
from PVWatts Calculator tool from NREL [9], selecting a 
location in Texas during July (summer) as shown in Fig. 2 (b). 
The solar generator parameters include system location 
information such as latitude and longitude, and solar 
generation specification such as the PV rating, efficiency, and 
tracking. The solar generation profiles to be used in the 
probabilistic analysis are generated with a normal distribution, 
with µ equal to the forecasted load, and the standard deviation 
σ is taken as 5% of the mean [10]. 

C. PEV charging demand 

There are many variables regarding PEV charging demand, 
and the random variables considered to capture these 
uncertainties are the driving distance, initial state of charge of 
the battery and arrival time. 

1) Driving distance: 

According to [11], the average yearly total miles driven in 
the USA is 12,000 miles, with 50% of drivers driving 25 
miles/day or less, and 80% of drivers driving 40 miles/day or 
less. Based on [12], a log-normal distribution is used to 
generate random values for the daily miles driven, with mean 
μ = 3.37 and standard deviation σ = 0.5, which closely 
approximates the driving performance from [11]. The 
distribution is as shows Fig. 3. 

 
Figure 2.  Generation and load profile: (a) building load, (b) PV generation. 

 
Figure 3.  Distribution of daily miles driven. 

2) Initial State of Charge: 

Another important parameter to know is the initial state of 
charge (SOC) of PEV batteries when they arrive in the parking 
garage. The SOC is a measure in percentage of the amount of 
energy remaining in the vehicle, and the initial SOC depends 
on energy consumed in the previous trip. Knowing the 
previous distance traveled by vehicles, it is possible to estimate 
their initial state of charge (SOC%

ini) as shows (1) and (2).  

௖௢௡௦ܧ = ߝ) ×  ௕  (1)ܧ/(݀

%ܥܱܵ
௜௡௜ = %ܥܱܵ)൛ݔܽ݉

௠௔௫ − ௖௢௡௦ܧ × 100), %ܥܱܵ
௠௜௡ൟ (2) 

where Econs is the energy consumed,  is PEV electricity 
consumption in kWh/100 miles, Eb is PEV battery capacity in 
kWh, d is daily miles driven, and SOCmin and SOCmax indicate 
the SOC safe operation window due to batteries life cycle 
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considerations, which in this example is assumed to be 20% 
and 90% respectively. It is assumed that all vehicles are fully 
charged before departing home each morning.  

3) Arrival time: 

The last important parameter is vehicle’s arrival time 
distribution, which will define the start of PEV charging time. 
According to [13,14], the best fitted distribution for arrival 
time to parking lots during weekdays is the Weibull 
distribution. Then, random values are generated following a 
Weibull distribution with mean μ = 9.2 and standard deviation 
σ = 13, and the probability distribution function of the start of 
PEV charging time can be obtained, as shown in Fig. 4. The 
peak arrival time at work occurs around 9 a.m. 

 
Figure 4.  Vehicles arrival time during weekday. 

4) Required Energy: 

Knowing PEV’s initial state of charge and battery capacity 
in kWh, it is possible to compute the required energy to charge 
vehicles battery until the required state-of-charge (ܱܵܥ%

௥௘௤) is 
reached, given by (3). 

௥௘௤ܧ = ൫ܱܵܥ%
௥௘௤ − %ܥܱܵ

௜௡௜൯ ×  ௕/100     (3)ܧ

Assuming that PEV owners start to charge their vehicles 
immediately after arriving at the building and park their cars 
(plug and charge), and supposing electric vehicles are charged 
with a constant power P, the charging duration time Chtime in 
minutes can be obtained by [15]: 

ℎ௧௜௠௘ܥ = ௥௘௤ܧ) × 60)/ܲ         (4) 

After determining the charging duration and using the start 
charging time of each vehicle in the fleet according to its 
arrival time, the charging profile is constructed during the 
study period. Battery specifications of Nissan Leaf are used to 
perform calculations, which is a purely battery electric vehicle  
and one of the top selling PEV in the United States, with 
battery capacity of 24 kWh and fuel efficiency of 34 
kWh/100miles. PEV loads are modeled as constant power 
load, and level 2 charging station was considered for being 
more appropriate for workplace garages, with a charging 
power rating of 3.3kW. 

III. TRANSFORMER LOSS-OF-LIFE 
The continuous operation of transformers in overloaded 

condition may cause its temperature to rise. As a consequence, 
the insulation of distribution transformers can deteriorate and 
fail prematurely, resulting in accelerated transformer loss-of-
life [1]. The IEEE standard C57.91 proposes a model for 
estimating transformer hottest-spot temperatures and its loss-

of-life [16]. The transformer hottest-spot temperature H is 
evaluated as in (5): 

ுߠ = ஺ߠ + ை்ߠ∆ +  ு  (5)ߠ∆
where A is ambient temperature, TO is the top-oil rise over 
ambient temperature, and H is the winding hottest-spot rise 
over top-oil temperature.  

The temperature rise H and TO are calculated as: 

ுߠ∆ = ൫∆ߠு,௎ − ு,௜൯ߠ∆ ൬1 − ݁
ି

೟
ഓೢ൰ + ு,௜ߠ∆          (6) 

ை்ߠ∆ = ൫∆்ߠை,௎ − ை,௜൯்ߠ∆ ൬1 − ݁
ି

೟
ഓ೅ೀ൰ + ை,௜்ߠ∆         (7) 

where, H,U is the ultimate winding hottest-spot rise over top 
oil temperature, TO,U is the ultimate top-oil rise over ambient 
temperature, H,i is the initial temperature rise, TO,i is the 
initial top-oil rise over ambient temperature, w is the winding 
time-constant, TO is the oil time-constant, and t is the duration 
of time interval in hours. 

The ultimate temperature rises H,U and TO,U are 
evaluated by: 

ு,௎ߠ∆ = ௎ܭு,ோߠ∆
ଶ௠   (8) 

ை,௎்ߠ∆ = ை,ோ்ߠ∆ ቂ
௄ೆோାଵ

ோାଵ
ቃ

௡
  (9) 

where H,R is the winding hottest-spot temperature rise over 
oil, TO,R is the top oil temperature rise over ambient at rated 
load, KU is the ratio of ultimate load to rated load, R is the ratio 
between no load loss and loss at rated load, m and n are 
empirically derived exponents which value depends on 
transformer type. 

The accelerated aging factor at a given hottest-spot 
temperature can be evaluated using (10), assuming that normal 
aging occurs at 110oC. If the hottest-spot temperature is bigger 
than 110oC, FAA will be bigger than one. On the contrary, FAA 
will be lower than one for hottest-spot temperature lower than 
110oC. The equivalent aging of a transformer FEQA can be 
obtained by averaging FAA over the period of time N that 
transformer is under the study, as shows (11). 

(ݐ)஺஺ܨ = ݌ݔ݁ ቀ
ଵହ଴଴଴

ଵଵ଴ାଶ଻ଷ
−

ଵହ଴଴଴

ఏಹ(௧)ାଶ଻ଷ
ቁ       (10) 

ாொ஺ܨ =
∑ ிಲಲ(௧)×∆௧ಿ

೟సభ
∑ ∆௧ಿ

೟సభ
        (11) 

Using the equivalent aging, the transformer loss-of-life 
(LOL) in normal insulation can be obtained as shows (12): 

(%)ܮܱܮ =
ிಶೂಲ×௧×ଵ଴଴

ே௢௥௠௔௟ ூ௡௦௨௟௔௧௜௢௡ ௅௜௙௘
  (12) 

where t is the time period of the analysis in hours, and a typical 
transformer must have a minimum normal insulation life of 
180,000 hours (20.5 years) according to IEEE standard [16]. 

IV. PROPOSED RISK METHODOLOGY 

A. Risk matrix 

This paper adopts risk matrix to estimate risk of transformer 
loss-of-life. Risk matrix is a common method of qualitative 
risk analysis, and describes risk using defined descriptive terms 



such as “low”, “medium” and “high”, evaluated according to a 
qualitative criteria [17]. Non-numerical labels are given for 
input parameters, which often represent a numerical range. The 
qualitative analysis has the benefit of the simplicity and 
linguistic interpretability, with an easily understandable 
descriptive nature.  

Risk is a function of the probability Prob(e) of an event e 
occurring, and the subsequent impact and severity Sev(e) of the 
event as shows (13). Probability is the likelihood of the event 
occurring, and severity is the amount of damage and negative 
consequences that would result with the event. This study 
adopts the transformer aging factor (FEQA) as a measure to 
quantify the severity. The probability and severity are ranked 
in four classes, and a numerical range is associated to each 
class as shown in Table I.  

݇ݏܴ݅  = (݁)ܾ݋ݎܲ ×  (13)     (݁)ݒ݁ܵ

Considering a 24-hour load cycle, FEQA will have a value of 
1.0 for continuous operation at rated winding hottest-spot 
temperature. Then, the normal rate of loss-of-life is one day 
loss per 24hs. If FEQA is bigger than one, the equivalent aging 
is more than one day, which means transformer will experience 
loss-of-life. The transformer life estimation is based on an 
idealized accelerated reaction condition, and is subject to 
certain limitations that bring uncertainties in LOL estimation. 
The equivalent aging factor is obtained by averaging FAA 
during the period of analysis, so it is possible to have short 
periods with hottest-spot temperature slightly above 110oC 
with daily equivalent aging factor lower than one. As a safety 
margin, a ‘moderate’ severity class is adopted for FEQA values 
in the range of 0.95 and 1.0.  

Table II shows the adopted risk matrix conveying that based 
on the likelihood and severity the risk can be: low, medium, 
high and very high. The risk increases if either likelihood or 
severity increases, and if risk is not sufficiently low, 
appropriate mitigation actions should be applied.  

TABLE I 
PROBABILITY AND SEVERITY DEFINITION 

Probability Severity 
Condition Range Condition Range 
Unlikely P(e) < 10% Insignificant FEQA < 0.95 
Possible 10%  P(e) < 50% Moderate 0.95  FEQA < 1.0 

Occasional 50%  P(e) < 90% Critical 1.0  FEQA < 1.2 
Frequent P(e)  90% Severe FEQA  1.2 

TABLE II 
RISK MATRIX FOR TRANSFORMER LOSS-OF-LIFE 

Severity 
Probability 

Unlikely Possible Occasional Frequent 
Insignificant low low low low 

Moderate low low medium medium 
Critical medium medium high high 
Severe high high very high very high 

B. Monte Carlo Simulation 

This paper adopted Monte Carlo (MC) method to evaluate 
the risk of transformer loss-of-life. The MC simulation is well-
suited to solve problems with significant uncertainties in 
inputs, which makes it difficult or even impossible to compute 
a deterministic solution. It consists of repeating a system 
process with random inputs in order to obtain statistical data 
for the expected outputs. For each trial of the simulation, the 

output of the system is stored, and the statistical behavior of 
this stored data is constructed. The best and worst scenarios 
among the MC iterations can be captured, and a risk analysis 
can be performed. The steps of implementing the proposed risk 
assessment methodology are presented below: 

1. Generate pseudo-random numbers to represent the 
building load, PV generation, and PEV demand; 

2. Process the evaluation of transformer daily demand with 
all the random variables; 

3. Store results and repeat steps 1 and 2 until the total number 
of simulations is reached; 

4. Evaluate transformer hottest-spot temperature, aging 
factor and loss-of-life for all MC scenarios; 

5. Perform statistical analysis and risk assessment of 
transformer loss-of-life using the proposed risk matrix. 

V. SIMULATION RESULTS  
In this paper, 2,000 consecutive Monte Carlo simulations 

were performed to evaluate the impact of PV generation on 
transformer loss-of-life risk. This number of trials was adopted 
since it was noticed that increased number of simulations does 
not affect the results significantly. Each trial simulates a whole 
day (24 hours) with a 30-minute sampling interval. The 
transformer parameters were obtained from [16], and since 
ambient temperature has a considerable impact on transformer 
life, this paper considered an hourly-based curve with historical 
data of ambient temperatures for a hot summer day in Houston, 
Texas, from July 2017 [18]. 

Fig. 5 presents the cumulative distribution function before 
and after the integration of the PV generation. Considering a 
24-hour cycle, the results show that without the PV generation, 
there is a small probability of only 4.15% of transformer 
operating with FEQA <1, which is the recommended criteria to 
avoid LOL. However, after the PV generation is connected to 
the building, even with uncertainties related to solar radiation, 
the probability of transformer operating with FEQA <1 increases 
to 100%.  

 
Figure 5.  FEQA cumulative distribution function. 

 

 



Fig. 6 shows the histogram of transformer aging factor after 
the PV generation is integrated to the system. It is possible to 
see that, in this case, transformer equivalent aging factor is 
lower than one to all scenarios. Then, the PV generation has a 
positive impact on transformer aging. The probability of 
occurrence of each risk class is presented in Fig. 7 for both 
cases with and without PV generation. It is possible to see the 
positive effect of PV generation, making most risk scenarios 
shift from the very high to the medium level.  

Fig. 8 shows the risk matrix and the points located in green, 
yellow, orange and red areas means risk levels equivalent to 
low, medium, high and very high respectively. When PV 
generation is connected, most scenarios (99.45%) have 
medium risk level (0.95  FEQA < 1.0). Although these cases 
have FEQA lower than one, they are categorized as medium risk 
because they have a high probability of occurrence. Also, these 
scenarios represent the possibility of transformer operating 
with hottest-spot temperature above 110oC during some time, 
which is not desirable, but does not represent high risk, hence 
being acceptable. 

 
Figure 6.  PDF for transformer aging factor with PV generation. 

 
Figure 7.  Risk of LOL with and without PV generation. 

 
Figure 8.  Risk matrix with and without PV generation. 

VI. CONCLUSION 
This paper presented a probabilistic methodology to assess 

the risk of transformer loss-of-life in a commercial building 
parking garage, integrated with photovoltaic generation and 

plug-in electric vehicles charging stations. The following 
conclusions can be drawn from the results: 

 The integration of PV generation in a parking garage 
with PEVs charging stations has a positive impact on 
transformer aging, reducing the risk of LOL. The energy 
produced from PVs reduces the transformer loading, 
resulting in lower transformer hottest-spot temperatures.  

 The proposed method provides a decision-making tool 
for optimizing the risk between the excessive 
transformer LOL and financial costs due to the 
installation and connection of the PV system. 

 The approach also provides a way to assess the risk from 
operating transformer in an overloaded condition. 
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