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Abstract 
This paper investigates how correlating cross-

domain big data from the lightning surge and the 

traveling wave measurements in time and space can be 

used to improve fault location accuracy. The 

integration and correlation of big data in time and 

space using Global Positioning System and 

Geographic Information System respectively improves 

knowledge about faults on transmission lines caused by 

lightning. The benefits of proposed method are: a) the 

decision process can be accelerated through 

automation, and b) better accuracy of fault location 

result can be provided due to the data correlation. The 

benefit is a more efficient outage management 

procedure. 

 

 

1. Introduction  

Since electricity has been interwoven with humans’ 

daily lives, the reliability of the supply has become 

increasingly critical in many aspects. Although the 

utilities are investing paramount efforts to improve the 

reliability of the operation, severe weather conditions 

continue to impact electrical networks, particularly 

since the transmission grid is still largely an overhead 

infrastructure and hence highly exposed. Storm-related 

outages are estimated to have cost between $20 billion 

and $55 billion annually, in cases where the damage to 

the grid provoked serious consequences to the 

customers [1]. Providing fast system restoration is 

essential for reducing this loss. The time needed for 

system restoration can be significantly reduced by 

providing more accurate estimate of fault location in 

real-time (as soon as the fault is detected). 

Severe weather conditions are one of the major 

reasons for electrical outages. In fact, the number of 

weather-related outages has been increasing annually 

[2, 3]. According to [2], from 1992 to 2011, 78% of 

1333 outages in USA were weather-related where 178 

million customers were affected. A study [3] 

demonstrates that in the US approximately 44% of the 

blackouts were weather-related during the period of 

1984 to 2006, where 11% of these blackouts were 

caused by lightning activity. 

Weather can have different impacts on utility 

operations [4, 5]. The weather impacts may be caused 

by variety of circumstances [6]. Transmission systems 

operators need to identify approximate locations of 

outages so that crews can be efficiently dispatched [7]. 

While the line outage is in effect, and crews are 

inspecting and repairing the damage, the operator may 

implement adequate switching actions to reduce the 

impact of the outage on the overall supply [8]. 

Traveling wave fault location has been explored in 

literature [9-16] and claimed to be extremely accurate, 

which requires data sampling in the kilohertz range. 

Many utilities have either deployed such fault locators 

or are in the process of evaluating them. The GPS 

synchronization between two traveling wave recorders 

on two sides of the transmission line was discussed in 

[14-16]. However, none of the papers examine how 

additional data coming from the lightning detection 

network can be automatically used to improve 

accuracy of the method, which is done in this paper. 

In [17], the real time monitoring of transmission 

line transients under lightning strikes was presented. 

Real time electromagnetic transients were measured 

and correlated with lightning data recorded at the 

outage location to evaluate the impact on insulation 

coordination. Such measurements are very intensive 

exhibiting sampling rates of several megahertz. 

This paper demonstrates how the use of traveling 

wave and lightning surge measurements, correlated 

with data from Geographic Information System (GIS) 

and Global Positioning System (GPS) may bring major 

improvements in the outage management. The utilities 

use such additional data types today, but data is 

processed manually and poorly correlated leading to 

delayed decisions and inaccuracies. The automated 

method has to address the big data problem due to 

heterogeneity of the data sets, as well as the high 

volume and velocity of data. 



The paper is organized as follows. Section 2 

provides background for the topics of Big Data and 

individual data sets used in fault location application. 

In Section 3, the automated improved transmission line 

fault location is described. Results are presented and 

discussed in Section 4, while Section 5 lists the 

conclusions. References are provided at the end. 

2. Background  

Quick and accurate decision-making is the most 

essential part of outage management and service 

restoration. The problem space involves information 

that is naturally associated with the temporal and 

spatial scales as well as with other power system 

properties such as event (contingency) type and 

time/location of occurrence, power system loading 

patterns, network switching alternatives, etc. The big 

data approach can be used to improve the decision-

making process in this scenario. The challenge lies in 

leveraging the large amount of data in real-time to 

improve the decision-making process, without adding 

to the complexity. The task is therefore multi-

dimensional, multi-scale, and requires cross-domain 

integration and correlation of data. In this paper the 

term correlation is used describe spatio-temporal cross-

referencing of two data sets (traveling wave recorder 

data and lightning data), where spatial and temporal 

referencing is done using GIS and GPS respectively. 

2.1. Big data 

As denoted in [18], the big data in the electric 

power industry exhibits following characteristics:  

 Large volume,  

 High velocity,  

 Increasing variety.  

The volume of data refers to the quantity of 

generated and transmitted data described in terms of 

gigabyte or even terabyte. Velocity refers to the 

temporal constraints on collecting, processing and 

analyzing data and it is described in terms of number 

of samples per second or frequency of data generation 

and transmission and subsequent recording. Variety 

refers to data coming from many different sources that 

are not necessarily part of the traditional electric utility 

data. 

The electric utility measurement data is typically 

obtained from various types of Intelligent Electronic 

Devices (IEDs) such as the phasor measurement unit 

(PMU), automated smart meter (ASM), digital fault 

recorder (DFR), digital protective relay (DPR), and 

Supervisory Control and Data Acquisition (SCADA) 

system. Utility measurements collected from substation 

IEDs alone can compound to dozens of GB of data per 

day in large systems due to each device reaching the 

sampling in the range of kilohertz or even megahertz 

[19]. The additional sources of big data include the 

weather reporting system, National Lightning 

Detection Network, GIS, GPS, and others [20].  

Since data is gathered from a variety of sources that 

follow different standards for data collection and 

description the database is heterogeneous. Hence, 

additional steps need to be taken in order to extract the 

useful information in the format that is compatible with 

the network model used for simulation as well as 

specific data analytics used for outage management. 

Automating this process is of a paramount importance 

if the decisions are to be made efficiently and 

accurately. To cope with data variety and the necessity 

for spatial and temporal correlation of cross-domain 

sources, operators are also expecting to benefit from 

visual analytics which can offer an interactive view of 

multiple data layers. 

The big data processing methodology consists of 

following steps [21]: 

 Searching: Implementing advance search process for 

fast access to data of interest,  

 Learning: Identifying important information using 

machine learning techniques such as classification 

and clustering. 

 Knowledge Extraction: Extracting knowledge from 

information using different machine learning 

techniques, 

 Correlation: Correlating different pieces of 

knowledge to form further conclusions using 

reasoning, 

 Prediction: Identifying  rules and trends in analyzed 

data that can be used to predict future behavior, 

 Optimization: Based on collected knowledge 

optimize existing solutions in order to minimize risk 

and maximize profit. 

2.1.1. Lightning data. The faults are usually caused by 

cloud-to-ground lighting hitting the poles. Depending 

on the area, the lightning may be very important in 

influencing electric power network faults. For instance, 

the research in UK [22] shows that lightning strikes are 

the second most common factor in weather-related 

distribution system faults. Due to predicted changes in 

operating conditions caused by weather and the change 

of power system infrastructure the percentage of faults 

induced by lightning is estimated to increase by 40% 

by 2080s [23]. In this case to minimize the effects of 

lightning proper protection of network structure (i.e. 

ground wires) and equipment (i.e. surge protectors) 

must be implemented by utilities [24]. 



The lightning detection network data can be used 

to correlate information about lightning characteristics 

with other event data gathered from the substation 

measurements. This provides better situational 

awareness during the critical events affecting the 

system and has the potential to improve automated 

fault location techniques. 

Lightning data is gathered by the sensors that are 

typically located sparsely over the area of interest. 

There are three common types of lightning sensors: 

 Ground-based systems that use multiple antennas to 

determine distance to the lightning by performing 

triangulation. 

 Mobile systems that use direction and a sensing 

antenna to calculate distance to the lightning by 

analyzing surge signal frequency and attenuation. 

 Space-based systems installed on artificial satellites 

that use direct observation to locate the faults. 

Typical detection efficiency for a ground-based 

system is 70-90%, with a accuracy of location within 

0.7-1 km, while space-based systems have resolution 

of 5 to 10 km, [25]. 

For example, The National Lightning Detection 

Network (NLDN) [26] uses ground-based system to 

detect lightning strikes across the United States. After 

detection data received from sensors in raw form is 

transmitted via satellite-based communication to the 

Network Control Center operated by Vaisala Inc. [27].  

When it comes to the way data is received by the 

utility we can distinguish two cases: (i) the lightning 

sensors are property of the utility, and (ii) lightning 

data is received from external source. In the first case 

raw data are received from the sensors, while in second 

case external sources provide information in the format 

that is specific to the organization involved. No matter 

which source is used the lightning data typically 

includes the following information: a GPS time stamp, 

latitude and longitude of the strike, peak current, 

lightning strike polarity, and type of lightning strike 

(cloud-to-cloud or cloud-to-ground). 

 2.1.2. Traveling wave fault locator data. Traveling 

wave recorder data is considered as one of the sources 

of information for proposed method. Traveling wave 

fault locator calculates distance to fault automatically 

based on recorded samples of traveling waves at one or 

both sides of the line. Mostly used method in modern 

devices is double ended Type D method with GPS 

synchronization. The locator calculates arrival time of 

the fault-induced waves using GPS as a reference. 

Then, these time tags are sent to the central station 

where fault location algorithm is used to determine 

distance to the fault from line terminals. In addition, 

samples of the recorded signal are transmitted.  

The accuracy of traveling wave method is highly 

dependent on the sampling rate. Modern devices use 

sampling frequency of 0.1 to 20 MHz. 

In case of Type D traveling wave method, GPS is 

primarily used for synchronization between signals 

received at two ends of the line. Conveniently, this 

information can be used for time correlation with 

lightning detection data that also uses GPS. 

2.1.3. GIS and GPS. The main advantage of the 

Geographic Information System (GIS) is incorporation 

of spatial data of different forms together in a 

systematic fashion [32]. Different types of data can be 

layered jointly, making data management easier. 

Framework for GIS project is presented in Fig. 1, [33]. 

Data collected by lightning detection network and 

traveling wave recorders is mapped and stored in 

Geodatabase. Geospatial Analysis Tools are used for 

manipulation of maps. Framework contains one layer 

for each type of data. Layers are classes or categories 

of data that can be organized in separate and distinct 

data structures, but integrated into a single file. These 

layers can be updated as the new information arrives to 

the system. 

The Global Positioning System (GPS) is a space-

based satellite navigation system that provides location 

and time information for specified targets on the Earth. 

The latest equipment has a GPS time accuracy of 100 

ns with a resolution of 10 ns [35]. 

3. Spatio-temporal correlation of 

lightning and fault location data in 

transmission networks 

As a demonstration of utilization of big data for 

improved outage management, lightning data is 

correlated with traveling wave fault location results. 

Both data sets are correlated in time using GPS and in 

 

Figure 1: GIS Data Framework 
 



space using GIS. The traveling wave method is 

assumed to be the main source of information while 

lightning data is used to enhance the situational 

awareness and provide better accuracy of fault location 

result. 

Table 1 lists the big data properties of the presented 

application. The problem falls in the group of big data 

problems for the following reasons: 

 Variety: The database includes sampled waveform 

data combined with reports from traveling wave 

fault locator units, lightning detection network, and 

geographical data. The data files come in different 

formats that are not compatible and information 

needs to be extracted so that they match the 

application. For example, lightning detection 

network provides the location of lightning strikes in 

terms of coordinates (longitude and latitude), while 

traveling wave recorder provides the information in 

terms of distance to the fault from line terminals.  

 Volume: The implementation requires analysis of the 

extensive set of historical data in order to determine 

tradeoff between accuracy of traveling wave method 

and enhancement using the lightning data to 

determine the confidence of the data gathered during 

the event analyzed in real time. The lightning data is 

required for the period of time that covers all events 

from historical data and each lightning report will 

generate new map. This is just one level at which the 

volume of data can be overwhelming. In addition, 

during the fault, extensive set of data is received and 

not all of it is used for automated fault location. 

First, the important information needs to be extracted 

in an automated way. Typically, this process is done 

manually by utilities today. With methods used in 

big data analysis such as indexing for faster search 

and machine learning for extracting knowledge from 

data this process can be automated.  

 Velocity: The velocity refers to the speed at which 

data is arriving to the central computing facility. 

During the fault, multiple sources will send a large 

amount of data that needs to be stored and ready for 

analysis. The examples are samples of traveling 

wave waveforms and coordinates of lightning 

strikes. 

3.1. Traveling wave fault location 

The GPS synchronized traveling wave method is 

used as one source of information for fault location. In 

order to implement traveling wave fault location the 

following steps are taken: 

 Modeling of the power system: It is done according 

to the method given in ref, [36]. Transmission line 

modeling is done using J. Marti model, [37]. This is 

a frequency dependent line model that uses analog 

filtering technique for identification of line 

parameters and can be simulated with ATP EMTP 

software, [38]. 

 Simulating the fault transients: Faults are introduced 

in various locations over the selected transmission 

line. 

 Determining modal transformation for a three-phase 

system: Signals are transformed into modal 

components using Clark’s transformation, [39]. 

After modal transformation a three-phase system is 

represented by an earth and two aerial modes. The 

aerial mode 1 is used for fault distance estimation. 

 Computing the traveling wave velocity: Method that 

uses maximum of the first two consecutive peaks of 

the power delay profile (MPD method, [12]) is used. 

 Calculating the arrival time: Wavelet transformation 

is used to determine the arrival time of the transient 

peak. The “mother” wavelet that is used is 

Daubechies wavelet, [13]. Wavelet Toolbox in 

MATLAB is used [40].  

 Calculating fault location: The arrival times of the 

transient peaks at two TWRs that are located on two 

line terminals (TA, TB), line length between two 

TWRs (l) and calculated velocity of wave 

propagation (ν) are used to calculate the distance θ to 

fault as 

                            
2

)( 
 B

T
A

Tl 
  (3) 

 Performing time synchronization: Arrival times of 

two wave fronts are synchronized using GPS, [14-

16]. 

Factors affecting accuracy of the traveling wave 

fault location methods are: 

 Estimation of line length is a major cause of error. 

As it is presented in [9] not knowing exact line 

Table 1: The big data properties of data sources 
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Traveling 

wave data 

4 GB for storage of 

2100 records from 8 

line modules per 

substation device 

Baud rate of 115200 

bits per second 

Lightning 

data 

40 MB of data per 

day  

Sensor baud rate 

4800 bits per second, 

event timing 
precision of 1μs 

GIS 

Additional GIS 

layer for every type 

of data, each layer 
is few MB large 

Up to 1000 maps per 
day can be generated 

for lightning data 

 



length and line topology can lead to the error close 

to 500 foot (150 m). 

 The traveling waveform is assumed to travel at the 

speed of light, [35]. When it comes to the overhead 

transmission lines, velocity of the propagated wave 

is close to that of the light but not quite the same. 

 Time stamping must be very precise to make the 

system work. As it is stated earlier the latest 

traveling wave fault locators have GPS time tag 

accuracy of 100ns, [35]. 

 Wave-detection error due to interpretation of the 

transient is a major source of error. This error results 

from misinterpretation of multiple transients and/or 

reflected transients. This is a significant concern in 

the case of lightning strikes. Lightning storms with 

multiple rapid strikes can cause confusion in terms 

of which transient was associated with which fault, 

[41]. In [15], the issue of multiple lightning strikes 

was investigated and it was reported that travelling 

wave recorders can produce incorrect results in such 

cases. 

 Current transformers (CT) and capacitive voltage 

transformers (CVT) can affect the accuracy as well. 

In [42, 43] modeling techniques for transient 

response of CTs and CVTs are discussed. It has been 

pointed out that the differences in the length of the 

cabling from protection CT to the relay room at each 

end of the transmission line can affect accuracy [35]. 
Traveling wave fault location method used in this 

paper extracts the traveling wave from the current 

signals collected on the secondary of CTs. The CTs 

have enough bandwidth to pass the transients, 

however they do affect accuracy of the method. 

 Accuracy of the method is greatly affected in case of 

the faults with small inception angles (<5°). For the 

cases of fault inception at zero crossing, 

theoretically, no traveling wave from the fault 

location is generated [44]. 

Because information coming from the lightning 

detection network is not a part of the conventional 

traveling wave fault location system it is not affected 

by all of the described errors. The only parameter that 

affects both methods is GPS time tag accuracy. Thus, 

lightning detection network data may complement the 

fault location method and improves the accuracy of a 

complete system. 

The model of a 400 kV transmission line presented 

in Fig. 2 is used for simulation in the experimental 

section. The sampling frequency was 1 MHz. The line 

length was 120 miles (~193 km). The faults were 

generated in the range from 10 to 110 miles from the 

terminal A. 

 

3.2. Dataset description 

Lightning detection network collects following: 

 Date and time of lightning strike using GPS, 

 Location of a strike (latitude and longitude) 

 Peak current and lightning strike polarity, 

 Type of lightning strike (cloud to cloud or cloud to 

ground). 

Traveling wave fault locator provides following: 

 Date and time when event was recorded using GPS, 

 Distance to the fault from the line terminals, 

 Transient signals recorded at the line terminals. 

Additional data that needs to be known for the 

application is: 

 Location of line terminals (latitude and longitude), 

as well as geographical representation of the line, 

 Transmission line characteristics needed for the 

transient simulation. 

The following data is used for modeling: 

 Transmission line parameters, 

 Physical characteristic of a transmission line and 

towers, 

 Line length, 

 Lightning surge peak current 

3.3. Automated Correlation of data 

In order to automatically correlate traveling wave 

data with lightning data, for the purpose of more 

accurate fault detection, it is necessary to identify 

which faults are likely caused by lightning and to do so 

with minimal human intervention. This task is 

accomplished in the following way. 

When the traveling wave recorders detect transients 

indicating that a fault has occurred on a transmission 

line, they send data with a GPS time stamp to the Local 

Control Building. This data is then transmitted to the 

Central Station where real-time data from the lightning 

detection system is queried for the lightning activity in 

the area around the line (in the past 10 minutes, in a 5 

km radius). For this step it is necessary to have fast and 

accurate querying of the lighting detection data. 

 
 

Figure 2: ATPDraw model of the tested line 



3.3.1. Identifying faults caused by lightning strikes. 

By comparing time stamps of events detected by 

traveling wave recorders and those obtained from 

querying the lightning detection system it may then be 

determined whether the disturbance is likely to be 

caused by lightning activity, as indicated by their 

closeness in time and space. The flow of information is 

illustrated in Fig. 3. If it is determined that the 

disturbance is likely generated by lightning then the 

complete set of data about the event is gathered at the 

Central Station where correlation of data is leveraged 

together with analytics to improve fault location. In the 

Central Station the transient simulation of event is run 

and analysis of data is performed as described next. 

3.3.2. Spatio-temporal correlation of diverse data. 

The data management for the correlation process is 

shown in Fig. 3. Traveling wave fault recorders are 

located at both ends of the transmission line. On the 

other hand lightning sensors are typically not a part of 

the utility infrastructure and are located sparsely across 

a wide area. The traveling wave fault location system 

provides the estimate termed Automatic Fault Location 

Result in Fig. 4. This result is implicitly allocated to 

the transmission line. Lightning sensors provide an 

estimated Location of a Lightning Strike. This result is 

presented in terms of longitude and latitude and it is 

not necessarily located on the transmission line, but 

rather somewhere in the vicinity of the line. 

The location of the lightning strike is projected to 

the closest point on the transmission line using a 

“snap” feature. The snap editing in GIS will move the 

point within the specific distance (tolerance) of the line 

to the closest point on the line. This snapped point is 

considered as the lightning detection network estimate 

of fault location so that the fault location can be 

described in terms of distance from the line terminals. 

For the tolerance 1 km distance from the line is chosen. 

Only lightning strikes that are within 1 km from the 

line will be used in the correlation process.   Then, two 

fault location results one coming from the traveling 

wave fault locator and the other coming from the 

lightning detection network are combined using a 

Bayesian framework in order to improve the accuracy 

of the prediction.  

Before the beginning of spatio-temporal correlation 

process lightning data set is reduced to set containing 

only cloud-to-ground surges, where all instances of 

cloud-to-cloud surges are removed from data set. Then, 

the temporal correlation is done. After fault is detected, 

the time window that contains 2 seconds around the 

time stamp for fault beginning received from the 

traveling wave recorder (FaultStart) is created. The 

data received from lightning detection network is 

searched and only lightning strikes that satisfy 

following rule are collected inside the Database A: 

    |                             |     (4) 

After that the spatial correlation is done. Based on 

location of line terminals and geographical 

representation of the line the zone around the line is 

created that covers area going 300m on both sides of 

the line. This area has a shape of a polygon. It is to be 

noted once this area is created it can be used in all 

future analysis of the observed line and it can be 

created in advance. The data in Database A is searched 

and only those lightning instances that are inside the 

area are collected in Database B. This problem is 

called “Point in Polygon” problem, [45]. Created area 

around the line will typically form a concave polygon. 

The Grid algorithm is used to determine whether the 

lightning strike is inside the polygon, [46]. The 

polygon is divided into grid cells and then the 

coordinates of lightning are compared with the 

coordinates of every grid cell.  

In the next step lightning instances from Database 

B are searched and the closest one to the traveling 

wave recorder result is chosen to be correlated as a 

LightningDetectionResult. 

3.3.3. Data Analytics. We consider the traveling wave 

fault location to be the main source of information 

about the fault event. It processes the recorded data x, 

and makes the maximum likelihood estimate of the 

 
 

Figure 3: Dataflow during the fault 



fault location based on this data. The precise value 

from (3) may be described as the following, 

          
(5) 

It is possible to discern the variance of θ either from 

historical records or through other means, but these 

methods may be unreliable and are beyond 

consideration in this study.  

The lightning detection data is considered the prior 

probability, in this case coming from indirect, side-

information and independent of the measurements x, 

        
(6) 

The posterior probability of the fault location can 

then be expressed using Bayes Theorem as, 

                          
   

 xp

pxp
xp


   (7) 

In order to compute the necessary maximum a 

posteriori estimate of fault location, 

           
(8) 

it is not necessary to compute the normalization 

constant )(xp  because the same fault recorder data x 

is considered under all fault location positions θ.  

By considering the posterior instead of only the 

likelihood better predictions are made because cross-

domain data is integrated. 

Taking the logarithm of the (7) and disregarding the 

normalization constant, 

                   pxpxp loglog~log   (9) 

Under the normal assumption for both distributions 

prior and likelihood in (8), the explicit computation of 

variance is not necessary. Instead it is computationally 

favorable to compute the optimal trade-off parameter 

nu from the interval [0, 1]. This parameter then 

controls the trade-off between a bigger or smaller 

variance in  xp  and  p , but only in direct 

proportion to each other and irrespective of p(x). At nu 

= 1 we completely trust the lightning detection network 

data, and then as nu is transitioned towards 0 more and 

more certainty is placed in the traveling wave fault 

location. 

This approach is computationally favorable to fully 

Bayesian approaches such as Markov Chain Monte 

Carlo sampling, which would make the application 

infeasible for power systems. 

Considering the monotonicity of the logarithmic 

function we may express the improved fault location as 

the linear combination of 

 
      







pnuxpnu

xp

nu 



)1(maxargmaxargmaxarg

logmaxarg  
(10) 

The task becomes that of obtaining the precise nu to 

use. In order to compute nu a binary search along a line 

can be used to find optimal values since the problem is 

one dimensional. This process requires only O(log n) 

time to find the optimal nu among n given values. A 

simple linear combination like this has the advantage 

of high bias and low variance in machine learning 

terms, meaning that its predictions are not likely to be 

very imprecise in addition to having good 

generalization power across unseen examples. Because 

of the low computational complexity this kind of 

algorithm is directly applicable to big data scenarios. 

 
 

Figure 4: Spatio-temporal correlation of traveling wave fault locator data with lightning, GIS and GPS data 



4. Results 

In order to assess the performance of the proposed 

fault location method it was necessary to evaluate its 

performance on a number of different fault scenarios. 

Using the model in Fig. 2. 1000 fault scenarios were 

simulated. First, all fault scenarios were solved using 

only the traveling wave method for fault location. After 

simulation the error of this method was calculated as 

the relative mean absolute error, 

                   
(11) 

Second, the results from the lightning detection 

network were calculated as explained in section 3.3 

and (10) was used to quantify the error. 

After correlation of the two methods, as it was 

explained in Section 3.3, error of the improved result 

was calculated using (11). When dealing with a linear 

combination of predictors it is necessary to assess the 

generalization performance. Good generalization is 

indicated by the ability of a fault location method to 

locate faults accurately even for unforeseen fault 

locations. In order to quantify the generalization 

performance of the proposed fault location method it 

was necessary to compute the generalization error.  

In order to estimate the generalization error of the 

improved fault location method it is necessary to split 

the data from many different scenarios into a training 

set and a testing set of data. Determining the optimal 

nu on the training set gives point estimates of the 

generalization error on the testing set when comparing 

the improved fault location to the true fault location, 

and therefore the procedure needs to be repeated for 

precise estimates, a process often calls for 2-fold cross-

validation. The results in Fig. 5 and 6 are average 

results, computed per scenario, from 100 replications 

of cross-validation. 

A histogram of all three results is presented in Fig. 

5, where the x-axis represents the error and the y-axis 

represents the frequency of that error, where errors 

from different scenarios are binned according to a 

regular grid. From Fig. 5, the proposed approach 

outperforms the traveling wave fault location, having 

the largest number of test cases with error that is closer 

to zero. For every test case our approach shoved better 

accuracy than the individual methods. Mean Square 

Error of distance to fault for the lightning data was 

0.0076±3.1e-04 miles, for traveling wave it was 

0.0012±4.3e-05 miles and the improved method 

showed 0.0011±4e-05 miles, both the variance and the 

mean of the error were smaller using the improved 

method on unseen fault scenarios, when compared to 

the traveling wave method.  

It is significant that the traveling wave method 

result has much higher accuracy than the one obtained 

from lightning data. The lightning detection data may 

only be useful in enhancing the traveling wave fault 

detection method. Lightning data has very high 

variance as well compared to other two methods. 

Additionally, the proposed method shows no bias in 

the predictions in Fig. 6, indicating that the fault 

prediction location neither systematically over- or 

under-estimated. 

Because traveling waves are recorded on both sides 

of the transmission line, the error does not depend on 

the distance from the fault, indicating homoscedasticity 

and confirmed by Engle’s ARCH test [47]. 

As it can be seen in Fig. 5 the tradeoff parameter nu 

between accuracy of traveling wave method and 

lightning data is estimated to be optimal at 

0.871±0.0133 on unseen examples. This can be 

interpreted as placing 87.1% trust in the result of the 

traveling wave method, 12.9% in the estimate from 

lightning. The low variance of nu is indicative of the 

low variance predictor used for improved fault 

location. 

 

5. Conclusion 
 

This paper demonstrates that correlating 

automatically multiple sources of data may help 

enhance fault location calculation. More specifically: 

 A method using correlation of cross-domain data for 

identifying which faults are likely to be caused by 

lightning strikes is presented. 

 A method for locating faults using lightning 

detection data is presented and its precision 

quantified. 

 A method of integrating lightning detection sensor 

data with traveling wave fault location 

measurements is presented and its precision 

quantified. 

 The results indicate that integrating lightning 

detection sensor data with traveling wave fault 

detection data improves fault location accuracy. 

 Proposed method that correlates traveling wave fault 

locator data and lightning data exhibits better 

performances than any of the methods alone. 
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