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Abstract—Weather-related impacts are at the top of all outage 
causes. Yet, traditional outage management (OM) approaches do 
not integrate all available and relevant weather-associated data 
automatically. This paper presents a predictive method that 
correlates different weather-associated data layers to provide 
predictive OM process implemented using the geographic 
information systems (GIS) framework. Examples for both 
transmission and distribution OM are demonstrated using 
vegetation, wind, and power system data in ArcGIS.  

Index Terms— Data analytics, distribution systems, fault location, 
geospatial analysis, geographic information systems, meteorology, 
outage management, smart grids, transmission systems. 

I. INTRODUCTION 
Weather-related electrical outages are one of the major 

challenges for utility industry [1]. Fig. 1 shows the reported 
power outages by cause in Texas in 2013; as shown weather 
causes presents the greatest percent [1]. The efficiency of 
outage management (OM) has direct impacts on system 
reliability as well as economic loses, and potential fatalities.  

Reference [2] proposes a method to enhance outage 
forecasting by incorporating hurricane data into the OM 
process. In [3], the reliability of distribution systems utilizing 
restoration resources for different weather conditions is 
assessed. Reference [4] describes an intelligent crew 
management system within complicated scenarios which 
include multiple outages and voluminous data. The authors 
show how to optimize the restoration process through a 
Weather Research and Forecasting (WRF) model in [5]. In [6], 
geographical information systems (GIS), global positioning 
systems (GPS), and lighting data are utilized for improving the 
accuracy of traveling wave fault location method. Reference [7] 
discusses enhancements which may be used to improve current 
outage management system (OMS) for large scale storm 
conditions. Reference [8] identifies that the application of 
weather data may bring additional benefits to OM. Reference 
[9] demonstrates how to use GIS-based support systems for 
urban power network planning in the context of real-world 

examples. Authors of [10] discuss GIS usage during OM 
processes when outage data becomes available. Predicting 
outages is an important task that affects the cost and 
performance significantly and requires innovative data analytics 
to correlate the weather-associated impacts.  

 According to Federal Energy Regulatory Commission 
(FERC), as a means to minimize outage possibilities, North 
American Electric Reliability Corporation (NERC) reliability 
standards obligate utilities to administer vegetation growth 
around their transmission lines to restrain vegetation from 
contacting the lines [11]. In fact, the most common weather 
impact that contributes to faults is the combination of high wind 
activity and trees falling on the lines [12], [13]. Thus, the data 
of interest for this implementation is wind, vegetation, and 
power system data. The contribution of this paper is an 
illustration of how using GIS to correlate data from power 
systems and weather-related sources provides predictive OM 
capabilities. ArcGIS [14] is applied as the GIS platform for 
such purpose. The predictive data analytics for both 
transmission and distribution networks are described. 

 The paper is organized as follows. Section II provides 
background. Section III shows the data collection. Section IV 
demonstrates GIS integration. Section V describes through use 
cases how GIS analysis provides predictive OM improvements. 
Section VI contains conclusions. 

II. BACKGROUND: WIND AND TREE CAUSES 
For the purpose of this research, it is of interest to analyze 

trees that are candidates for coming in contact with lines if (1) 
branches were to break off and fly into lines; (2) complete trees 
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Figure 1.  Reported power outages by cause in Texas in 2013 [1]. 
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topple or move in the wind, or (3) tree branches were to grow 
into the lines. Table I lists the impact that different wind speed 
values have on tree movement, [15]. The classification of 
specific vegetation regions located along the transmissions lines 
allows for grater outage mitigation by identifying hazardous 
vegetation areas [16]. These areas can be overlaid with wind 
forecast data to predict which segments of the electrical 
network will have a high vulnerability for outages. 

III.  DATA COLLECTION: NETWORK, WIND, AND 
VEGETATION 

The distribution network data used in Fig. 2 (a) was 
extracted from the Storm Vulnerability Assessment tutorial 
from Esri [17]. The components utilized were primary overhead 
feeders. The transmission network data was digitized from the 
imagery data. High-resolution multispectral imagery (NAIP 1 m 
spatial resolution, [18]) was acquired for the study location in 
southeast Texas.  

The wind forecast data are taken from the National Digital 
Forecast Database (NDFD) [19]. The data is accessed through 
graphical user interface (GUI) (named “tkdegrib”) provided by 
NDFD and then converted to polygons in Shapefiles (a standard 
GIS data format) for further processing in ArcGIS [20]. The 
spatial resolution for the Contiguous United States (CONS) is 
nominal at 5 km with real spacing varying by latitude [21]. For 
distribution network, the data from southeast region of U.S.A. is 
used (Fig. 2 (b)). For transmission network, the wind data in 
Texas is used.  

The canopy height data in Fig. 2 (c) used in the analysis 
comes from the three dimensions Global Vegetation Map [22], 
[23]. The data format is raster at 1 km resolution using data 
from the Geoscience Laser Altimeter System (GLAS) aboard 
Ice, Cloud, and land Elevation Satellite (ICESat) [23].  

IV. GIS FOR OUTAGE MANAGEMENT 
Within a traditional utility context, GIS is understood to be a 

tool for visualizing geographic objects on maps. Yet, the spatial 
information can be used not only for visualizations, but also for 

analysis, interpretation and as a tool for enabling better decision 
making. One clear example of the importance of GIS may be 
understood from context of restoring power in large-scale 
outages caused by severe weather conditions. In such cases, 
dispatch and field management operations may be decentralized 
and organized into smaller groups within a GIS raster. This 
approach would significantly minimize the assignments of 
outage work orders and communication flows. However, such 
an approach requires a GIS platform with mobile access in 
order to design the decentralized workflows and operations that 
keep all progress up-to-date. Simultaneously, a geospatial 
database which includes data on the location of outages, 
damages to equipment, and restoration resources would allow 
the optimization of the restoration process. 

In order to attempt a GIS-based OM approach, the OM 
process can be viewed as sequenced steps: (1) outage data 
collection, (2) data analysis and prediction, (3) decision making 
for crew dispatch, and (4) post-event documentation. Achieving 
such a workflow requires an enterprise-based GIS within a 
utility, which should include the following two features [24]:  

• A GIS platform for servers, desktops, and mobile devices; 
applications/extensions built in GIS platform to interface 
with existing utility infrastructures (e.g. Outage Management 
System), 

• Geospatial database specified for OM application purposes 
and a spatial database management system. 

TABLE I.  IMPACT OF WIND ON VEGETATION 
 

Wind speed [m/s] Effect on trees 
5.5-7.9 Small branches movement 
8.0-10.7 Movement of moderate sized branches 
10.8-13.8 Movement of large sized branches 
13.9-17.1 Whole trees in motion 
17.2-20.7 Twigs broke from trees 
20.8-24.4 Large branches broke from trees 
24.5-28.4 Trees uprooted or broken 
Greater than 28.5 Severe vegetation damage 

 

 

 
 

 

(a) (b) (c) 
 

Figure 2.  Data collection. (a) An example of overhead distribution network. (b)Wind data of southeast region of U.S.A. (c) Global vegetation data. 
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1) GIS Platforms and GIS Programming:  
Modern GIS platforms, such as ArcGIS, provide tools for 

spatial analysis and the integration of different data sets [24]. 
These spatial tools typically enable user to do the following: 

• Convert between vector and raster data: power network data 
is usually represented as vector data while other data sources 
such as vegetation and weather factors may be rasters. 

• Create buffers: This operation is useful for representing the 
narrow area around distribution lines. 

• Perform logical and relational operations: These operations 
permit the selection of areas within certain distances to 
utility components. 

• Classification of grid data: This operation allows the 
separation of the network area into several sub-areas that are 
vulnerable to different outage causes. 

• Network analysis: Operations such as network routing, 
calculation of distances, location-allocation and others are 
useful for network representation and prediction analysis. 

In order to provide a predictive analysis platform for a 
distribution network outage management system, the following 
actions can be taken: 

• Building GIS extensions that implement OM-specific 
analyses for transmission and distribution outage prediction  

• Automating routine tasks by building models using 
ModelBuilder inside a GIS. 

• Implementing predictive algorithms as scripts and tools 
inside a GIS, such as Python in ArcGIS.  

2) Geospatial Database: 
For a utility, the ultimate goal is to have one single 

geospatial database system containing the latest information, 

where the components are labeled with a unified geographic 
coordinate system such as GPS points (latitude/longitude) that 
locates them in space. The major challenges inherent in 
constructing such a database include: 

• Designing a database for a large number of network 
components,  

• Maintaining the most recent database using updates from 
daily field operations. 

As mentioned before, a geospatial database is an 
indispensable component for a utility, particularly as related to 
OM processes. A common approach is to use structured query 
language (SQL) for accessing and manipulating geospatial 
databases. Running SQL on an enterprise databases server - 
such as Microsoft SQL Server or Oracle [25] - results in 
multiple advantages including reliability, availability, and 
scalability. These enterprise systems can trace data and 
transactions to optimize query processing for geospatial 
operations. ArcGIS, for instance, can be connected to an 
enterprise database platform to scale queries and performance 
in big data scenarios needed for utility operations and OM 
predictions. 

V. DEMONSTRATION EXAMPLES 
In this section, performing analysis to predict vulnerability 

for power system outage management in ArcGIS is 
demonstrated. Application description is presented in Fig. 3. 
Vegetation data is processed only once in advance while wind 
data is processed in real-time. New wind prediction is available 
every 3 hours. The results are presented for both transmission 
and distribution network examples. 

 
 

Figure 3.  Data analysis description. 
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A. Network Data Integration 
While correlating other data layers with power system data 

layer, the power system must be divided into different sections 
where components may be separated into multiple groups to 
account for this. The GIS data sources are used as inputs to 
generate outage vulnerability assessment for different 
geographic areas. These are then correlated with transmission 
lines and feeder data for outage vulnerability mapping. In case 
of distribution network the complete area around the network is 
considered, while in case of transmission network a buffer was 
created covering 100 m (328 ft) around the transmission lines.  

B. Vegetation Data Integration 
In case of the distribution example, the canopy height data 

from Global Vegetation Map is used. In case of the 
transmission example, an unsupervised classification algorithm 
(Isocluster) was applied on NAIP data. Three distinct classes 
were identified: forested, grassland, non-forested (urban and 
water) and then compiled to create a raster dataset that can be 

displayed and analyzed in a GIS environment. Resolution of 3D 
Global Vegetation Map is 1 km. NAIP imagery data has a 
greater resolution of 1 m but did not contain information about 
canopy heights. By intersecting data from two sources, the 
estimation of canopy heights was accomplished on a high 
resolution map. With this data, it was viable to predict the areas 
exhibiting a high risk of contact between power lines and trees 
within the electrical network. 

For the transmission network, only the areas with trees 
higher than 15 m (50 ft) were selected based on extracted 
canopy heights data. In Fig. 4, the results of the vegetation 
analysis before and after the canopy height selection for one 
part of transmission line are presented. Fig. 4 (a) shows the 
buffer around the line containing NAIP imagery data. In Fig. 4 
(b), the result of combining NAIP imagery data with canopy 
heights map is presented. The red dots represent the trees higher 
than 50 ft.  

  
(a) (b) 

 
Figure 4.  Selecting areas with trees higher than 50 ft. The scale is 1 to 20,000. (a) Original map. (b) Map with trees in red dots.  

 

   
(a) (b) (c) 

 
Figure 5.  Data layer correlations. The scale is 1 to 40,000. (a) Canopy height and power system data. (b) Power system and wind data.  (c) All three layers 

of data. 
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For the distribution network, Fig. 5 (a) shows the power 
system and canopy height data [26]. The saturation levels of 
green color represent different height of canopy, where the 
darker green color represents the larger canopy height.  

C. Wind Data Integration 
Based on the data provided in Table I, the wind speed of 

13.9 m/s and greater is considered hazardous. For Distribution 
network, each grid cell is labeled for prioritizing the outage 
search sequences. One component (e.g. a line) may stretch 
across multiple polygon or grid areas (i.e. not just inside a 
single area). This task requires an update in the spatial data, 
using the function “Intersect” to properly account for partial 
line segments which overlap multiple grid cells.  

Transmission network data and classified vegetation areas 
were overlaid with the wind speed and direction. Wind speed 
data is presented in Fig. 6 (a) and wind direction in Fig. 6 (b). 
The parts of the transmission network and vegetation data that 
were not in the zones of high wind activity were removed. 
Based on wind speed and direction, different line segments 

were considered as potentially vulnerable zones. The lines 
representing tree vegetation were projected onto the 
transmission lines in the direction parallel to the wind direction. 
Using the wind data, four regions of risk were classified for 
each combination of wind speed/direction as it is presented in 
Fig. 6 (c). Each region was analyzed individually. 

Distribution network data and classified vegetation areas 
were overlaid with the wind speed in Fig. 5 (b) [26]. It shows 
the power system and wind data layers where the larger wind 
speed with darker blue color is at the right hand side, which 
means the zones at the east side of city has greater chance of 
potential outages happening. 

D. Results 
To obtain the results, the vegetation data were masked to 

obtain the grid cells containing the area around the network. 
The conversion between data formats was done to make all data 
into polygons. The wind polygon data were clipped to match 
the processed vegetation polygon. The data from the wind 
polygon were spatially joined with the vegetation polygons.  

   
(a) (b) (c) 

 
Figure 6.  Data layer correlations of zones where wind speed was greater than 30 mph. The scale is 1 to 400,000. (a) Wind speed data. (b) Wind direction 

data. (c) Classifying area into four groups based on wind speed and direction data. 
 

 
 

Figure 7.  Identify zones with high risk for outages. The scale is 1 to 200,000. 
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In Fig. 5 (c), the final results of the distribution network 
predictive analysis are presented [26]. It shows the result of 
combining each of these layers together. Based on the wind and 
canopy data, the first three areas to be searched by the 
dispatched crews are labeled in Fig. 5 (c).  

In Fig. 7, the final results of the transmission network 
analysis are presented. Layers containing the line segments that 
are predicted to be at most risk for outages caused by wind 
impact on vegetation are overlaid with transmission network 
layer. For the predicted weather conditions the red areas have 
the highest potential for outages and can be marked as the first 
areas to be searched by maintenance crews. Depending on the 
wind forecast data, different areas of the network can be 
candidates for outages. With the method described here, these 
areas can be identified up to seven days in advance. 

The examples discussed here can be applied both during 
planning (crew allocation) and real-time execution of OM 
schedule. It should be denoted that the two major differences 
between the transmission and distribution OM examples here 
are the input data properties (e.g. availability, precision) and the 
process of data correlation for prediction analysis (e.g. the wind 
direction was considered in the transmission example). Due to 
the localized nature of weather conditions (e.g. various types of 
storms), the OM prediction process for corresponding types of 
outages could be very different from what were demonstrated in 
these examples. In general, data used for these types of analysis 
must be appropriately chosen and processed for specific 
application purposes, realizing that the GIS platform and the 
structure of geospatial data may be the same. The predictive 
analysis used to characterize the risk and develop the response 
priority should be based on both the real conditions (i.e. latest 
data) and the past experience (i.e. historical data).  

VI. CONCLUSIONS 
This paper makes several contributions: 

• It shows how the current state-of-the-art GIS platform needs 
to be extended to interface with utility OMS.  

• It illustrates how geospatial databases can be used to 
perform spatial operations through enterprise databases 
servers to ensure robust database management. 

• It gives two examples that demonstrate how correlating 
different types of information involving vegetation, wind, 
and power system data helps predict outages and plan 
responses. 

•  It explains how to use wind forecast and vegetation data to 
predict areas with high risk for outages.  
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