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Abstract: This paper introduces two digital signal processing
algorithms for frequency deviation measurement. The algo-
rithms are derived using a new signal processing scheme based
on quadratic forms of signal samples. These algorithms pro-
vide high measurement accuracy over a wide range of frequency
changes. One is designed for measurements of small deviations
of the nominal frequency whereas the other one measures off-
nominal frequency deviations. Performance of the algorithms
is evaluated using computer simulation tests.
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INTRODUCTION

This paper is concerned with two issues: the small fre-
quency deviation measurements and the off-nominal frequency
deviation measurements. Frequency information is one of the
most important parameters for system monitoring and con-
trol. Load shedding, load restoration, generator protection
from overspeeding and detection of the generation-load out-of-
step conditions may in general be based on the small frequency
deviation measurements. For generators, the over-excitation
detection and the voltage and current estimates during start-
up and shut-down procedures may be based on the off-nominal
frequency deviation measurements.

Previous work in this field has resulted in a variety of algo-
rithms for the small frequency deviation measurements. Some
of these algorithms use known signal processing techniques
such as Discrete Fourier Transform, Least Error Squares, and
Kalman Filtering [1-5], while others use a heuristic approach
(6, 7). Most of them use the sinusoidal model for the signal.
Their efficiency (accuracy) is influenced by one or more of the
following factors: superimposed noise, non-linear static char-
acteristic, and slow response. In general, increased accuracy
and robustness require greater complexity. The query for more
accurate, computationally simple and robust algorithms con-
tinues.
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The off-nominal frequency deviation measurement algo-
rithms were proposed in two references [8, 9]. Both use the
results of a small frequency deviation algorithm and calculate
the required correction. One is using the phase-locked loop
and the other one is using a look-up table for correcting the
estimate. Both of these methods are relatively complex and
slow.

This paper presents two algorithms for measurement of fre-
quency deviations. The first algorithm is the result of an at-
tempt to overcome the deficiences in the small frequency de-
viation algorithms stated above. The approach was to look
into existing frequency measurement algorithms for a common
expression that could be utilized for the development of an
accurate estimate of the frequency deviation [10]. The new
process of determining the coefficients of this general form has
resulted in a simple and accurate algorithm.

The second algorithm was designed to capture a wide range
of the off-nominal frequency deviations by adapting (extend-
ing) the frequency deviation algorithm developed by the au-
thors in an earlier reference [10]. Only three more multiplica-
tions were introduced to achieve the improved accuracy. The
algorithm remains extremely simple, fast and accurate. No
table-looking and no iterations are necessary to calculate the
correction.

Extensive testing was performed with both algorithms.
Static and dynamic tests show high accuracy and fast response.
Algorithm robustness was tested using additive noise tests and
Electromagnetic Transient Program (EMTP) network simula-
tion tests. Both algorithms performed well by not amplifying
the noise and converging fast for the EMTP generated signal
transients.

The general expression used to derive both algorithms was
recognized earlier by the authors as being suitable for accurate
measurements of a number of power system quantities [11-15].
This leads the authors to a conclusion that a custom designed
signal processing chip may be developed to implement the gen-
eralized algorithm form. Selection of the appropriate coeffi-
cients may enable use of the same chip for various applications
such as frequency deviation, line parameter, and power mea-
surements.

First part of the paper gives theoretical background and
the frequency algorithm design procedure. Second part out-
lines derivation of the new algorithm for measurements of the
small frequency deviations. Third part presents a new, very
accurate and extremely simple algorithm for off-nominal fre-
quency deviation measurements. Fourth part provides results
of the extensive testing performed using both algorithms.
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NEW DSP APPROACH

This section presents theoretical background and design
procedureof a Digital Signal Processing (DSP) approach used
to derive new algorithms. ‘

It starts by introducing a general algorithm expression.
This expression is recognized to be a common form for most
of the previously introduced non-recursive frequency deviation
measurement algorithms. The general algorithm expression is
a quotient of quadratic forms (QQF) of signal samples. This
expression is made constant in_time and real for all frequency
deviations of a sinusoidal signal. This is achieved by imposing
constraints on the coefficients of the quadratic forms. Finally,
the Taylor expansions of the quadratic forms give a quotient of
two frequency deviation polynomials whose coefficients can be
chosen so that the quotient becomes equal to the value of the
signal frequency deviation.

The second subsection gives the steps of a formal procedure
for the design of algorithms for frequency deviation measure-
ments. This procedure shows a way of deriving the quadratic
forms’ coefficients satisfying the performance requirements and
the constraints derived in the first subsection.

Theoretical Background

The following quotient of quadratic forms of signal sam-
ples is recognized to be a general form for frequency deviation
measurement algorithms [10]:

Af = Thoo oo TkmTniTn-m
SN SN kT
KFA
T KFB (1)

K F are the quadratic forms, @xm and by, form matrices A and
B associated with quadratic forms. Their definition is given in
APPENDIX A.

Let us assume the following input signal representation:

z(t) = X cos(wt+9) (2)
2, = Xcos(wnAt+¢)
= X cos(nd + ¢) (3)

Electrical angle deviation Ad is proportional to the deviation
of frequency since Ad = Aw - At =2xAf - At.

For simplicity, we shall use the electrical angle deviation
estimate which is of the same form as the frequency deviation
estimate given in the equation (1):

Ad = o Tz GkmEn—kEnm
SN N T Taem
KFA
~ KFB 4
. KFB (4)

where agm = T [ (27 08).
Conditions for expression (4) to be constant and to give the
value of the signal frequency deviation are derived as follows.
In the case of a sinusoidal waveform, given by equation (3),
the value of a quadratic form is:

322

=
L
kS
A

him X2 cos|(n — k)d + 8] cos[(n — m)d + 4]

E
[
o

|

- o

2

-

Z 3

Rim cos[(m — k)d]

i

(=3
3
[l
- o

k
3 B cos{[2n — (k + m)]d + 26]}

2
k=0 m=0

= KF°+ KF(n)

|
-

N

SIS ]

(5)

Equation (5) shows that the value of the quadratic form, in
the case of a sinusoidal signal, consists of a constant K F*° and
an oscillating X F'*(n) component.

The constant part K F¢, can be expressed in the following
way [11]:

KF® = XTgRe{K"(e”jd)} (6)

where:
N-1
Kew) = 3 Ao
r==N+1
R o= 3 hicm
k™M fem=r
w = e ¥

Also, the variable part K F¥(n), can be expressed as follows
[11}:

KF*(n) = %27|K”(e'jd)| cos{arg[K*(e™%)] + 2nd + 2¢} (7)

where:
2N-2
K'(w) = Z hiw'
r=0
=3y Rim 3)
k™ gpdm=r
w .= e

Since for a steady state sinusoidal signal frequency devi-
ation is constant, the oscillating component K F¥ should be
identical to zero for all frequency deviations and for all n. It
can easily be seen from the equation (8) that K F*(n) is iden-
tical to zero when the following conditions are satisfied:

hy =0

T

r = 0,...,2N -2

9)

From the equation (9) one can see that these conditions are
equivalent to saying that the sums of the elements h4n on the
anti-diagonal and all the sub-anti-diagonals of the quadratic
form matrix H are equal to zero.

For the constant component KF¢ to be real for all fre-
quencies, it is sufficient for the quadratic form matrix to be
symmetrical. For a symmetric matrix, the following holds:

K{w) = b + 2N§ heRe{w"} = Re{K"(w)}

r=0

(10)
where w = e7J4.

Equations (9) and (10) produce a constant and real value
for the quadratic form of equation (5) as follows:




N-1
hg+2 Z hiRe{w"}

r=0

KF(n)

N-1

= Z h, cos(rd)

7=0

(1)

Therefore, the QQF for frequency deviation measurements,
given by equation (1), may now be expressed as follows:

s 2N a,cos(rd)
6d = TNt b, cos(rd)
Ald)
— 12
B(d) ‘ (12)
where: a = DY  Gm
k™
by = Z Z bkm
kM g=m
ar, = Z Z Qkm
k™ kem=rr£0
br = bkm

zk: ;k—m=r,r;é0

This form is constant and real for all deviations of the elec-
trical angle. In order to obtain estimates of the electrical angle,
functions A and B are expressed in the forms of their Taylor
expansions. As a result, the following general expression for
frequency deviation estimate is obtained:

)+ A'(do) A + A"(dp) AL ..
) + B(do) Ad + B (do) 84 4 ...

Equation (13) is the generic algorithm expression used in
the next section to derive different algorithms.

5 A(do
Ad= B (13)

Algorithm Design Procedure

The algorithm design procedure is related to the appropri-
ate selection of coefficients in the generic algorithm expression
given by equation (13). The algorithm is designed according to
the application constraints. The following steps allow for the
design of the algorithms for frequency deviation measurements.

¢ The following algorithm parameters are chosen: data win-
dow, number of signal samples, sampling frequency, mea-
surement range, and degree of desired accuracy.

The size of the quadratic forms’ matrices is chosen using
first three parameters.

o Last two algorithm parameters are used for selecting the
order of the polynomials in the equation (13). Having se-
lected the polynomial order, necessary constraints need to
be imposed on the remaining coefficients. Incidentally, the
most general set of conditions for the equation (13) to give
the signal frequency deviation estimate can be determined.

Two sparse symmetric quadratic forms’ matrices are
formed. The nonzero elements of these matrices are then
selected to satisfy equation (9). Also, in order to satisfy
the conditions derived in the third step, the total number
of nonzero elements needs to be greater or equal to the
number of these conditions.

o A frequency deviation algorithm is derived by solving the
equations obtained in the third step for the unknown ele-
ments of the matrices formed in the fourth step.
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o Last, noise sensitivity and the accuracy requirements are
checked. If they are not satisfied one goes back to the
fourth step to change the matrix elements. If necessary,
one may also go back to the third step to select a different
order for the polynomials.

SMALL FREQUENCY DEVIATION
MEASUREMENT ALGORITHM

The described algorithm design procedure is implemented
as follows.

If one chogses a data window length of three quarters of
the nominal period, and a sampling rate of sixteen samples per
cycle, then the nominal electric angle for this case is equal to
dg = ;T'

To achieve high accuracy four terms of the Taylor expan-
sions are used here. In this case, for equation (13) to give the
signal frequency deviation, the most general set of conditions
set upon the remaining polynomial coefficients is as follows:

A(do) = 0

Bm(do) -0

A'(dy) = B(do)

AédO) = B'(d)

A - B (14)

In this case, the frequency deviation estimate given by equa-
tion (13) approximates the signal frequency deviation as fol-
lows:

Ad~ Ad (15)

The goal is to determine the quadratic forms’ coefficients.
Accordingly, the fourth step of the frequency deviation mea-
surement algorithm design procedure requires forming two
sparse symmetric matrices whose sums of elements on the anti-
diagonal and all the sub-anti-diagonals are equal to zero (fol-
lows from equation (9)). Another requirement is that these
matrices have a greater (or equal) number of nonzero elements
than the number of algorithm coefficients’ constraints derived
in the third step of the procedure.

Matrices of the following form are used:

0 0 ab00 0c000 0 d]

0 —2¢ =b 000 — 0000 —d0

a —=b 0000 00000 00

b 0 0000 0000O0 00

0 0 0000 000D0O0C 00

0 0 0000 00O0DO0C 00O

A =10 — 0000 00000 00

c 0 0000 00000 00O

0 0 0000 00000 00O

0 0 0000 00000 00O

0 0 06000 00000 00O

0 -4 0000 00000 00O

Ld 0 0000 00000 0 O]
[0 0 e f00 0 g]
0 -2 —f 000 —g O
e —f 0000 00
B |f 0 0000 00
410 0 0000 00
0 0 0000 00O
0 —g 0000 00
lg 0 0000 0 0]




Matrix B is a symmetric 13 by 13 matrix that can be re-
duced to an 8 by 8 matrix because the remaining elements
are zero. Both matrices satisfy the above requirements. They
have in total seven nonzero elements against the five algorithm
coefficients’ constraints given by equation (14). Two of these
elements are assumed in a way that simplifies the calculation
of other elements and enables getting small enough numbers
for the other elements.

For matrices of this form, and for ¢ = 0.05 and d = 0.01,
coefficient constraints, expressed by equations (14), give as
a result the following values for the coefficients of quadratic
forms: o = —1.044303503155235, b = 0.52823862829380,
e = 0.78543321540189, f = —1.05813678372674 and g =
—0.03443924221845.

The estimate of the electrical angle deviation, given by
equation (4), now becomes:

Aé_%‘wo—fbn-]'wl
=—=—— "nz’ "

(16)

Tn 20 = Tpo1* 2]

where:
Wo = @ Tn2+b 2y gt+c 2o 7+d-za1g
Wi = @ Tp1+b st e Taet+dTay
2y = e'rn—2+f'$n—3+g'mn—7
2z = e'wn-1+f'$n—2+g'xn—6-

Results presented in the algorithm testing section indicate
high accuracy and low noise sensitivity of the obtained algo-
rithm.

OFF-NOMINAL FREQUENCY MEASUREMENT
ALGORITHM

Due to their simplicity, algorithms for small frequency devi-
ation measurement do not calculate the off-nominal frequency
deviation of the sinusoidal signal very accurately. As shown
in reference [9], one can calculate the measurement error in an
off-line mode. This error estimate can be used to improve the
frequency deviation estimate.

The goal of this paper is to introduce an efficient and simple
measurement algorithm for off-nominal frequency deviations.
The Taylor expansion of the estimate error function is used to
derive this new algorithm.

To design an algorithm that uses a data window which is
equal to one half of the nominal period and a sampling rate
of eight samples per cycle, one can proceed as follows. In this
case the nominal electric angle is equal to dy = T

Let us assume low influence of the Taylor expansion terms
in equation (13) that are higher than the third order. To get
an accurate estimate of the electric angle deviation, the follow-
ing constraints for the coefficients of the frequency deviation
polynomials are imposed.

B”(do) = 0
Al/(do) _ Bl(do)
2
A'ldy) = B(d) (17)

In order to simplify the selection of the quadratic forms’
coellicients, some of the coefficients are assumed to be zero.
For the reasons given earlier, quadratic forms’ matrices are
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chosen to be symmetrical and to have the sums of the elements
on the antidiagonal and all sub-antidiagonals equal to zero.
Hence, the matrices have this form:

[0 0 a b ¢
0 ~2¢ ~b 0 0
A= ja =b <200
b 0 000
L ¢ 0 000
[0 0 g f &
0 =2¢ —f 0 0
B=|g —f -2h00
f 0 000
LA 0 000

Furthermore, for f = 0 and g = 1, equations (17) give as a result
the following values for the coefficients of quadratic forms: a
=05b=0,c=—0.25and A = 0.

After the selection of the quadratic forms’ coefficients, equa-
tion (4) gives as a result the following algorithm for determining
the electrical angle deviation estimate:

2
Ty Tnq —T2_,

Ad=05-11-05. (18)

For a sinusoidal signal 2 = X cos(nd + ¢), equation (12)
gives:

2
Tn* Tz — Ty

Ad = =05+ cos(2d) — 0.5 cos(4d)
- 2 - [cos(2d) — 1]

sin(2Ad) d=do+Ad
2 -

(19)

This equation is much simpler than the one given in refer-
ence [9]. Following the approach given in reference [9], a more
accurate estimate for off-nominal frequency deviation can be
obtained. This is achieved by using an arcsin look-up table
which helps to solve the following equation:

a

arcsin(2 + Ad)
2
A different approach that obviates the need for a look-up
table and gives a more simple solution is described here.
Five terms of the arcsine Taylor expansion series provide
the following corrected electrical angle estimate:

Ad = (20)

. — 2

Ad = 0-5~[1—0~5-M]

Ty * Tpez — Th_y
Ady = Ad-Ad
Ady, = Ady-Ad
R . Ad,y Ad,
corr = d-[1 e 3 —

Ad A (+6+ 4()) (21)

Ounly three new estimate multiplications are introduced. In
this way the algorithm remains extremely simple and easy to
implement.

Test results given below show a great improvement in the
static as well as in the dynamic accuracy of the developed al-
gorithms. Improved dynamic and static accuracy for the off-
nominal frequency deviation algorithm, and lower noise sensi-
tivity of the small deviation algorithm are achieved by the new
algorithm designs.



TEST RESULTS

The algorithms are tested using a synthesized sinusoidal
signal and a voltage signal output from Electromagnetic Tran-
sient Program (EMTP) [16].

Three tests were performed using a synthesized sinusoidal
signal. First, algorithm static accuracy was tested. The second
test evaluated algorithm dynamic response. Third, algorithm
noise sensitivity for a simulated data acquisition and signal
processing system, was tested.

Transient test was performed using. simulation of a fault
and a load disturbance in the test system. The EMTP voltage
output was used as the algorithm input signal.

Static Test

In this test, synthesized sinusoidal signals with frequencies
in the range from 40 to 80 Hz in steps of 1 Hz were provided
as inputs to the algorithms. Results given in Figure 1 show
a comparison of the algorithm outputs. High measurement
accuracy may be observed.

Dynamic Test

Frequency deviation algorithms were applied to a synthe-
sized sinusoidal signal with an oscillating and decreasing fre-
quency. This resembles the system frequency change in the
event of power deficiency in a power system. The following
equation shows the change in frequency over time:

f(t)=60—-10-t—1sin(2x - 5t) (22)

Results in Figure 2 show a very good dynamic response of

the algorithms within their range of accuracy.

Noise Test

A simple data acquisition and signal processing system is
considered for the noise test. This system consists of a 12
bit analog-to-dligital converter, low pass filter and one of the
measurement algorithms. A sinusoidal 60 Hz signal with su-
perimposed white zero-mean Gaussian noise was used as input
for the test. The test block diagram is shown in Figure 3.

The results for the Small Deviations (SD) Algorithm and
the Off-Nominal Deviations (OND) Algorithm are shown in
Table 1. This table shows the relation between the mean and
standard deviation of the noise and the mean and standard de-
viation of the relative measurement error. Since the algorithms
have a very high static and dynamic accuracy within the fre-
quency range from 54 to 66 Hz, one can assume a measure-
ment range of 12 Hz. This range has been used for calculating
the mean and standard deviation value of the relative mea-
surement error . Results indicate that the algorithms in this
system configuration do not amplify the noise and that they do
not introduce a bias. They also show that the SD algorithm is
slightly less influenced with noise than the OND algorithm.
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Fig. 3. Block Diagram for the Noise Test
where:

v is a synthesized sinusoidal waveform.

n is a white zero mean Gaussian noise.

Oy is the relative standard deviation of the noise.
™My, is the mean value of the noise.

0., is the relative standard deviation of the measure-
ment error.

Mg, is the mean value of the measurement error.

LPF is Butterworth low pass filter of the fourth order
with 76.8 Hz cutoff frequency.

A/Dis a 12 bit analog to digital converter.

Alg is a frequency deviation algorithm.




Table 1: Noise Test Results

Meas. Noise Characteristics Output Error
Number Characteristics
SD alg. Mpri Onri Meeri a(rﬂ
1 -0.0059 0.0986 0.0016 0.0824
2 0.0017 0.0498 | -4.121-10-7 | 0.0447
-3 -2.06-10~* | 0.0102 |[-1.719-10~% | 0.0111
OND alg
1 -0.0046 | 01033 | -1.5:10°" [0.1129
2 1.75-10~* | 0.0504 | -1.07 -10~* | 0.0573
3 -7.3 -107° 0.099 -2.025-107* | 0.0119

Transient Test

Two EMTP simulations were performed. Both simulations
used a model of a synchronous machine with an exciter and a
governor. For the first simulation, a simple two transmission
line model shown on Figure 4 was modeled. For the second
simulation, system model shown on Figure 5 was used. Line
Z; in Figure 4 and line Z, in Figure 5 were modeled using the
EMTP distributed-parameter line model. Line Zy in Figure 4
was modeled using the EMTP lumped-parameter line model.
Node voltage output v, from the first and the second EMTP
simulation, were used as inputs for the Small Deviations (SD)
Algorithm and the Off-Nominal Deviations (OND) Algorithm,
respectively.

For the first simulation, that used a model shown in Figure
4, a 20 milliseconds long load disturbance was applied. For
the second simulation, that used a model shown in Figure 5, a
three phase fault at 30 milliseconds as well as a fault clearance
at 100 milliseconds were applied.

Figure 6 shows a block diagram of the measurement scheme
used for testing the two algorithms.

Three tests have been performed with both algorithms.
First test calculates the frequency deviation directly from the
EMTP output. Second test uses a low pass filter (LPF) for
filtering the EMTP output. Third test uses both LPF and the
following scheme for averaging the frequency estimate:

7
AfE = S Afuk (23)
k=0

o | =

Test results are shown in figures 7 to 12. Figures 7 to 9
show deviation estimates calculated by the Small Deviations
(SD) Algorithm. Results for the three test conditions are indj-
cated together with the scaled change in synchronous machine
velocity. Figures 10 to 12 show the same estimates for the OF-
Nominal Deviations (OND) Algorithm. One can see that SD
Algorithm follows the rate of change of the small frequency de-
viation, after filtering the input or averaging the estimate, quite
accurately. The OND Algorithm follows large off-nominal de-
viations of frequency very accurately. In general, the transient
tests performed by the authors, and not reported here, show
that the SD algorithm follows more closely the small {frequency
deviations, whereas the OND algorithm follows more closely
the large off-nominal deviations.
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Fig. 12. OND Algorithm Average Estimate with Voltage Filtering

CONCLUSIONS

The results presented in the paper lead to the following
conclusions:

'

The two algorithms defined in this paper are extremely
accurate and yet quite simple to implement.

The new algorithm design approach enables definition of
the generic algorithm form.

The generic algorithm form provides a straight-forward
way to define new algorithms for frequency deviation mea-
surements.

Algorithm implementation may be further optimized by
developing a custom DSP chip that performs the calcula-
tion for a general quadratic form of signal samples.
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APPENDIX A

Quadratic forms of a signal z, denoted here as KF, may be
expressed using matrix notation in the following way:

N-1N-1
[(F(TL) = Z Z bmkxn_kzn_m
m=0 k=0
= x"Bx (24)
where:
XT = [ch Tp—1--- xn_N.,_l}
B = {bkm}

5 is a signal sample at the discrete time n, B is the quadratic
form matrix and by, arve the elements of this matrix.
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