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Abstract  

This paper investigates the weather-driven performance of 

electricity markets in the operational time frame. 

Employing the probability distribution fitting approaches, 

weather impacts on power generation and electricity 

demand are modeled and assessed through processing 

large volume of historical data sets. Several novel 

weather-impact indices are proposed in this paper to 

evaluate the vulnerability of the generation as well as the 

sensitivity of the loads in response to given weather 

conditions. By incorporating the stochastic weather 

behavior into power generation and electricity demand 

modeling, as well as asset reliability constraints, the 

uncertain aspects of the market operation, such as system 

costs, locational marginal prices, congestion, reserve 

price, etc., can be well evaluated by the use of Point 

Estimation Method (PEM). Numerical experiments on a 

modified IEEE-RTS system are eventually conducted to 

validate the effectiveness of the proposed approach and 

demonstrate the necessity of weather-impact 

considerations in the electricity market decision making. 
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1 Introduction  

To safeguard the provision of a reliable and affordable 

electricity for decades to come, the electric industry in all 

the hierarchical levels of generation, transmission, and 

distribution is required to become more resilient in the 

face of climate changes [1]. Weather variations, as one of 

the driving factors in shaping the electricity demand and 

generation patterns in day to day operations, need to be 

predicted and incorporated in the power system studies, 

hoping to reach more resilient solutions for adapting to 

growing risks and mitigating the possible weather-driven 

operational concerns and electricity outages [2].  
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The wholesale electricity market aims at balancing the 

generation supply and electricity demand in power 

systems. Quite a few researches are focusing on the 

impact of weather variations on the performance of the 

wholesale electricity market. Several general comments 

on the potential impacts of weather on the PJM energy 

market, Western Europe’s electricity markets and 

Australian National electricity market are narrated in [3]-

[6]. Reference [6] talks in particular about the impact of 

extreme weather conditions on the electricity market 

operations. Possible research directions related to the 

impact of weather factors on the electricity market are 

suggested in [7]. Weather-driven planning concerns in the 

electricity market decision makings are remarked in [8]. 

Data-driven models are widely adopted in predicting the 

prices in the electricity market based on various weather 

inputs [9]-[12]: Heckman correction is adopted in [9]; 

time-varying parameter (TVP) regression model is 

utilized in [10]; neural network is applied in [11]; and 

support vector machines are discussed in [12]. Under such 

price prediction approaches, however, the weather impact 

on the wholesale electricity market cannot be fully 

unfolded since market prices are not solely dependent on 

the weather information; several other factors such as the 

economy of the given area also play a critical role.  

Therefore, by exerting weather impact on the electricity 

demand and generation, simulations reflecting the 

electricity market can be conducted. The impact of 

weather on the electricity market can be better illustrated 

in this way, since some unrelated factors can be excluded. 

The impact of weather on the electricity market price, 

energy exchange, system overall cost with no 

considerations to the transmission line constraints or 

assets’ performance is the focus in [13]-[18]. 

Employing the fundamental concept of the Point 

Estimation Method (PEM), this paper conducts simulation 

studies to capture the probabilistic impact of weather 

factors on the wholesale electricity markets, with the 

driving inputs of weather impact on the power generation 

and electricity demand assessed through large volumes of 

historical data. Different from the previous works, the 

Unit Commitment (UC) market model is adopted with the 

weather-driven considerations of the transmission line 

flow constraints and asset reliability. The existent 

operational uncertainties introduced by a given weather 

condition, including weather impacts on the transmission 

congestion, are simulated and analysed as well. 

This paper is structured as follows: Section 2 

introduces the approach for the weather impact 

assessment on the electricity generation and demand, and 
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proposes vulnerability and sensitivity indices. Section 3 

presents the possible impacts of weather uncertainties on 

the assets operational reliability. Section 4 introduces the 

electricity market model and elaborates the weather-

driven simulations of the wholesale electricity markets 

employing the PEM concept. Numerical experiments and 

results are presented in Section 5. The contributions of 

this study are eventually listed in Section 6.  

2 Weather Impacts on Power Generation 
and Electricity Demand 

The wholesale electricity market is mainly about the 

balance of two main components: power generation and 

electric load. Therefore, it is commonsense to first 

analyze the impacts of weather on these two components 

based on a large volume of historical data sets, and then 

investigate the reaction of the electricity market in 

response to weather variations. 

2.1 Weather Parameters and Data 

The capacity and efficiency of a generating unit, as 

discussed in [5], have a significant impact on the 

electricity market performance as the generation capacity 

indicates the availability of the generation resources and 

efficiency relates to the cost of power generation. Weather 

conditions and factors have obviously a huge impact on 

the renewable sources of power generation such as wind 

and solar. Moreover, the conventional sources of 

generation are also directly or indirectly affected by the 

weather variations. For instance, the availability of the 

water influences not only the outputs of the hydropower 

plants, but also the capacity of other types of generation 

such as coal-fired plants as water would be needed for 

their cooling towers. Besides, the temperature does have 

influences on the efficiency of the generation due to the 

Carnot’s theorem [19]. 

Therefore, the main weather factors focused in this 

paper range from the water discharge, temperature, 

humidity, precipitation, and gauge height, for which the 

corresponding weather data are collected and adopted in 

this study. Besides, the data on the generation capacity 

and efficiency is also needed for the model training.  

Electricity demand, which is another key player in the 

electricity market, is also significantly affected by the 

weather events. There have been numerous studies on the 

impact of weather on the electric load and load forecast 

analysis [20]. Accordingly, the weather factors considered 

in this paper are the cooling degree days (CDD), heating 

degree days (HDD), temperature, dew point, and wind 

speed. The weather data as well as the corresponding load 

demand are collected and adopted in the analysis. 

2.2 Model Training 

The main purpose of the training process is to obtain 

the conditional distribution P(y|X) of a certain parameter, 

where y is the focused output to be predicted. In the 

weather-driven analysis of this paper, y can be the 

generation capacity, generation efficiency, or electricity 

demand. X=[x1, x2, … , xn] can be the possible factors that 

may affect the output, where n denotes the number of 

inputs. In our case, the X vector contains a set of the 

weather inputs (the load in the previous 1 and 2 hours 

should also be included into the input vector X in the case 

of the load probability distribution training).  

Statistical methods are adopted and samples are taken 

to estimate the probability distributions. However, not 

only the outputs with the exact input X, but also the 

outputs within the range of X ± ∆x are sampled. The 

reasons lie in the following: 1) errors do exist when 

measuring the weather inputs, and therefore, it is not 

accurate to just sample the outputs with the exact input 

values of X; 2) sometimes, the exact input combination X 

may not exist in the history, and thus, the data around that 

particular point is used to promisingly approximate its 

output. This idea is quite similar to the interpolation 

fundamentals. The sampling process is illustrated in Fig. 

1. If the goal is to predict the probability distribution of 

the output with a set of inputs (P1, Q1, R1), denoted as the 

black points in the figure, a cube is considered around the 

points to sample the historical data for which the inputs 

are within the range of [P1-σ1×P1, P1+σ1×P1], [Q1- σ2×Q1, 

Q1+ σ2×Q1] and [R1- σ3×R1, R1+ σ3×R1], where σ1, σ2 and 

σ3 are the relatively small factors. In the case of higher 

number of inputs to be considered, the cube may then turn 

into a hypercube. The sampled data, denoted in green in 

Fig. 1, are utilized to assess the probability distribution 

using certain distribution fitting techniques. In this work, 

the outputs are assumed to follow the normal probability 

distributions. By the method of moments, the normal 

distribution parameters are approximated through the 

mean (µ’) and standard deviation (δ’) of the samples. 

Hence, the approximation of the probability distribution 

can be obtained denoted as P’(y|X) ~ N (µ’, δ’2). 

2.3 Vulnerability and Sensitivity Indices 

The mean value (µ’) of a sample can be adopted to 

predict the output under a certain input X when a single 

value, instead of the probability distribution, is needed for 

prediction. Therefore, the relationship between the output 

and certain input xi can be calculated by fixing other input 

variables and running the single value prediction while 

changing the value of xi in a certain range. The slope of 

the resulting figure denotes the vulnerability or sensitivity 

of the output to the certain input xi of interest.   

 

Fig. 1 Illustration of the sampling process. 
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It would be very helpful if the information is provided 

on how vulnerable a generating unit feature (capacity or 

efficiency) is and how sensitive the electricity load is 

under certain weather conditions X rather than a certain 

input xi. Suppose that the relationship between the output 

and input is y=R(X). The Vulnerability / Sensitivity Index 

under certain input vector Z=[z1, z2, …, zn] can be defined 

as the total differential of the R(X) at that point, as 

denoted in (1). Therefore, the following three indices of 

Generation Capacity Vulnerability Index (GCVI), 

Generation Efficiency Vulnerability Index (GEVI), and 

Load Sensitivity Index (LSI) are proposed.  

1 2
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where µX=[z1, z2, …, zn] denotes the mean value of the 

samples around the input vector Z=[z1, z2, …, zn]. 

3 Weather Impacts on the Grid Assets 

Assessing the impact of weather variations on the 

electrical power grid involves a number of considerations. 

One important aspect is the impact of climate change and 

weather variations on the performance of the electric 

equipment. There are huge populations of components 

(e.g., transformers, circuit breakers, overhead lines, etc.) 

with the ages of over 25-40 years in service in the USA 

playing critical roles in power system. Some are located 

and operated under normal climate conditions and some 

are exposed to especial climate conditions such as dust, 

sand, salt deposits, humidity, continuous rain storms, etc. 

Sudden changes of temperature and other prevailing 

weather conditions would also affect the components 

stress and loading, revealing higher risk to the safe and 

reliable operation of the grid. As a result, predictive 

indicators on the impact of weather on the performance of 

such components (with different age and aging 

mechanisms), as well as other operational parameters 

would provide a helpful informative knowledge for the 

operators to foresee a probable mal-operation and decide 

upon accordingly. 

Focusing on the overhead transmission lines in this 

study, practical engineering judgments and reports reveal 

that the lines are commonly so well-made that the 

electrical towers and insulating systems are more likely to 

fail over time than the overhead lines themselves [21]. 

Wooden towers begin to rot in 40 years of continuous 

service, and steel towers would corrode, mostly driven by 

the weather and environmental drivers. Excessive dirt is 

also a driving factor for the degradation and deterioration 

of the insulating structures. Moreover, the severe 

temperature rise/fall is directly governing the loading of 

the transmission lines, the increase of power flowing 

through the lines, and hence leading to extra heat. Such 

situations may lead to an unpredicted sag condition of the 

transmission line, which in some cases, could come in 

contact with the surrounding environment such as trees 

and other facilities, resulting in a fault causing significant 

technical and economic consequences. 

Fundamentally speaking, the impact of weather is not 

solely limited to the mal-operation or failure of the 

components because it may change several weather-

driven parameters and characteristics of the electric 

components. For instance, temperature variations would 

result in different resistance values of overhead 

transmission lines which can significantly affect the 

maximum power capacity and available transfer 

capability of the line, accuracy of power flows, state 

estimation, and other power system applications. 

In this study, an online health index for transmission 

lines is considered, obtained quantitatively through a 

combination of the condition monitoring data for some 

line assemblies (e.g., insulators, conductors, etc.) and the 

inspection data and human judgment for some other 

compartments (e.g., foundations, tower structures, 

auxiliaries, etc.) [21]. The health index is a dynamic 

measure of the line availability for operation and can be 

updated as new monitoring data arrives. In this study, we 

also assume different resistance values for a transmission 

line in different operation hours since the line resistance is 

a direct function of predicted temperature as demonstrated 

in (3) [22]: 

 
1 0 1 01T TR R T T       (3) 

where, α=0.0039 [C]-1  is the temperature coefficient for 

the aluminum, and RT1 and RT0 are the line resistances in 

the temperature T1 and T0, respectively. 

4 Weather Impact on the Wholesale 
Electricity Market 

The results of the above-introduced models for the 

impact assessment of weather factors on the electricity 

demand, generation, and transmission assets are fed into a 

market clearing simulation to realize how such weather 

considerations affect the wholesale electricity market. 

4.1 Market Model 

The Unit Commitment (UC) model is utilized here to 

optimally dispatch the generating units in a given 

operation time horizon. The model is formulated in (4), 

where CGi and CRSi are the generation cost and reserve 

cost of the generating unit i; Pt
Gi and Pt

RSi are the output 

of generator i in energy market and reserve market at time 

period t, respectively; CUi  and CDi are the starting up  and 

shutting down costs; St
Ui and St

Di are the starting up and 

shutting down indicators of generator i at time t; H is the 

distribution factor matrix; and F is the vector of the 

transmission line limits. 

Equation (4.a) is the energy balance equation in which 

Pt
L is the electricity demand at time t; reserve requirement 

is cast in (4.b) in which Dt
RS is the reserve demand at time 
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t. The generation limits of generating units are considered 

in (4.c)–(4.e), where Pmin
Gi and Pmax

Gi are the minimum 

and maximum generation limits of generating unit i, and 

xt
Gi indicates the on/off state of the generating unit i at 

time t. Meanwhile, the on/off states of generating units 

need to meet the constraints in (4.f)–(4.h). Transmission 

line constraints are also expressed in (4.i). 

When the impacts of weather factors on transmission 

lines are taken into account, not only the line temperature-

sensitive characteristics may change, the lines might not 

be available all the time due to the weather-driven 

operational constraints. Therefore, the topology of the 

system may change accordingly, and an islanding may 

occur as a result. Once this problem occurs, the UC model 

will be conducted in each island separately to ensure the 

generation and load balance is met. Fig. 2 demonstrates 

the procedure for conducting the market model 

considering the weather impact and line constraints. 

4.2 Weather-Driven Generation and Load 
Forecast Inputs to the Market Model 

Section 2 gives the probability distribution of the 

generation capacity, efficiency and the electricity demand, 

and that information needs to be fed into the electricity 

market model, as highlighted in light blue in Fig. 2. The 

PEM is adopted here to approximate the probability 

distribution of the market output such as price, system 

cost, etc. Different from Monte Carlo simulations, which 

randomly selects the input data and need a huge number 

of simulation records, the PEM selects some particular 

input data to simulate the final output. Therefore, the 

computation burden drastically decreases. 

Suppose that the relationship between the electricity 

market inputs and outputs is expressed as in (5). 

( )F g Y  (5) 

For each input to the electricity market model, 

suppose a normal probability distribution is assigned and 

its mean and standard deviation are expressed as µ’ and 

δ’, respectively. Using the 2-PEM technique, two values 

will be selected for each input according to equations (6)- 

 
Fig. 2  Flow chart of the weather-driven market model. 

(8), where m is the total number of inputs. 
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Having selected the input values, the mean value of 

the jth output parameter can be calculated through 

equations (9)-(11). 
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Accordingly, the standard deviation of the jth output 

parameter can be obtained through equations (12) and 

(13). 

 
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5 Numerical Experiments 

5.1 Test System and Data Sources 

The electricity demand data comes from the PJM data 

sources [23], and the generation data are borrowed from 

the U.S.A Environmental Protection Agency (EPA) 

website [24]. The weather and water data are obtained 

from the Iowa Environmental Mesonet (IEM) [25] and the 

U.S. Geological Survey (USGS) web pages [26], 

respectively. The aforementioned types of data 

corresponding to the yearly time horizon 2014 are 

adopted to conduct the model training of the weather 

impact on the power generation and electricity demand. 
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The analysis of the weather impact on the wholesale 

electricity market is applied on a modified 24-bus test 

system, IEEE RTS, with the installed capacity of 3405 

MW through 33 generating units serving the load through 

38 transmission lines. All the generating units of the 

system are assumed to be coal-fired generators, and the 

loads are assumed to follow the pattern corresponding to 

the zone EKPC of the PJM system. Other details on the 

system configuration and parameters can be found in [27]. 

Two scenarios are considered and compared: 1) weather-

driven market operation with no transmission line 

constraints (i.e., constraint (4.i) is ignored); and 2) 

transmission line reliability and line flow constrains are 

considered in the weather-driven market operation. 

5.2 Training of the Weather-Driven 
Generation and Load Forecasts 

Fig. 3 illustrates the result of probability density 

function of the generation efficiency, calculated according 

to Section 2.2 based on the available historical data, when 

temperature is ranging from 17 ºF to 100 ºF, while 

humidity is 90%, precipitation is 0 (inches), gauge height 

is 3.42 (m) and water discharge is 6990 (f3/sec.).  

Fig. 4 illustrates the relationship between the 

electricity demand and the temperature change in 4 cases. 

For the reference day morning, the CDD is 30, HDD is 0, 

dew point is 19 (ºF), wind speed is 0 (m/s), and the load 

in the previous two hours are 1842 MW and 1856 MW; 

for the windy day, wind speed is 10 (m/s); for the dry day, 

dew point is 5 (ºF); for the night, the load in the previous 

two hours are 1658MW and 1752 MW. In contrast with 

the peak load, the load decreases when the temperature 

increases. This observation is justified as this situation 

usually appears in the morning/night of the spring or 

autumn when the day temperature fluctuates a lot. 

The relationship between the capacity of a coal-fired 

power plant and the water discharge is demonstrated 

through 3 cases in Fig. 5. For the reference day, the 

temperature is 73 ºF, humidity is 85%, precipitation is 0 

(inches), and gauge height is 3 (m); for the dry day, 

humidity is 20%; for the hot day, temperature is 100 ºF. 

The maximum capacity of the generator is 300 MW. The  

 
Fig. 3  Probability density function of generation efficiency with the 

temperature input ranging from 17ºF to 100ºF.  

 

 
Fig. 4 Relationship between electricity demand and temperature. 

 
Fig. 5 Relationship between generation capacity and water discharge. 

Table 1 Generation capacity vulnerability index 

Humidity = 85, Precipitation = 0, Gauge height = 3, Water charge = 580 

Temperature ( ºF) 70 60 50 40 

GC

VI 

(M

W) 

 

Reference day 22.939 14.4298 10.6809 7.9348 

Humidity = 20 26.535 26.4111 26.3205 26.263 

Water charge 

= 600 
9.787 4.7371 3.1788 1.0711 

Table 2 Load sensitivity index 

CDD =30, HDD =0, Dew point = 19, Wind speed= 0,  

Load (t-1 h) = 1842 MW, Load (t-2 hour) = 1856 MW 

Temperature ( ºF) 15 25 35 45 55 

LSI 

(M

W) 

Reference 

day 
46.259 30.051 68.142 48.394 -28.32 

Dew point 

= 5 
29.610 57.084 57.511 29.011 

-
43.027 

wind 

speed = 10 
21.957 62.723 51.298 79.235 

-

30.327 

 

vulnerability of generation capacity to the weather 

variations is tabulated in Table 1. It can be observed that 

the generation capacity becomes less vulnerable to the 

weather changes as the temperature decreases, probably 

due to the possible increase of generation efficiency. 

Also, the vulnerability greatly decreases when the water 

becomes more abundant. The load sensitivity results to 

weather variations are presented in Table 2. 

5.3 Weather Impact on the Wholesale 
Electricity Market 

The 24-hour UC is conducted based on the hourly 

weather information in a 24-hour time horizon, with the 

training results of the weather impact on the electricity 

demand, generation, and transmission assets. The PEM 

method is adopted to estimate the mean and standard 
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deviation of the market outputs. The results of the 

electricity price in Scenario 1 are illustrated in Fig. 6, 

where the little circles denote the mean values and the 

black lines denote the information of standard deviations. 

Since the transmission line constraints are not considered 

in Scenario 1, the energy price is unified in the whole 

system. The results show that weather impact on the 

electricity market in this scenario is time-variant: the 

uncertainty of energy price tends to be larger in the first 

half-day hours, while the uncertainty of the reserve price 

is larger in the second half-day hours. This is because the 

load, as demonstrated in Fig. 7, is higher in the first 12 

hours of the day and reaches its peak around hours 8 am 

and 9 am. Therefore, some small generating units tend to 

be switched out from operation after hour 9, and that is 

why the prices are highly sensitive to the weather during 

those hours. During the first half day hours, the marginal 

generating units to provide energy are relatively 

expensive small generating units, while in the second half 

day hours, some small generating units become the 

marginal units to provide reserve. The weather impact on 

the system cost is illustrated in Fig. 8. 

 
Fig. 6 Illustration of the weather impacts on the market price. 

 
Fig. 7 Illustration of the electricity load pattern during the studied day 

 

 
Fig. 8 Illustration of the weather impacts on the system cost. 

 

Weather impact on transmission lines and line flow limits 

are taken into consideration in Scenario 2. The 

transmission line health indices of the studied system are 

depicted in Fig. 9. The uncertainties on the reserve price 

and system costs in Scenario 2 are illustrated in Fig. 6 and 

Fig. 8, respectively. In comparison with Scenario 1, the 

observations reveal a higher amount of uncertainties in 

Scenario 2. With the inclusion of the transmission line 

limits, the electricity prices become different at each node 

of the system. Fig. 10 illustrates the impact of weather 

variations on the energy price on bus 9 and bus 18, as an 

example, which have the highest and lowest average 

energy prices respectively during the 24 hours of interest. 

Fig. 11 illustrates the weather impact on the transmission 

line congestions for the transmission lines 7, 12, 13, and 

19. The probability of congestion on other lines of the 

system is very close to 0 and hence is neglected for 

demonstration. From Fig. 10 and Fig. 11, one can see that 

the impact of weather variations is not only time-variant, 

but also space-variant. Some buses and transmission lines 

are particularly sensitive to the uncertainties imposed by 

weather. 

 

 

Fig. 9 Transmission line health and reliability indices-IEEE RTS 

 

 

 

 

 

 

 

 
Fig. 10 Illustration of the weather impact on the market price-S2 

 

Fig. 11   Illustration of the weather impact on the system transmission 

line congestions 
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6 Conclusion 

The contributions of this work are listed as follows: 

 Adequate training of the weather impact on 

electricity generation and demand based on a 

large volume of historical data sets is conducted. 

 Several innovative indices to evaluate the 

vulnerability and sensitivity of generation and 

load to the weather variations are proposed. 

 Weather impacts on the performance of the 

wholesale electricity market are predicted 

through the PEM capturing the uncertainties 

introduced by weather. 

 Weather-driven market simulations are 

compared with and without considering the 

transmission line constraints and reliability to 

demonstrate benefits of the proposed approach. 

 

References  
[1] M. Davis and S. Clemmer, “Power failure: how climate change 

puts our electricity at risk and what we can do,” Union of 
Concerned Scientists, 2014. 

[2] M. Kezunovic, I. Dobson, Y. Dong, “Impact of Extreme Weather 

on Power System Blackouts and Forced Outages: New 
Challenges,” Balkan Power Conference, Sibenik, Croatia, 

September, 2008. 

[3] PJM Interconnection (2009, Jan.), “Potential Effects of Proposed 
Climate Change Policies on PJM’s Energy Market,” URL: 

http://www.pjm.com/~/medi a/documents/reports/20090127-

carbon-emissions-w hitepaper.ashx.  
[4] PJM Interconnection (2014, May.), “Analysis of Operational 

Events and Market Impacts During the January 2014 Cold 

Weather Events,” URL: https:// 

www.pjm.com/~/media/documents/reports/20140509-analysis-of-

operational-events-and-market-impact s-during-the-jan-2014-

cold-weather-events.ashx. 
[5]  R. Golombek, S. A. Kittelsen, and I. Haddeland. "Climate 

change: impacts on electricity markets in Western Europe," 

Climatic Change, vol.113, pp.357-370, Jul. 2012. 
[6] S. Orme and J. Swansson, (2014, Aug.) “Implications of extreme 

weather for the Australian National Electricity Market: historical 

analysis and 2019 extreme heatwave scenario,” Sapere Research 
Group, Australia, URL: http://www.industry.gov.au/Energy/ 

EnergySecurity/nesa/Documents/ExtremeweatherandNEMscenari

oreport2014.pdf. 
[7] T. Overbye, J. Cardell, I. Dobson, et.al. “The Electric Power 

Industry and Climate Change: Power Systems Research 
Possibilities,” Power Systems Engineering Research Center, 

PSERC Publication 07-16, Jun. 2007. 

[8] S. C. Nierop, “Envisioning resilient electrical infrastructure: A 
policy framework for incorporating future climate change into 

electricity sector planning,” Environmental Science & Policy, 

vol.40 pp.78-84, Apr. 2014. 

[9] R. Handika, C. Truong, S. Trueck, R. Weron, (Aug. 2014) 

“Modelling price spikes in electricity markets-the impact of load, 

weather and capacity,” Hugo Steinhaus Center, Wroclaw 
University of Technology, URL: http:// prac.im.pwr.wroc.pl 

/~hugo/RePEc/wuu/wpaper/HSC_14_08.pdf 

[10] N. V. Karakatsani, D. W. Bunn, “Forecasting electricity prices: 

The impact of fundamentals and time-varying coefficients,” 

International Journal of Forecasting, vol.24, pp.764-785, Oct. 
2008. 

[11] J. P. S. Catalão, S. J. P. S. Mariano, V. M. F. Mendes, L. A. F. M. 

Ferreira, “Short-term electricity prices forecasting in a 
competitive market: a neural network approach,” Electric Power 

Systems Research, vol.77, pp.1297-1304, Aug. 2007. 

[12]  J. Li, J. Li, “Next-day electricity price forecasting based on 
support vector machines and data mining technology,” in 

Proceeding of the IEEE Control Conference, pp. 630-633, 2008. 

[13] L. Noah, “The Impact of Weather Forecasts on Day-Ahead Power 
Prices,” Senior These, Claremont McKenna College, Claremont, 

California, 2011.  

[14] A. Pechan and E. Klaus, “The impact of heat waves on electricity 
spot markets,” Energy Economics, vol.43, pp. 63-71, May 2014. 

[15] C. P. Tung, T. C. Tseng, A. L. Huang, T. M. Liu, M. C. Hu, 

“Impact of climate change on Taiwanese power market 
determined using linear complementarity model,” Applied 

Energy, vol.102, pp.432-439, Feb. 2013. 

[16] A. Godbole, “Climate change impacts on hydropower and the 

electricity market: A case study for Switzerland,” Master Thesis, 

Dept. Economics and Oeschger Center for Climate Change 

Research, University of Bern, Diss. University of Bern, 
Switzerland, 2014. 

[17] D. Rübbelke and S. Vögele, “Impacts of climate change on 

European critical infrastructures: the case of the power sector,” 
Environmental Science & Policy, vol.14, pp.53-63, Jan. 2011. 

[18] M. TH. V. Vliet, S. Vögele, and D. Rübbelke, “Water constraints 

on European power supply under climate change: impacts on 
electricity prices,” Environmental Research Letters, vol.8, Letter 

035010, Jul. 2013. 

[19] A. Durmayaz and O. S. Sogut, “Influence of cooling water 

temperature on the efficiency of a pressurized‐water reactor 

nuclear‐power plant,” International Journal of Energy Research, 

vol.30, pp.799-810, Apr. 2006. 
[20] D. Fay and J. V. Ringwood, “On the Influence of Weather 

Forecast Errors in Short-Term Load Forecasting Models,” IEEE 

Transactions on Power Systems, vol.25, no.3, pp.1751,1758, Aug. 
2010. 

[21] D. Zhang, W. Li, and X. Xiong, “Overhead line preventive 

maintenance strategy based on condition monitoring and system 
reliability assessment,” IEEE Transactions on Power Systems, 

vol.29, no.4, pp.1839-1846, April 2014.  

[22] M. Bockarjova and G. Anderson, “Transmission Line Conductor 
Temperature Impact on State Estimation Accuracy,” in 

Proceeding of the 2007 IEEE Power Tech. Conference, pp.701-

706, 2007, Lausanne, Switzerland.  
[23] PJM. (n.d.). Estimated hourly load. URL: 

http://www.pjm.com/markets-and-operations/energy /real-
time/loadhr yr.aspx. 

[24] U.S.A Environmental Protection Agency (EPA). (n.d.). URL: 

ftp://ftp.ep    a.gov/dmdnlo ad/emissions/hourly/. 
[25] Iowa Environmental Mesonet (IEM). (n.d.) ASOS-AWOS-

METAR Data Download. URL: http:// 

mesonet.agron.iastate.edu/request/download.phtml?. 
[26] U.S. Geological Survey (USGS). (n.d.) Water Watch. URL: 

http://waterwatch.usgs.gov/?id=ww_ current. 

[27] C. Grigg, P. Wong, P. Albrecht et.al., “The IEEE Reliability Test 
System-1996. A report prepared by the Reliability Test System 

Task Force of the Application of Probability Methods 

Subcommittee,” IEEE Transactions on Power Systems, vol.14, 
no.3, pp.1010-1020, 1999. 

  

 


