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Abstract—Erratic weather patterns are the vital challenge to the 

existing power system infrastructure. It is critical to understand 

how to mitigate the weather impacts on mid- and long-term 

planning efforts. Yet, it is not typical for utility industry to 

incorporate weather data to perform the analytics and 

correlation to determine the impact of weather variation and 

climate change. In this paper, we analyze maximum temperature 

as an example to demonstrate the weather variation and climate 

change impact on the summer peak load in Harris County, Texas, 

USA.  

Index Terms—big data, data analysis, meteorology, power 

demand, power system planning. 

I. INTRODUCTION 

Almost all the disturbances to power system operation are 
the results of weather events. The analysis of weather and 
climate change impacts is one of the most complex tasks for 
variety of power system applications such as oscillations and 
stability detection [1], operation control and coordination [2], 
cyber and physical infrastructure security [3], cascading 
failures and blackouts [4], outage management and system 
restoration [5], and electricity market, demand response and 
generation forecasting [6].  

To maintain a resilient power system, it is important to plan 
ahead and to prevent negative impacts on the grid. One of the 
most common weather impacts on power system is the 
temperature impact on the peak load. Number of papers studied 
such issues. Asbury [7] discusses the weather load modeling for 
demand response and forecasting. Suzara [8] utilizes historical 
monthly peak load data to specify a multiple regression model 
to predict the impact of temperature. Li et al. [9] study the 
coordination of thermostatically controlled loads (TCL) using a 
mathematical formulation.  Qela et al. [10] present an approach 
to curtailment of peak load with fuzzy approach. Hassan et al. 
[11] suggest constant deviation plans (CDPs) and proportional 
deviation plans (PDPs) for customer engagement regarding 
peak load reduction. Nannery et al. [12] describe a different 
load management technique of having customers responding to 
a utility signal instead of time of day rates. Chen et al. [13] 
discuss about optimization of demand response scheduling 

which is govern by the utility cost and probability distributions 
of exogenous information. Chen et al. [14] establish a 
systematic approach by considering the effects of temperature 
variation on load demand by using the typical load patterns of 
customer classes. Oliver et al. [15] provides a comprehensive 
summary of how the impact of climate change may impact the 
electricity infrastructure in Queensland. McSharry et al. [16] 
uses the probabilistic forecasts for assessing the uncertainty in 
the peak demand forecasting which provides better decision 
making and improves risk management. Erdinc et al. [17] 
implements an approach for HVAC demand considering 
consumer comfort violation minimization, allocation of 
comfort violation among consumers, and impact of humidity on 
ambient temperature. 

The aforementioned literature survey has shown many 
techniques to manage the peak load issue from the utility 
perspective. Nevertheless, one of the most important aspects is 
missing: utilizing the weather data to continuously improve the 
decision-making process. Typically, weather application 
products from commercial vendor [18] are used by utilities. 
However, to assess the impact thoroughly, the additional 
weather data analytics and correlation are needed.  

Another missing key aspect is the impact of climate change. 
It has been shown in lots of papers that there will be a dramatic 
climate change in the next couple decades [19]. From a long-
term planning perspective, it is critical to plan ahead for a 
hardened grid infrastructure to face such challenges.  

The focus of this paper is to utilize new weather data 
analytics to study the impact of historical temperature data from 
1930 to illustrate the climate change impact. The data 
correlation utilizing the historical temperature and summer 
peak load data from 2008 to 2015 is employed to perform a 
weather variation impact study. In general, historical weather 
analytics and climate change studies are done in a relatively 
larger geographical scale (e.g. Southern Plains or a state of 
USA). Yet, for a given utility company, the study needs to be 
done within the target service territory (e.g. at the size of a city). 
Therefore, weather analytics done for a geographical area much 
larger than that may not be as useful. In this study, we choose 
Harris County as the geographical network under study. This 
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county is the most populous county in the State of Texas, and 
the third most populous county in the USA, based on the data 
from U.S. Census Bureau [20]. It may be noted that Harris 
County is a relatively small area comparing with the entire State 
of Texas.   

The paper is organized as follows. Section II discusses the 
background. Section III demonstrates the climate impact on the 
peak temperature. Section IV evaluates the impact of 
temperature on peak load. Section V contains conclusions. 

II. BACKGROUND 

A. Weather Data Sources, Types, and Utilization 

In general, there are three sources of weather 

measurements: weather station, (i.e. meteorological station or 

observation site), satellite, and radar. Weather stations 

worldwide routinely make the basic meteorological 

measurements. The standards for weather data collection 

framework may be found in [21], [22] including: 

 Sensor: the group of available sensors, the specifications 

for detection sensor measuring range, accuracy, and 

resolution, the requirements regarding the sensor 

exposure, and placement and station instrumentations. 

 Data exchange: the standard formats for weather data 

exchange among the automated weather information 

system, and the configuration of network data flow.   

The satellite meteorological detection is a passive remote 
sensing, whereas the radar meteorological detection is an active 
remote sensing. Radars can emit radio or microwave waves and 
receive the back-scattering signals from a convective system.  

The key issue for the utilities is how to select the most 
appropriated weather parameters among all possibilities. For 
specific type of weather events, the weather data analytics 
require the most applicable weather parameter as inputs. For a 
practical example regarding tropical cyclones, satellites can 
observe a tropical cyclone once it forms in the ocean and radar 
can detect its inner structure as it moves near the continent and 
eventually lands on. 

More details regarding weather data sources can be found 
in [23]. In the weather data collection and analysis framework, 
useful weather data may be the original raw data, interpolated 
data (row data being processed by assimilation and 
mathematical model for numerical weather forecast), and 
weather application products (interpolated data being processed 
by statistical and meteorologist interpretation). 

B. P-Value of Statistical Hypothesis Testing 

In statistical hypothesis testing, Null Hypothesis (H0) is 
defined as typically the ‘no difference’ or ‘no association’ 
hypothesis to be tested (usually by means of a significance test) 
against an Alternative Hypothesis (H1) (i.e. Research 
Hypothesis) that postulates non-zero difference or association 
[24]. It should be noted that H0 is not always the opposite of H1 
due to Type I and Type II errors [25]. Also, if there is a flaw 
within H0, the results could show H0 is not supported, but 
neither H1 nor the experiments become invalid. The reason why 
hypothesis testing is applied is to examine two statements H0 
and H1 which are mutually exclusive, as demonstrated when we 
look at the impact of temperature data to climate change and 
peak load data. 

R2 statistic (or coefficient of determination) is defined as the 
square of the correlation coefficient between two variables [25]. 
It is to show how close the data fits the regression line, where 
the higher the value, the better the model fits the data. 

F test is a test for the equality of the variances of two 
populations having normal distributions, based on the ratio of 
the variances of a sample of observations taken from each [25], 
which is known as F statistic. Under H0, F statistic is 
approximately to be 1 meaning that two populations are 
expected to be equal.  

P value is defined as the probability of the observed data (or 
data showing a more extreme departure from H0) when H0 is 
true, and α stands for the significance level [25]. When linear 
regression is performed in our study, the confidence level of the 
slope is  

%100)1(   (1) 

If P value is smaller than α, then the slope is statistically 
significant. The value of α usually depends on the nature of 
hypothesis studies and traditionally it may be 0.1, 0.05, or 0.01 
but can be some other values. In our study α is set to be 0.1 since 
the level and the factor we consider may not be easily 
predictable. 

III. CLIMATE IMPACT ON PEAK TEMPERATURE  

In this section, we will analysis the temperature data to 
demonstrate its impact to climate change. The term “annual hot 
days” is defined as the days in a year where the maximum 
temperature (Tmax) is greater than a threshold. The null 
hypothesis H0 is defined as the number of annual hot days does 
not increases as time goes on, where if the P value is smaller 
than α then the H0 is rejected. α is set to be 0.1 so the confidence 
interval is at 90%.  

The historical temperature data from Daily Summaries data 
of Climate Data Online (CDO) in National Centers for  

Fig. 1.  5 weather stations used in studies [22]. 



Environmental Information (NCEI) [26] is used. We look at 
two different sets of input data from two weather stations listed 
below. The geographical locations are shown in Fig. 1. The 

reasons for the selection are due to the completeness of data 
and the geographical locations.  

Data Set A: Houston William P. Hobby Airport (ID: 
GHCND:USW00012918) from Aug. 1st, 1930 to 
Oct. 9th, 2016.  

Data Set B: Houston Intercontinental Airport (ID: 
GHCND:USW00012960) from Jun. 1st, 1969 to 
Oct. 9th, 2016. 

Figs. 2 and 3 show the results of linear regression for Data 
Sets A and B, respectively when Tmax is 98°F to 100°F. Table 
I provides the R2 statistic, F statistic and its P-value, and an 
estimate of the estimate of mean square error (MSE) for Data 
Set A, B, and C when Tmax is 95°F to 101°F, respectively. Note 
data points available are more in Data Set A than in Data Set 
B. 

While looking at R2 statistic in Table I, due to other 
anomalies in climate (e.g. El Nino and La Nina), it is expected 
that the values will be low. In Data Set A, the values are higher 
when Tmax is higher, which is opposite in Data Set B. In Figs 2 
and 3, some years have 0 hot days which is bad estimate 
samples for R2 statistic. 

While looking at F statistic, the values are higher when Tmax 
is higher, which is opposite in Data Set B. In order to reject H0, 
F statistic need to be higher (i.e. the ratio is further away from 
1).  

While looking at confidence interval (CI), the negative 
lower confidence numbers suggest that the sample size may 
not be sufficiently large enough. In this case, they may be 
replaced with very small positive numbers for practical 
purposes.   

The slope for all regress lines is positive. For the slope to 
be statistically significant within the given confidence interval 
at the 90% confidence level, the P value needs to be smaller 
than α. In Data Set A, it satisfies the condition when Tmax values 
are 98°F and 100°F; in Data Set B, it satisfies the condition 
when Tmax values are 95°F to 99°F. Note even though the R2 

statistic values are generally low, we still draw statistically 
significant predictors, which demonstrates how variations in the 
predicted response values could be associated with variations in 

TABLE I. STATISTICAL RESULTS OF DATA SETS A, B, AND C 
 

Data Set Tmax (°F) Threshold R2 statistic F Statistic P Value Estimate of MSE Confidence Interval Regression Line 

A 

95 0.024 2.030 0.158 201.032 [-0.015, 0.194] y = -160.256 + 0.089x 

96 0.021 1.813 0.182 123.571 [-0.016, 0.148] y = -120.639 + 0.066x 

97 0.020 1.688 0.197 66.021 [-0.013, 0.106] y = -86.358 + 0.047x 

98 0.035 3.042 0.085 30.338 [0.002, 0.083] y = -80.527 + 0.042x 

99 0.024 1.998 0.161 11.220 [-0.004, 0.046] y = -39.460 + 0.021x 

100 0.036 3.123 0.081 4.156 [0.001, 0.031] y = -30.448 + 0.016x 

101 0.027 2.277 0.135 1.514 [-0.001, 0.017] y = -15.735 + 0.008x 

B 

95 0.166 8.744 0.005 373.022 [0.274, 0.995] y = -1233.887 + 0.634x 

96 0.138 7.033 0.011 306.285 [0.189, 0.842] y = -1006.205 + 0.515x 

97 0.123 6.179 0.017 224.217 [0.134, 0.693] y = -809.643 + 0.413x 

98 0.113 5.579 0.023 133.680 [0.088, 0.519] y = -595.628 + 0.303x 

99 0.074 3.542 0.066 81.362 [0.020, 0.357] y = -370.318 + 0.189x 

100 0.056 2.630 0.112 42.912 [-0.004, 0.240] y = -232.091+ 0.118x 

101 0.044 2.032 0.161 21.412 [-0.013, 0.160] y = -144.068 + 0.073x 

 
 

 

Fig. 2.  Linear regression for Data Set A for Tmax threshold 98°F to 100°F. 

 

 

Fig. 3.  Linear regression for Data Set B for Tmax threshold 98°F to 100°F. 

 



the mean response values. In this case, we can still draw the 
conclusion, we might expect that increased hot days per year 
in the Harris County will be more likely to occur as climate 
continues to become warmer in the next a few decades.  

IV. CORRELATION BETWEEN PEAK LOAD AND 

TEMPERATURE 

In this section, we will analyze the correlation between the 
peak load data and the temperature. One geographical area of 
peak load consumption data at northeast of Harris County is 
chosen for the study. We will use temperature data from 5 

weather stations for the network under study: Houston William 
P. Hobby Airport (HOU), Sugar Land Regional Airport (SGR), 
Houston Intercontinental Airport (IAH), Baytown, and 

TABLE II. PEAK LOAD  
 

Peak Load Date Peak Load Consumption (GW) 

7/21/2008 13.35719 

6/25/2009 13.82766 

8/23/2010 14.11831 

8/18/2011 14.86684 

6/26/2012 14.48539 

8/13/2013 14.49347 

8/25/2014 14.44517 

8/11/2015 15.61568 

 

 
 

Fig. 4.  Linear regression studies between Tmax and peak load anomalies using 
Tmax data from IAH. 

 

 
 

Fig. 5.  Linear regression studies between Tmax and peak load anomalies using 

Tmax data from HOU. 

 
 

 

 
 

 

 
 

Fig. 6.  Linear regression studies between Tmax and peak load anomalies using 

Tmax data from IAH. 

 

 
 

Fig. 7.  Linear regression studies between Tmax and peak load anomalies using 

Tmax data from Baytown. 

 

 
 

Fig. 8.  Linear regression studies between Tmax and peak load anomalies using 

Tmax data from LVJ. 

 



Pearland Regional Airport (LVJ). Note the IAH is the only 
airport which is within the studied network and the other 3 are 
not, but they are around. HOU and IAH weather station details 
are given in Section III. The geographical locations are shown 
in Fig. 1. The IDs for SGR and Baytown are 
GHCND:USW00012977 and GHCND:USC00410586, 
respectively.  

The peak load data is the day having the most power 
consumption of 2008 to 2015 as shown in Table II. For each 
data point, we obtain Tmax from all 4 weather stations and 
perform linear regression studies. Due to very small sample size 
here (only 8 data points) it may become inconsistent to attempt 
to predict the future trend of anomalies. 

The peak load data is detrended to analyze if the anomalies 
in the increasing rate are correlated to the change of Tmax. By 
subtracting the data with the fit line, the fluctuations about the 
trend within the data points can be better analyzed.  

Figs. 4, 5, 6, 7, and 8 show the analysis for the peak load 
consumption anomalies versus IAH, HOU, SGR, Baytown, and 
LVJ data respectively. α is set to be 0.1 so the confidence 
interval is at 90%. In each sub-figure, the y-axis is the detrend 
data of peak load consumption, and the pairwise linear 
correlation coefficient R and the P value are indicated. The P 
value corresponds to R, is the testing for null hypothesis H0 (no 
correlation) against alternative hypothesis H1 (correlated). 

In Fig. 4, all the results show relatively high correlation 
between the peak load anomalies and Tmax. The null hypothesis 
is rejected from the given P values except the data of LVJ. The 
comparison of R and P shows that the IAH data has the highest 
correlation with the peak load data anomalies then the other 4 
airports. The IAH data presents relatively higher R and 
relatively much lower P values comparing to other 4 sets of 
data. The explanation may be that IAH location is the only one 
within the studied geographical network but not the other 4. 

V. CONCLUSIONS 

This paper makes several contributions: 

 We apply hypothesis tests for data analytics and data 
correlation utilizing the historical temperature and summer 
peak load data from 2008 to 2015 to illustrate a weather 
variation impact study. 

 Even though the R2 statistic values are generally low, we 
reveal statistically significant predictors indicating that an 
increase in the number of hot days per year in the Harris 
County will be more likely to occur as climate continues to 
become warmer in the next a few decades. 

 The peak load data is shown to have correlation with the 
change in the maximum temperature, where the IAH data 
has strong correlation coefficient, and the reason may be that 
it is the only weather station within the geographical area 
within studied network. 
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