Locating Sub-Cycle Faults in Distribution Network
Applying Half-Cycle DFT Method

Po-Chen Chen, Student Member, IEEE, Vuk Malbasa, Member, IEEE, and Mladen Kezunovic, Fellow, IEEE
Department of Electrical and Computer Engineering
Texas A&M University
College Station, TX 77843-3128, U.S.A.
pchen01@neo.tamu.edu, vmalbasa@tamu.edu, and kezunov@ece.tamu.edu

Abstract—It is necessary to accurately detect and locate sub-
cycle faults in order to prevent unexpected outages. However,
conventional fault location methods cannot locate these faults as
typically data windows longer than the fault’s signature are used
for phasor extraction. This paper presents an overall analysis of
how the single-phase-ground sub-cycle fault in the distribution
network can be located using voltage sag. The half-cycle Discrete
Fourier transform is used for phasor extraction in the time-
domain simulations. Our results reveal that the proposed
approach is capable of accurately locating sub-cycle faults whose
duration is between 0.5 and 1.0 cycles. The results also suggest
that the placement of meters may significantly affect the
capability of the proposed approach to locate sub-cycle faults.

Index Terms—Fault location, power distribution faults,
power system faults, power system protection, smart grids.

. INTRODUCTION

Fault location has become an essential tool for reliability
and outage management of utility services. Various research
efforts have focused on fault location methods in distribution
systems [1]-[20]. These techniques have culminated in an
ability to provide rather accurate solutions [18]-[20]. Most
current fault location algorithms require phasor information to
be extracted from voltage and current steady-state sinusoidal
signals during the fault period.

However, there are also faults whose signal signature is
shorter than one cycle, known as sub-cycle faults; some real
examples can be found in [21]-[23]. In this case, it is critical
that intermittent faults are correctly located in order to prevent
unexpected outages. Yet, conventional fault location methods
cannot locate these faults because the phasor information
during fault period cannot be captured using full-cycle
Discrete Fourier transform (DFT) method. Other external
disturbances that could affect the accurate calculation of
phasors include frequency deviation, random noise, and error
in detection of zero-crossing and the fault inception instant.

There have been phasor estimation methods based on
samples from short time windows proposed to solve the
problem, among which are the improved DFT method [24],
recursive wavelet [25], and adaptive signal processing [26],
[27]. After reviewing the literature it appears that there are no
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systematic fault location methods that could handle sub-cycle
faults in distribution networks.

In this paper we quantify the performance of a sub-cycle
fault location method which uses voltage sag data extracted
with the half-cycle DFT method. As stated in the IEEE
Standard C37.114™ Section 6.10 [4], due to the requirement
of signal extraction, the traveling wave method may provide
the only solutions for short duration faults. In this paper, we
attempt to demonstrate that the voltage sag based method may
provide solutions as well. We have found that the sub-cycle
fault can be located accurately with our method when no
additional disturbances are present. Our results also show that
the placement of meters may greatly influence the ability of
the proposed algorithm to locate sub-cycle faults.

Il.  BACKGROUND

A. Half-cycle DFT method

Our main interest is the phasor estimation using the half-
cycle DFT method. Implementation details for full-cyle DFT
can be found in [28]. In the first step of this procedure, we
obtain the full-cycle DFT phasor estimation. Let us consider a
sinusoidal signal z(¢) with fundamental frequency f, phase ¢,
and magnitude Z. Let us assume

z(t) = 2 Z sin( 2xf, + 4) - (1)
Now let us assume z(z) is sampled N times in every cycle
so that the set of samples { z; } can be obtained as

z :\/EZsin(%zk+¢). )

Then we may use an integer m in the transfer domain
which corresponds to the frequency mf, in order to extract a
particular frequency. To extract the fundamental frequency
component m is 1. Thus, the DFT of z, having the fundamental
frequency component can be written as
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We apply Euler’s formula for Z; to obtain
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Since we are working with a sliding window of the signal,
where each window has the most recent N samples, we let

Zimdow and Zain" represent Z. and Zg, components at

the w" window, respectively. Then we obtain
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window 2
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and
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window  __
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Our main interest is the fundamental phasor component in
the signal obtained from half-cycle DFT. Restricting a sliding
window from one cycle to half cycle does not affect the final
results of (5) and (6), provided that we have half of N samples
per half cycle. In this case, we can rewrite z, as

zy :'\/EZSin(%k+¢). (7)

Therefore, by repeating the steps we can obtain the phasor
estimation from half-cycle DFT that
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B. Distribution Network Under Study

To test the accuracy and performance of the proposed
sub-cycle fault location algorithm we used a model 25 kV
distribution network known as the Saskpower network,
shown in Fig. 1. Details of network components can be found
in [1] and [20].

IIl.  VOLTAGE SAG UTILIZATION FOR SuB-CYCLE FAULT
LOCATION ALGORITHM

A. Identifying fault starting time and faulty phase

The method of calculating the duration of a sub-cycle-
fault has been discussed in [22]. In this paper we assume that
the fault is a single-phase-ground sub-cycle fault. We modify
the method described in [22] in order to identify the fault
starting time and the faulty phase as shown in Fig. 2.

B. Sub-cycle fault location algorithm

As demonstrated in [16] and [17], matching voltage sag
data during the fault period can accurately locate the fault.
Since the voltage sag data of a sub-cycle fault can be obtained
by applying the half-cycle DFT method, we follow the
methodology described in [16] and [17]. First the voltage sag
data recorded at measurement nodes is delivered to the
distribution local control center. Then, the detected voltage

sag (V.ecordeq) Can be compared to the calculated voltage sag
(Veateutarea) Obtained from time-domain simulations. To obtain
the characteristic voltage V. .cuaeq at the control center, the
fault is simulated at each node, one at the time, in the
network. The node which has the best match between the
actual data V... and the calculated data V.yeuweq 1S the
node where fault is detected.

Figure 1. Saskpower network, Canada [1] [20].
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Figure 2. The procedure of identifying fault starting time and faulty phase.

Sometimes when the fault resistance is small, the meters
along the feeder may have similar V,..,...c Which increases the
difficulty of identifying the fault. In this case the current
phase information at the root node can help. More details can
be found in [16] and [17].

To summarize the utilization, we apply the findings in
[17] so that

Error = gjmplitude ) + gﬁhase ) + gihase 1)

(10)
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Vsocorded ANA Vogicuiated + € phase(V) is the difference between the

phase of Viecordgea @A Veucutared € phase(l) is the difference

between the phase of calculated and recorded current at the
root node, A is a small number to prevent the division by
zero, and Flag is used to identify the fault node.

After the comparison, whichever node has the largest flag
value (11), or the smallest error in (10), is the fault node. The
details are shown in Fig. 3.
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Figure 3. The process of proposed sub-cycle fault location.

The possible candidate fault nodes are obtained by
eliminating nodes which cannot be the fault node, so that
algorithm efficiency is increased. For instance, if the faulty
phase is at phase C, as identified using the current at the root
node [22], then those nodes which do not have phase C
cannot be the faulty node and therefore are not candidate fault
nodes.

In this paper, the following details are not taken into
account, and are left for future work:
¢ Optimization of the meter placement ;

o Sensitivity analysis to external disturbances;
o The full characteristic of current-limiting fuses (CLF) [29].

The optimal meter placement has been fully analyzed in
[18] using the network from Fig. 1 as an example. The goal
for the optimal placement is to minimize the cost but still
provide the accurate results, which is illustrated in [18].

While the characteristic of CLF during the fault period is
not fully considered, it appears, based on the previous work

[14]-[18] that the fault location could be identified based on
the voltage sag information. The proposed method could be
used for the sub-cycle faults as we assume the maximum
voltage sag is recorded during the CLF operation.

IV. RESULTS AND ANALYSIS

We have run the cases using Alternative Transient
Program (ATP) [30] to obtain the phasor information of the
sub-cycle fault from time-domain simulations. Equations (8)
and (9) have been implemented in MODELS [30] which is a
general-purpose description language used to extract the
phasor information. The sampling frequency is set to be 32
samples per cycle.

A. Results of half-cycle DFT method

To demonstrate that the half-cycle DFT method can be
used to obtain phasor information correctly during sub-cycle
faults, we compare signals extracted using full-cycle DFT
with half-cycle DFT in Fig. 4. The signal in blue is the
original voltage waveform, red is the rms value from half-
cycle DFT, and green is the rms value from full-cycle DFT.
The voltage waveform is obtained at the single-phase-ground
location. Fault resistance is set to be very close to zero so that
voltage drops to zero during the fault period. This illustrates
how the data changes during the fault period. As expected the
voltage rms data extracted from half-cycle DFT goes to zero,
unlike data extracted using full-cycle DFT. We may conclude
that voltage sag data can be successfully obtained by applying
half-cycle DFT in cases where full-cycle DFT may not be
appropriate.
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Figure 4. Comparison between data extracted from full-cycle and half-cycle

DFT.

B. Validation of the algorithm

To validate if the single-phase-ground sub-cycle fault can
be located successfully, we placed the fault at all phases of all
nodes indicated in Fig. 1. Since this is to show the correctness
of the algorithm and we are not discussing the optimization of
the meter placements in this paper, the meters are placed at all
the nodes.

The results show that all the faults are successfully located
while they are put at difference phases of different nodes. The
following cases are shown as examples.

Case 1. Fault at Node L002 Phase A.
Case 2. Fault at Node L003 Phase B.
Case 3. Fault at Node L007 Phase B.
Case 4. Fault at Node L012 Phase C.

The results show that all the faults are successfully located
while they are put at difference phases of different nodes,
which we show Cases 1 to 4 as examples. Figs. 5(a), 5(b),



5(c), and 5(d) demonstrate the results of Case 1, 2, 3, and 4,
respectively. One can see that the flag value at the fault
location is much greater than others at other locations, which
applies to all other validation cases.

C. Effect of different meter placements

Although optimal placement of meters is not considered
here, our results shown in this section reveal that meter
placement may adversely affect the accuracy of the proposed
algorithm. In this case, five meters are placed at L002, L003,
L004, L009, and L010. Only half of the network nodes have
meters, unlike Section IV-B where the meters are placed at all
nodes. lllustrating the same four cases described in Section
IV-B, Figs. 6(a), 6(b), 6(c), and 6(d) demonstrate the results of
Case 1 (fault at Node 002A), Case 2 (fault at Node 003B),
Case 3 (fault at Node 007B), and Case 4 (fault at Node 012C),
respectively, where we see the fault is located correctly in
Cases 1 and 3 but not in Cases 2 and 4.

In Case 1, the flag value at the fault location is much
greater than at other locations. In Case 2, the flag values are
almost identical at L006, L003, and L009, and similar results
are evident in Case 3. This implies that the algorithm cannot
differentiate the fault location exactly in Cases 2 and 3. In
Case 4, the algorithm wrongly identifies the fault location at
another end of the feeder. Comparing Figs. 5 and 6, one can
see that only the results of Case 1 show a similar pattern
where other cases do not. Therefore, the placement of meters
may significantly affect how effective the algorithm is.

V. CONCLUSIONS

This paper makes several contributions:

e A sub-cycle fault location algorithm is implemented using
voltage sag data obtained from time-domain simulations
and half-cycle DFT.

e The experimental results from using the proposed
algorithm suggest that the single-phase-ground sub-cycle
fault between 0.5 and 1.0 cycle can be located when no
other external disturbances are presented.

e The placement of meters may affect the capability of the
proposed algorithm to locate sub-cycle faults: in some
cases when we only placed half of the meters in the
network the fault cannot be accurately located.
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Figure 5. Results of cases, meters at all nodes: (a) Case 1 fault at LO02A; (b) Case 2 fault at LO03B; (c) Case 3 fault at L007B; (d) Case 4 fault at L012C.
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Figure 6.

Results of cases, meters at half nodes: (a) Case 1: fault at LO02A (b) Case 2: fault at LO03B (c) Case 3: fault at L007B (d) Case 4: fault at L012C.



