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SUMMARY 

 

Installation of line surge arresters on transmission towers can significantly improve the line 

lightning performance. However, it is not always economically beneficial to install the line 

surge arresters on every tower in the network. This paper proposes the method for optimal 

placement of line surge arresters that minimizes the overall risk of lightning related outages and 

disturbances, while staying within the required budgetary limits.  

 

A variety of data sources was used: utility asset management, geographical information system, 

lightning detection network, historical weather and weather forecasts, vegetation and soil 

properties. The proposed solution is focused on predicting the risk of transmission line 

insulators experiencing an insulation breakdown due to the accumulated deterioration over time 

and an instant impact of a given lightning strike. The linear regression prediction-based 

algorithm observes the impact of various historical events on each individual component. In 

addition, the spatial distribution of various impacts is used to enhance the predictive 

performance of the algorithm. The developed method is fully automated, making it a unique 

large scale automated decision-making risk model for real-time management of the 

transmission line lightning protection performance.  

 

Based on the observation of risk tracking and prediction, the zones with highest probability of 

lightning caused outages are identified. Then the optimization algorithm is applied to determine 

the best placement strategy for the limited number of line surge arresters that would provide the 

highest reduction in the overall risk for the network. Economic factors are taken into account 

in order to develop installation schedule that would enable economically efficient management 

of line lightning protection performance for utilities.  
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INTRODUCTION 

 

Increase in frequency of severe weather conditions and aging infrastructure are causing the rise 

in the risk of transmission network insulator failures. Insulator failures amount for more than 

70% of total network outages and contribute up to 50% of the line maintenance cost [1]. In 

addition, due to the climate change, the amount of lightning caused outages is increasing every 

year. Instalment of the line surge arresters (LSA) presents a valuable solution for better 

lightning protection. Installing LSA on every tower is not economically efficient. Instead, 

comprehensive analysis should be performed to establish the optimal number and location of 

LSAs. 

 

In [2], an unconstrained nonlinear optimization algorithm has been used in order to minimize 

global risk of the network exposed to lightning impact. The study in [3] uses multi-objective 

optimization method based on genetic algorithm to minimize both lightning and switching 

flashover rates. Genetic algorithms were also used in [4] to determine optimal number and 

location of LSAs in a distribution network. All of the methods are minimizing a statistically 

calculated risk function, considering insulator strength as defined by the insulator manufacturer.  

 

We model the network and its surrounding impacts using multi-modal weighted graph that uses 

data coming from various sources. The developed risk model takes into account the 

accumulated impact of past lightning disturbances in order to produce more accurate estimate 

of insulator strength, and predicts insulator performances for the future lightning caused 

overvoltages using Gaussian Conditional Random Fields (GCRF) [5]. Linear programming 

(LP) is used to find the LSA placement for which the global risk function is minimal. 

 

BACKGROUND 

 

The insulation coordination study defines the insulator strength with the Basic Lightning 

Impulse Insulation Level (BIL). BIL is a voltage at which insulator has 10% probability of a 

flashover [6]. Current practice is to determine BIL by performing a set of standard tests for the 

standard atmospheric conditions. These tests are done by the manufacturer prior to the insulator 

installation. Because these tests are performed before any kind of field environmental exposure, 

they do not reflect the actual strength of the insulator after prolonged exposure. In addition, the 

BIL value is only true for the standard atmospheric conditions, and need to be recalculated 

based on the weather conditions at the time of the lightning strike.  

 

There are two types of insulator failures, electrical and mechanical [7]. Electrical failures 

manifest as increased leakage current through the insulator. They are mostly caused by a high 

number of experienced flashovers. Mechanical failures are physical deformities to the insulator 

material. They are mostly caused by manufacturing defects or severe material erosion. Due to 

exposure to various environmental impacts the performance of insulators deteriorates over time. 

It is not always easy to observe the changes in the insulator lightning performances. Overhead 

line insulators are exposed to a variety of environmental impacts [8]: lightning strikes, 

temperature and pressure variations, ultraviolet radiation and ozone, wind impact, rain, 

humidity, hail, snow, fog, and pollution. In addition, vegetation presence around the line lowers 

the probability of flashover in the network, a phenomenon called “shielding by trees” [9]. In 

addition, lightning strikes are more likely to affect locations with higher altitude [10]. Thus, the 

elevation data is of importance. The tower grounding resistance also has an impact on 

overvoltage propagation on the line. This resistance is dependent on the type of soil at the tower 

location. 
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To improve the transmission line lightning performance, the line surge arresters (LSA) are 

installed in parallel with the insulator strings. The LSA limits the overvoltages on the line by 

discharging or bypassing the surge current [11]. There are two types of LSAs: 1) Externally 

Gapped Line Arrester that has an external series of air gaps, and 2) Non Gapped Line Arrester 

that has no air gaps, similar to substation surge arresters.  

 

The insulator flashover voltage determines the appropriate selection of LSA characteristics, 

since the purpose of LSAs is to limit the voltage bellow insulator withstand limit. The locations 

where LSA are installed are of great importance. More about observations and experiences of 

LSAs installation in the field can be found in [12-14]. The study in [12] demonstrates that the 

LSAs do not show any line lightning performance improvement if they are installed at the 

wrong towers. Thus, in this paper we would like to introduce a solution for optimal placement 

of LSAs that could help utilities make smart planning decisions for improvement of line 

lightning performance. 

 

METHODOLOGY 

 

The proposed method in Fig. 1 combines the probability of a lightning strike as Lightning 

Hazard, and probability of the insulator breakdown as Network Vulnerability, to construct the 

lightning impact Component Risk. Then the Global Risk is calculated by averaging the risk 

over the entire network. The optimization algorithm is minimizing the Global Risk value while 

considering the Economic Limits and Tower Limits as constrains. The different scenarios of 

LSA locations are iterated until the optimal placement is found.  

 

Data Preprocessing 

 

Comprehensive geospatial analysis taking into 

account all environmental factors and their 

relations to the utility assets is developed using 

ArcGIS [15]. Transmission network data is 

spatiotemporally correlated with lightning, 

weather, vegetation, topography, and soil data. 

The overview of used data sets is presented in 

Table I where all non-weather parameters are 

listed. Table II provides more details about 

weather data sources and parameters. More 

details about spatiotemporal correlation of 

diverse data used for this study can be found in 

[7]. 

 

The rest of this section will describe two main 

preprocessing steps needed to prepare the data 

for the input in the risk analysis (including 

hazard and vulnerability) described in the next 

section. First step includes the spatial and 

temporal correlation of lightning, weather, and 

outage data. The second step will present the 

use of weather parameters for calculation of 

BIL under nonstandard atmospheric conditions. 

 
Figure 1. Overview of the proposed method 
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Table I. List of non-weather parameters 

Historical 

Network 

Data 

Insulator Physical 

Characteristics 

In-field Measurements Other 

Environmental 

Parameters 

Outage 

Reports 

Surge Impedances 

of Towers and 

Ground Wires 

Leakage Current 

Magnitude 

Corona Discharge 

Detection 

Vegetation Index 

(presence and 

canopy height) 

Maintenance 

Orders 

Footing Resistance Flashover Voltage Infrared Reflection 

Thermography 

Elevation 

Replacement 

Orders 

Component BIL Electric Field 

Distribution 

Visual Inspection 

Reports 

Soil 

 

Table II. Weather Data Sources and Characteristics 
Source Data 

Type 

Temporal 

Coverage 

Spatial 

Coverage 

Temporal 

Resolution 

Spatial 

Resolution 

Measurements 

National 

Lightning 

Detection 

Network 

[16] 

Lightning 

Data 

1989-

Present 

USA Instant Median 

Location 

Accuracy 

200-500  m 

Date, Time, 

Latitude, 

Longitude, Peak 

amplitude, 

Polarity, Type of 

the event: C-C or 

C-G 

Automated 

Surface 

Observing 

System  

(ASOS) 

[17] 

Land-

Based 

Stations 

Data 

2000-

Present 

USA 1 min 900 

stations  

Temperature; 

Humidity; 

Pressure; 

Precipitation;  

National 

Digital 

Forecast 

Database 

(NDFD) 

[18] 

Weather 

Forecast 

Data 

7 days into 

the future 

USA 3 hours 5 km Temperature, 

Relative 

Humidity, 

Precipitation, 

Prob. Dry 

Lightning, 

Probability of 

Severe 

Thunderstorms 

 

Correlation of lightning, weather, and outage data:  

 

Correlation of datasets is presented in Fig. 2. The weather parameters (temperature, 

precipitation, humidity, and pressure) are extracted from the ASOS [17], and geocoded into the 

network area as the raster with the 1 km resolution. The weather forecast data obtained from 

the NDFD [18] is already a polygon shapefile.  

 

To correlate the lightning data obtained from NLDN [16], first all lightning strikes that are 

outside of the 1 km buffer around the transmission lines and towers are removed. Then the 

lightning strikes are spatially and temporally joined with the historical outages. For each 

historical outage the lightning strike closest in time and space is selected. The spatial limit is 

set to 1 km around the outage point, and temporal limit for (-2) min in reference to the reported 

outage start time. In case of multiple lightning strikes satisfying the criterion, the closest one is 

selected.  
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Fig. 2 Spatiotemporal correlation of data 

 

BIL under nonstandard atmospheric conditions: For each lightning strike, the lightning 

protection parameters are calculated for the existing atmospheric conditions obtained from the 

historical weather data. Additional weather parameters (temperature, humidity, pressure, 

precipitation) are needed to calculate BIL under nonstandard atmospheric conditions [5]. First, 

the relative air density and humidity correction factor are calculated as (1) and (2) respectively: 

 (1) 

 

(2) 

where TS and PS are standard temperature and pressure respectively; T and P are measured 

temperature and pressure respectively. Humidity correction factor is equal to 1 for rainy 

conditions and for dry conditions is calculated using (2). Then the BIL under nonstandard 

atmospheric conditions is calculated as BILA: 

 (3) 

where BILS is the standard BIL.  

 

Risk 

 

The Risk Framework [19] is capable of predicting risk in real time, as well as estimating the 

overall risk over a certain period of time.  The Gaussian Conditional Random Fields (GCRF) 

prediction algorithm [20] takes advantage of spatial and temporal similarities between network 

nodes (transmission towers), and historical events (lightning caused outages). Impact of every 

historical outage is modelled by the change of line lightning protection performance, creating 

a dynamic real-time estimate of the insulator strength [21].   

 

The risk is defined as: 
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The weather impact on the network is modelled as a Hazard Map. In this map every location in 

the network area has an associated hazard value that represents the probability of a lightning 

strike at that location for a certain moment in time. The Hazard maps are generated 

automatically in real time, based on the most current weather forecast.  

 

Network lightning performances are modelled with a Vulnerability Map. This vulnerability 

map represents the conditional probability of an insulator total failure in case of a lightning 

strike on its tower. Traditionally, insulator strength is considered to be constant during the 

insulator lifetime, and equal to the Basic Lightning Impulse Insulation Level – BIL determined 

in advance by the manufacturer through testing [5]. In our approach, the BIL value changes in 

time and space to take into account accumulated impact of all past lightning discharges in the 

particular network locations, as presented in Fig. 3.  

 

 
Fig. 3 Dynamic BIL Change 

 

The vulnerability map is developed using predictive linear regression model that uses a variety 

of historical data including: historical outage, weather, lightning detection, vegetation, and 

assets. The data are correlated in time and space. The prediction model is based on the GCRF 

[20]: 
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The vector x represents the input data containing lightning parameters (peak current, polarity), 

weather parameters (temperature, precipitation, humidity, pressure), and insulator parameters 

(BIL). The output y is the predicted value of BIL after the impact of insulator backflashover 

has been taken into account. The second sum in eq. (5) represents the node inter-dependencies, 

where similarity between neighboring towers is expressed in terms of electrical impedance 

between them. 

 

To solve eq. (5), the parameters α and β need to be estimated. This can be done by maximizing 

the conditional log-likelihood based on the collected training data from past outages: 

   , logL P   y x  (6) 
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    
,

, arg max ,L
α β

α β α β   (7) 

Optimal Placement of LSAs 

 

The goal is to ensure that overall risk of the network is minimal while the economic impact of 

the solution stays bellow the acceptable budget limit. The global state of risk function is 

constructed as an arithmetic mean of the individual state of risk for each network component, 

and summarized over time: 





N

n

nR
N

R
1

1
 (8) 

 

Where R is a total risk for the entire network, N is the total number of towers in the network, 

and Rn is the individual risk for tower n. The optimization algorithm maximizes the global state 

of risk reduction by setting LSA positions as independent variables: 
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where ΔRn is a risk reduction on a tower n after installation of LSA. The available budget for 

the LSA installation is considered to be limited, adding an economic constraint: 





N

n

nn TCCF
1

 (10) 

where Cn is a cost of installation of LSA on tower n, and TC is a total budget dedicated to the 

LSA installations. 

 

RESULTS 

 

The method has been simulated and tested on section of the network containing 36 substations, 

65 transmission lines, with a total of 1590 towers. The historical outage and lightning data for 

the period of 5 years were observed.  

 

The Fig. 4 shows an example of a Hazard Map generated for the time of the outage. The 

Vulnerability Map segment in the area of the outage is presented in Fig. 5. The Risk Map, 

shown in Fig. 6, is generated by combining the two maps, Hazard in Fig. 4 and Vulnerability 

in Fig. 5. For each moment in time, it is possible to generate a unique risk map. By averaging 

the set of risk maps for a period of time it is possible to develop a final risk map on a seasonal 

or yearly basis.      

 

Based on the overall risk map created for a period of one year, and associated economic impact, 

the recommended number of line surge arresters (LSAs) is calculated to be 264, and optimal 

locations of the LSAs in terms of risk reduction are presented in Fig. 7. The presented 

configuration of LSAs is expected to reduce overall risk by 72%. This kind of result could help 

utilities make decision about installation of LSAs in an economically efficient way.  
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Fig. 4 Weather Hazard Map Fig. 5 Tower Vulnerability Map 

 

 
Fig. 6 Risk Map of the Network 
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Fig. 7 Locations of 264 Line Surge Arresters 

 

CONCLUSIONS 

 

This paper presents a decision-making method for optimal placement of line surge arresters in 

the transmission network based on the predictive risk analysis. The outcomes of this research 

are: 

• Lightning data obtained from the NLDN is correlated in time and space with variety of 

network and weather data. 

• The study of insulator lightning strength takes into account the weather conditions at 

time of the outage, which reflects cumulative strength deterioration over time. 

• The real-time risk framework that enables observation of unfolding weather conditions 

through the Hazard, and their impact of network outages through the Vulnerability was 

developed. 

• The predictive risk method based on Gaussian Conditional Random Fields is used to 

estimate the network vulnerability to lightning caused outages. 

• The predicted risk maps for the transmission network are used to determine the optimal 

location for line sure arresters that would provide the maximum decrease in risk level 

while maintaining the budget and physical limits.   
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