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Abstract 
 

 This paper describes a new solution for integrating 
substation sensing, signal processing and decision 
making for more efficient monitoring, control and 
protection applications. The paper points out 
deficiencies of the existing approach and sets the 
requirements for the new approach. Once an 
architecture of the new solution is defined, further 
description of each of the elements of the new solution, 
namely optical sensor multiplexed network, distributed 
signal processing, and neural network based decision 
making are discussed. At the end, a concept of how all 
the mentioned components of the solution can be 
integrated is given. 

  
 
1. Introduction 
 

The existing substation designs for sensing, signal 
processing and decision-making have been in place for 
a long time.  The approach is centered on a number of 
individual sensors being placed in the switchyard and 
wired directly to the control house where the 
individual monitoring, control and protection devices 
that are using the signals for its decision-making are 
located. While serving the overall purpose rather well, 
this concept is very inefficient in allowing integration 
of data and signal processing across the substation. 

Recent developments in the standards for substation 
automation integration are allowing interconnection 
among intelligent electronic devices (IEDs) available 
in modern substations into one system [1]. Once the 
concept is implemented, a variety of new applications 
that utilize overall substation data may be envisioned 
[2]. In order to implement new applications, one has to 
generate an integrated substation database that will 
provide consistent data across the entire substation. 
Due to the different pre-processing futures of the 
individual IEDs used today, the data available for 

integration is not consistent and a considerable 
development effort is needed to overcome this [3]. 

Developments of the integrated substation 
monitoring, control and protection solutions were 
initiated in the late seventies [4].  At that time, an idea 
of moving the data acquisition/conversion to the 
substation switchyard, closer to the sensors was 
suggested. The idea was to multiplex data from 
multiple sensors on the digital communication link and 
then use the data at the substation level by different 
processing units as needed. However, the process of 
sharing data at the substation level was impaired by the 
limited communication architecture that was reduced 
to a high-speed serial link for the exchange of data 
among different processing units. The communication 
technology available then was not sufficient to allow 
for this data exchange to take place in real time.  

As the technology improved, the concept of data 
integration at the substation level has been enhanced. 
While the standard LAN connection has substituted a 
customized serial data highway, no further 
improvement in the concept were proposed. A major 
enhancement came with introduction of the IEC 
61850, the standard aimed at allowing 
interchangeability among different IEDs [1]. With this 
enhancement a variety of IEDs from different vendors 
can be interconnected to form a substation automation 
system. The problem of integrating data into a 
consistent database still remains an impediment to an 
efficient signal processing and decision-making. 

First, this paper introduces a concept that will 
revolutionize the efficiency in data collection and 
integration at the substation level. A multiplexed 
sensor network is proposed for bringing signals into a 
control house very efficiently. A common signal-
processing set of feature extractors that will serve 
multiple substation applications is described next.  At 
the end, it is shown how the integration offers the 
flexibility in defining new applications that can be 
made transparent to the given substation layout or 
sensor network arrangement. 
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2. Background 
 

This section outlines the present practice in the 
power system area regarding application of sensors, 
signal processing and decision-making. To illustrate 
the points, a typical configuration of the monitoring, 
metering and control infrastructure in power system 
substations is shown in Figure 1. The instrumentation 
and related processing power are situated in a control 
house that is centrally located in the substation 
switchyard. Each of the dedicated monitors, meters and 
controllers are called �intelligent electronic devices� or 
IEDs. They are marked up as boxes �Line 1�, �Bus 1�, 
and �Transformer 1� in Figure 1. It may be noted that 
each IED is a dedicated microprocessor device 
responsible for executing individual monitoring, 
metering or control function. The IEDs are connected 
to the substation local area network, which also hosts 
the database server and communication interfaces to 
the Control Center and neighboring substations. The 
switchyard equipment, consisting of circuit breakers 
(shown as squares), transmission lines (L1, L2, L3, 
L4), power transformers (T1), and buses (Bus1, Bus2, 
Bus3, Bus4) is responsible for routing electric power 
from one point to another serving different loads at 
different voltage levels. It may be observed that each 
IED performing the signal processing tasks is directly 
connected to the transducers and actuators located at 
the breakers with dedicated wiring (dashed lines 
indicate measurements going from the switchyard 
sensors to IED boxes and solid lines indicate controls 
going from IED boxes to the actuators located in the 
switchyard). The figure shows connections for a 
simplified example of the Line, Bus and Transformer 
protection IED. In reality, each line, bus and 
transformer shown in Figure 1 has two protection IEDs 
associated with it: one for primary and one for back-up 
protection. If one adds all the other IEDs dedicated to 
metering and monitoring, a whole �forest� of dedicated 
wiring is needed to connect all the sensor and actuator 
located in switchyard with IEDs located in the control 
house. Here comes the first issue with the present 
practice: the sensors are individually wired and no 
networking is possible. Due to the large number of 
wires in a highly electromechanically �polluted� 
substation switchyard environment, the second issue 
surfaces: the wiring may experience significant 
electromagnetic interference (both conducted and 
radiated). 

The next issue is the existing signal processing 
implementation for monitoring, metering and control. 
Each of the dedicated IEDs are designed with different 
sampling rates, front-end filtering, and quite often, 

different A/D resolution [3]. This creates 
inconsistencies among various IEDs even if they are 
trying to detect the same events (faults) and compute 
the same signal features (phasors). While being 
optimized for a given function, the signal processing 
techniques are not taking into account the need to 
produce consistent pre-processed data for the overall 
substation needs. Hence the signal-processing 
shortcoming:  inconsistency in signal detection, 
processing and data compression. This is extremely 
important for further processing at the overall 
substation and control center level, which is impaired 
with the existing solution. 

The existing wiring provides each IED with a 
dedicated set of signals. The existing decision-making 
is pre-defined regarding sensor inputs. If new sensors 
are added, the existing functions can be improved, but 
at present, this algorithmic expansion is not cost 
effective or feasible. If a new wire is to be added for 
each new sensor, it is prohibitively expensive. If new 
signals are to be brought from a new sensor via the 
LAN, it may not be feasible due to the communication 
bottleneck on the LAN. This explains the inability to 
design flexible signal processing schemes that will 
serve several functions and take expanded sets of 
measurements as new sensors are added. In addition, 
different IEDs may be utilizing the same signals from 
the field thus producing redundant measurements. This 
can be observed by noting that any two bays, such as 
�L Bay�, �T Bay� or �B Bay� in Figure 1, create an 
overlap around the same breaker. The �bay� defines a 
required set of measurements for a given function. 
Hence, each breaker and associated sensors/actuators 
�serve� two decision-making functions located in two 
different IEDs. As a result, there is another 
shortcoming of the existing solution: an inability to 
correlate, and eventually eliminate redundant data at 
the substation level.  

Some of the above-mentioned constraints may be 
�relaxed� if a real-time exchange of data among IEDs 
was feasible. Unfortunately, today�s architecture for 
the substation networking of IEDs is very much 
constrained by the existing philosophy of �stand 
alone� IEDs.  All IEDs in a modern substation today 
are connected to a 10Mbaud LAN, which serves both 
the peer-to-peer and master-slave applications. 
Traditional LAN technologies, using either Ethernet-
like or token bus/ring-like technologies, are not 
amenable to allowing emergency exchange of data 
among IEDs on a priority basis, and quite often, the 
connections cannot be established in the millisecond 
range as required by high-speed protection functions. 
The shortcoming of this architecture is well  known: 
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the exchange of data among IEDs over the substation 
LAN is impossible if there are multiple simultaneous 
requests between several pairs of IEDs in a given 
(short) time intervals. 

The final set of constraints of the existing solution 
is related to the overall power system monitoring, 
metering and control infrastructure. As of today, the 
idea is that each substation can be served with a 
dedicated LAN located in the control house and all 
inter-station communication needs can be served 
through additional hubs, routers and high-speed 
communication switches. The power system decision-
making requires some of the substation data to be 
exchanged among neighboring substations and/or sent 
to the centralized control center. If the data needs to be 
exchanged with another substation, it is done via a 
direct link between the corresponding IEDs located in 
two separate substations. This creates yet another 
problem: many such links may be needed 
simultaneously, and hence another �forest� of 
dedicated long-range communication channels is 
required. Creating a consistent database at the 
substation level, for the purposes of both the overall 
substation monitoring as well as centralized power 

system monitoring, which now assumes merging of 
data from different substations, is even more difficult 
due to different signal processing properties of various 
IEDs located in neighboring substations. 

 
3. New proposed architecture 
 

Each of the mentioned constraints directly results in 
either the cost or performance inefficiency for given 
applications. The excessive switchyard wiring and 
dedicated long-range communication links are 
obviously not cost effective. A multiplexing 
technology for networking the sensors and IEDs may 
be a natural fit and a substantial �wiring� saver. The 
dedicated signal processing located in each IED with 
limited ability for signal exchange and algorithm 
expansion in the case of new sensor signals being 
added for improved measurement tremendously limits 
the decision-making performance of IEDs. New 
distributed processing architectures that can directly 
utilize any selection of sensor measurements from a 
common database available in each substation will 
allow for an easy expansion of the IED algorithms. 
The inconsistency in existing IED signal-processing 
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Figure 1.  Old (Existing) Architecture 
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algorithms may be easily overcome if a distributed 
processing scheme with the same signal detection, 
feature extraction and compression is applied across all 
the sensor measurements. Last, but not least, the 
dedicated decision-making functions requiring signals 
across the power system can be easily served via high 
speed common LAN connecting the substations and 
control centers allowing both inter-station and intra-
station communications to take place over the same 
LAN. In that case powerful data compression may be 
needed to reduce the data bandwidth over the �super 
data highway�, which again is feasible with the latest 
concepts in distributed signal detection and coding 
(compression). The proposed new architecture for 
substation sensing and processing as well as data 
integration and information exchange are shown in 
Figure 2.  The main features of the new architecture 
are the multiplexed sensor measurement network and 
multiplexed control signal network connecting the 

switchyard and IEDs. This features enables elimination 
of the dedicated wiring between the switchyard and the 
control house. The other interesting feature is the 
parallel processing architecture with common signal 
detection and feature extraction capability for 
substation decision-making. This feature allows all the 
IEDs to be eliminated and substituted with a �super-
powerful� IED performing all the substation 
monitoring, control and protection decisions through 
parallel processing. Finally, common substation 
database design supported with data compression 
capabilities as well as the enhanced functional 
performance based on additional signal exchange is 
worth mentioning. These features make the entire set 
of substation measurements readily available to any 
new function. Each of the corresponding parts of the 
architecture is discussed next, with a closing 
discussion aimed at tying all the proposed concepts 
together. 
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4. New sensing, signal processing and 
decision making 
 
4.1. Fiber-optic multiplexed sensor and control 
networks 
 

The Fabry-Perot interferometer (FPI), sometimes 
called the Fabry-Perot etalon, consists of two mirrors 
of reflectance R1 and R2 separated by a cavity of 
length L.  Since its invention in the late 19th century, 
the bulk-optics version of the FPI has been widely 
used for high-resolution spectroscopy.  In the early 
1980s, the first results on fiber optic versions of the 
FPI were reported, and research directed towards the 
realization and application of fiber Fabry Perot 
interferometers (FFPIs) has been conducted at Texas 
A&M for the past fifteen years [5].   The solution 
proposed here, building upon the extensive body of 
knowledge (over 100 publications and 12 U. S. 
patents) gained during the course of this prior work, 
represents the first proposal to apply the technology in 
electric power networks. 

Benefits of the FFPI over conventional sensing 
technologies for instrumentation of the electric power 
grid include: 

• Immunity to electromagnetic interference, 
reduced susceptibility to lightning damage, and 
freedom from grounding problems, which affect 
other sensors in the presence of high electrical 
currents and voltages 

• The ability to locate electronic equipment used 
in sensor monitoring and signal processing at 
remote distances (tens of km) from the sensing 
elements themselves 

• High sensitivity to a variety of measurands 
• The ability to multiplex many sensors of diverse 

types over a single optical fiber lead connection 
• Small size and light weight for the sensing 

elements 
• The potential for reduced life-cycle cost of 

instrumenting the electrical power grid 
The proposed multiplexing techniques developed 

recently at Texas A&M can be utilized in a practical 
network application for the first time [6-8].  Here, 
multiplexing is defined as the use of one optical source 
to supply light to multiple sensors, the use of one fiber 
to access multiple sensors, the use of one 
photodetector to convert the optical signal from 
multiple sensors, and the use of one electronic signal 
processor to compute measurand values for multiple 
sensors.  Multiplexing opens the way to greatly 
reducing the cost per sensor. Its application is essential 

to cost-effective instrumentation of substations, where 
many points are to be remotely monitored. An 
architecture of the multiplexed sensor network, 
together with an associates signal conditioning unit 
(SCU) is shown in Figure 3. 

The first field demonstration of electric power grid 
instrumentation using multiplexed FFPI sensors would 
need to focus on several issues.  A branching network, 
as in Figure 3, can be utilized to connect sensors 
packaged to respond to a variety of measurands 
(electrical current and voltage, temperature, pressure) 
to a signal-conditioning unit via a single optical fiber.  
The sensors and SCU need to be designed to meet 
performance requirements developed for application 
since the sensors themselves represent a relatively 
mature technology [5], an effort needs to be devoted to 
applying multiplexing techniques recently 
demonstrated in the laboratory at Texas A&M 
University. 

The heart of the SCU is to be an Er:fiber laser, 
which is repetitively scanned over a wide frequency 
range (1525-1560 nm) [7].  An optoelectronic 
feedback technique makes it possible to maintain a 
highly linear dependence of optical frequency on time 
during the course of each scan.  This laser can serve as 
the frequency modulated continuous wave (FMCW) 
light source for monitoring multiplexed sensors 
deployed along the length of a single fiber.  A Fourier 
transform (FT) of the return signal from the fiber is 
computed digitally for each laser scan.  Both amplitude 
and phase information in the FT are used to determine 
the optical lengths (nL)i , i = 1, .., N, for N FFPI 
sensing element.   These optical lengths are then 
converted to measurand values using appropriate 
calibration factors [6-8]. 

 
 

 
 

 
 
Figure 3.  Multiplexing arrangement for FFPI 

sensors 
 
 



 6

A part of any multiplexing scheme is a means of 
differentiating the signals from the various sensors.  
The technique employed here is �length multiplexing� 
- the lengths of the FFPIs {Li0} are chosen during 
fabrication such that each occupies a unique region of 
the Fourier transform spectrum [6,9]. Thus, for 
example, the optical length of sensor 1 might range 
from 1.000 to 1.005 cm over the parameter space of 
interest; while that of sensors 2 and 3 would be 
confined, respectively, to the ranges 1.010 - 1.015 cm 
and 1.020 - 1.025 cm.  In this manner, 20 or more 
sensors can be multiplexed along a single fiber, as 
shown in Figure. 3. 

 
4.2. Advanced distributed signal processing 
 

Signal processing plays a crucial role in our 
proposed optical sensor network and in our substation 
application. At the sensor conditioning unit (SCU) 
level, signal processing determines values for each 
measurand (i.e., voltage, current, temperature, and 
pressure); at the centralized location, signal processing 
is needed to extract information, determine conditions 
of the power system and make important decisions. 
Given that cheap optical sensors will collect lots of 
data, especially when FFPI sensors with multiplexing 
capability are employed, the main design issue is to 
decide where most of the signal processing should be 
done. Centralized signal processing at the control 
center is both impossible (because the cost of sending 
all the sensor data to the control center and processing 
them will be too high) and wasteful (because the 
sensor data are highly redundant.)  

We propose to place signal processing units (SPUs) 
at SCUs and other strategic locations in the FFPI 
sensor network covering local processing of both 
electrical (voltage, current, etc) and non-electrical 
(temperature, pressure, etc) measurements. Thus the 
main novelty lies in an efficient processing of multiple 
correlated sensor outputs based on distributed signal 
processing principles.  For example, based on the 
measured voltage and current signals and their 
compliance with Kirchhoff�s law, an SPU can 
determine the local power system connectivity and 
associated load flows and make related control 
decisions. If everything is normal, a single bit sent 
from this SPU shall suffice to inform the control center 
of the status of the local substation system. In rare 
events (power outage, electrical faults, etc.), the local 
SPU can coordinate its own decision- making with 
neighboring SPUs and the control center. In addition, 
an SPU can eliminate redundancy in sensor 
measurements due to multiple sensing, thus avoiding 
the data implosion problem at the control center.  

This distributed processing paradigm represents a 
conceptual shift from the conventional centralized 
model, in which all sensor output are sent to the central 
location for processing and decision making, saving 
precious transmission bandwidth and computing 
power. Other advantages of distributed signal 
processing include: a.) Modularity- as most signal 
processing takes place locally at the SPUs, the SPUs 
and SCUs can be constructed and employed in a 
modular fashion, making it convenient in system 
design and maintenance; b.) Flexibility-because no 
SPU is central and no global knowledge of the network 
topology is required, the system is flexible to on-line 
addition or loss of SPUs. 
 
4.3. New decision-making algorithms for power 
system monitoring, metering and control 
 

The required decision-making for monitoring, 
metering and control of power systems is possible 
using neural networks (NN) that will act as pattern 
recognizers of various power system operating 
conditions [10-13]. The parallel processing nature of 
neural networks guarantees very fast processing as 
long as the required signal feature extraction is 
available [14]. The feature extraction units located in 
the signal processing units (SPUs), shown next to the 
signal conditioning units (SCUs) in Figure 2, are 
charged with this task. Additional issue in decision-
making is the uncertainty that may come about due to 
either imprecise or incomplete data. This situation 
happens due to various inaccuracies in measurements 
or lack of particular data. Hence, there is a need to 
introduce a decision-making technique that is robust 
even under the conditions of imprecise or incomplete 
data [15]. This requires introduction of fuzzified neural 
networks, which is the main focus of the proposed 
technique. 

 Unique type of neural network is proposed for this 
application [16,17]. The network is applied directly to 
the samples of voltages and currents, and produces the 
event detection and classification in real time. This 
network is based on ISODATA clustering algorithm 
[17] and belongs to a group of special neural networks 
named Self-Organizing neural networks [18,19]. The 
Adaptive Resonance Theory describes the adaptive 
nature of the NN used for this study [20]. 

Self-organizing neural networks are special type of 
neural networks that map input patterns with similar 
features into adjacent clusters after enough input 
patterns have been presented. The similarity between 
patterns is usually measured by calculating the 
Euclidean distance between two n-dimensional input 
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vectors. After training, self-organized clusters 
represent prototypes of classes of input patterns. 
ISODATA clustering algorithm discovers the most 
representative positions of prototypes in the pattern 
space. Adaptive Resonance Theory is characterized by 
its ability to form clusters incrementally, whenever a 
pattern, sufficiently different from all previously 
presented patterns, appears. Incremental clustering 
capability can handle an infinite set of input data, 
because their cluster prototype units contain implicit 
representation of all previously encountered inputs. 
Using this technique, the on-line training due to non-
stationary inputs may be easily implemented. 

This neural network is without hidden layers and its 
self-organized structure depends only on the presented 
input data set. The input vector comprises samples 
associated with the three phase current and/or voltage 
signals from the transmission line. The decision-
making algorithms are either directly using local 
waveform samples or extracting the features first and 
then using them in the decision-making. A specific 
type of the clustering algorithm is used to form pattern 
prototypes, which are homogenous structure of clusters 
representing various classes of input data set. General 
clustering method should be able to adaptively 
determine the number of clusters based on the 
distribution of the given data and the nature of the 
formed clusters. The number of clusters is not 
specified, but a strong interclass distance measure is 
specified. Tested patterns are classified by combining 
cluster structure and K-Nearest Neighbor classifier 
[21]. Outputs of this neural network are naturally in the 
discrete form. There is no need for dubious 
transformation from continuous to discrete output as is 
the case in some other neural networks. This is very 
convenient for power system applications where the 
control decisions are based on on-off conclusions.        

Given a set of classified clusters, the standard 
k-nearest neighbor classifier determines the 
classification of the input pattern ix  based only on the 
class labels of the K closest clusters in the cluster 
structure established during training 

 )](,[)( ljij vKfx µµ =   

where: 
)( lj vµ  is membership value which determines the 

degree of belonging of cluster l to class j; 
)( ij xµ  is membership value of pattern i belonging 

to class j; 
;,,1 Pi K=  where P is number of patterns; 

;,1 Cj K=  where C is number of classes; 

;,1 Kl K=  where K is number of neighbors; 

Kvvv ,,, 21 K  denotes the centers of K nearest 

neighbors of pattern ix . 

)( lj vµ  has only crisp values 0 or 1, depending on 

whether or not a cluster lv  belongs to class j: 





=
otherwise0

 class to belongs  cluster if1
)(

jl
vljµ  

 

In this rule all K nearest clusters have the equal 
importance, without taking into account their radii, and 
distances to the pattern that has to be classified. 

The advanced K-Nearest Neighbor classifier [21] is 
a fuzzy classification technique that generalizes the 
K-Nearest Neighbor classifier. New patterns are 
classified based on the weighted distances )( ld  to K 
nearest clusters, as well as on relative size )( lr  and 
class labels )( lc  of these clusters (Fig. 4). The fuzzy 
k-nearest neighbors classifier calculates a vector of 
membership values ))(),(),(( 21 xxx Cµµµ K  of 
input pattern ix  in the existing classes. The class 
membership values are calculated based on the 
following formula: 

)](),(,[)( illjij xdvKfx µµ =   

where now )( lj vµ  may take any value between 0 and 

1, representing the relative size of the actual cluster l. 
Each cluster belongs to one of the existing classes, 
with membership value defined by the following 
adopted relation: 





=
otherwise0

 class to belongs  cluster if
)( max jlrr

v l
ljµ

 

 The membership degree of cluster lv  belonging to 
class j is equal to the ratio between radius )( lr of 
actual cluster l and radius )( maxr  of the largest cluster 
in the cluster structure. The outcome is that the larger 
clusters have more influences then the smaller ones, 
and the clusters with longest radius have 1)( =µ lj v . 
Another improvement toward realistic classification is 
to take into account distances between pattern ix  and 

K-nearest clusters. The distance )( il xd  may be 
generally selected to be a weighted Euclidean distance 
between pattern ix  and cluster l 

m
liil vxxd −=)(   

where the parameter m determines how heavily the 
distance is weighted when calculating the class 
membership. 
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If two or more of K nearest clusters have the same 
class label, then they give cumulative membership 
value to that class. When values )( ij xµ  for all K 

neighbors have been calculated, pattern ix  is 
classified to the class with the highest membership 
degree 

}jmCmj

xxjx imiji

≠=

≥=

   ,,1, 

),()(|{)(Class

K

µµ
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Figure 4.  K nearest clusters ( 9=K  in this 

example) to test pattern i, with their class labels 

jc , radii jr , and distances jd  

 
This idea of new fuzzyfied classifier will help 

classify better a variety of test patterns, comparing to 
the previously used K-Nearest Neighbor classifier. The 
optimal values, for number of neighbors K and 
parameter m which establishes weighted distances, 
have to be determined and applied in each particular 
implementation. 

In summary, the specific neural network structure 
and fuzzy classifier described in this section may 
nicely fit the decision-making goals and objectives 
outlined at the beginning of this section.   
 
5. Integrating the findings into a novel 
solution 
 

If we return to Figure 2, it becomes clear how the 
individual research findings may be integrated. The 
F.O. sensor network can be used to collect 
measurements from the switchyard of a given 
substation, or even from neighboring substations if 
they are near by. Since the proposed network of 
sensors is very inexpensive, a redundant set of 

networks may also be provided. This changes the 
reliability paradigm since the �old� (existing) solutions 
do not have the redundant wiring. After the field 
measurements are collected, the Signal Conditioning 
Unit (SCU), located in the control house, will convert 
all the analog measurements into digital words that 
will be stored in the common database. In addition, the 
SCU will perform feature extraction so that both the 
�raw� measurements as well as signal features are 
made available in the database. The digital data will be 
available to the signal processing units (SPUs) running 
applications for further decision-making tasks. The 
application processors may run iterations for the 
fuzzified NN controllers or may be devoted to signal 
detection and coding (compression) tasks. With the 
entire substation database being available to all 
applications, it is very easy to accommodate any 
functional extensions in the future since the 
applications just need to specify the type of data 
needed and it becomes readily available directly from 
the database. In addition, all substation data is made 
available on the common high-speed serial highway 
for further communication to the control center and/or 
among substations. Last but not least, all the control 
signals generated within the signal processing unit 
(SPU) or sent to the unit from other substations and/or 
the control center can be forwarded to the field 
actuators through another multiplexed F.O. control 
link. 

With this new concept all the bottlenecks of the 
previous (existing) solution shown in Figure 1 are 
removed: a.) The cost of the �wiring� is reduced for 
several orders of magnitude using multiplexed F.O. 
link for sensors, b.) The electromagnetic interferences, 
�blamed� for missoperations in the past, are 
eliminated, c.) The flexibility in using various 
substation data by different applications, needed for 
improving the decision-making robustness, is achieved 
by providing the data in the common substation 
database, d.) The decision making speed, critical for 
timely actions preventing network collapse, is 
increased drastically by having the SCUs extracting 
required signal features and SPUs performing 
decision-making computations by operating directly on 
the features, e) the efficiency of communicating the 
substation data to the control center, which is crucial 
for the increase in the overall system monitoring 
performance, is greatly enhanced by using the new 
distributed signal detection and coding (compression). 
With all the mentioned improvements, this new 
solution is capable of adequately protecting and 
maintaining the supercritical power system 
infrastructure, hence preventing the catastrophic 
failures. 
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6. Conclusions 
 

This paper points out several important facts about 
the existing and future substation sensing, signal 
processing and decision-making: 
 

• Existing solutions are centered around 
individual IEDs and do not allow an easy 
integration of data and expansion of 
processing requirements 

• Future solutions need to make the data 
transparent so that the substation and control 
center applications can access data in the 
same manner irrespective of the physical 
substation layout 

• The proposed data gathering solution using 
multiplexed fiber sensor network and front 
end signal processing at the conversion point 
allows an easy integration of substation data 

• The proposed decision making pattern 
recognizer represents an efficient generalized 
approach to decision-making for monitoring, 
control and protection 
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