
Optimized Asset Management in Distribution 

Systems Based on Predictive Risk Analysis 

Tatjana Dokic, Mladen Kezunovic 

Department of Electrical and Computer Engineering 

Texas A&M University 

College Station, TX, USA 

tatjana.djokic@tamu.edu, kezunov@ece.tamu.edu 

 

 
Abstract— The paper introduces an optimal maintenance 

scheduler based on predictive assessment of risk of outage and 

equipment failure in distribution networks. The variety of severe 

weather conditions are observed and their impact on the network 

components is quantified. The equipment deterioration and 

failure rates are observed continuously across the space and time 

using heterogeneous data. The risk of weather-related outages for 

each component is generated in real-time, and can be extracted at 

multiple temporal and spatial scales depending on the application 

of interest. The optimal maintenance scheduling that minimizes 

the system risk while maintaining the economic investment limits 

is developed. The benefits of the framework are presented using a 

distribution network asset management example.   
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I.  INTRODUCTION 

The number of power outages in overhead distribution 
system in the USA is increasing in recent years mainly due to 
the following factors: 1) weather pattern change, 2) accelerated 
deterioration due to aging infrastructure. The variety of different 
weather data are being collected by various organizations, which 
opens an opportunity for the data intensive analysis of outage 
causes. Due to the high exposure of assets to environmental 
impacts it is expected that incorporating such data would be of 
great benefit, and could help in reversing the increasing trend of 
power outage occurrences by deploying predictive optimal 
maintenance practices. This brings up the question of how to 
efficiently merge electricity network data with variety of 
environmental data, while observing their spatial and temporal 
interdependencies. The key benefit is capability to determine 
likelihood of power network outages and asset deterioration 
rates under severe weather conditions, which is the key to 
developing better maintenance strategies. 

Traditional assets condition monitoring relies on laboratory 
tests and filed assessment with periodic examinations [1]. 
Another approach often used in electric distribution is “run-to-
failure”, where actions are taken only after the component 
malfunctions [2]. In recent decades, the intelligent electronic 
devices (IEDs) provide continuous on-line condition-based 
monitoring of equipment [3]. Such approach is still dominant in 
transmission, and rarely used in distribution. In [4-9] different 
approaches have been used for the risk-based allocation of 

maintenance resources to various distribution system assets with 
optimization of maintenance tasks. 

The research in [10] has shown that more accurate 
predictions are possible by structured learning from merged 
heterogeneous Big Data. In [11] it is demonstrated that the 
assessment of equipment deterioration due to prolonged 
exposure to environmental impacts can lead to an improved on-
demand maintenance strategy. In [12] the optimal maintenance 
strategy was developed for the tree trimming scheduling in 
distribution network. This paper extends the work reported in 
[10, 11] by introducing an optimal maintenance scheduler that 
generates just in time tree trimming maps based on the latest 
prediction of the state of risk of network components 
experiencing faults when touched by trees. 

The key contributions of the paper are: a) integration of 
variety of data, b) the use of the risk maps to develop 
spatiotemporal assessment of the assets status, and c) 
development of an optimized maintenance strategy to mitigate 
the risk.  

The rest of the paper is organized as follows. First the 
background on asset management approaches is summarized in 
Sec. II. Sec. III introduces the predictive asset management. In 
Sec. IV we describe optimal risk-based maintenance strategy 
based on predictive analysis. Examples of results are provided 
in Sec. V, and conclusions are summarized in Sec. VI. 

II. ASSET MANAGEMENT 

Current practices use several approaches to asset 
maintenance scheduling [13]:  

1) Run-to-failure where replacement is performed after 

component fails without any monitoring or maintenance 

during component lifetime,  

2) Periodic maintenance where each component is serviced on 

a predetermined periodic schedule,  

3) Condition-based maintenance using monitoring equipment 

where the equipment is repaired or repliced when needed, 

4) Reliability-centered maintenance that relies on the 

likelihood of equipment failure for selection of the ebst 

maintenace interval. 

5) Optimization techniques based on the reduction of 

economic impacts.  



The overview of characteristics of conventional asset 
management approaches and our proposed method is presented 
in Table I. Compared to other methods our approach: 1) 
introduces capability to process, utilize, and visualize larger 
amounts of data, 2) enables predictive analysis based on 
spatiotemporal data where spatial interdependencies between 
components are considered, and 3) introduces dynamic 
maintenance scheduling based on real-time observation of 
network components’ states and surrounding conditions.  

This paper focuses on two types of outages in distribution 
that combined cover more than 60% of total outages:  

1) Due to instantenious impact of severe and catastrophic 

weather conditions on utility assets. These types of outages 

are designated as weather caused outages.  

2) Due to deterioration as a result of exposure of assets to long 

term weather impacts. These types of outages are 

designated as equipment failure. 

We propose a novel asset management that enables the 
following capabilities:  

1) Assessing equipment deterioration continuously across 

space and time by learning from heterogenous data, 

2) Real-time risk assessment on multiple temporal and spatial 

scales by assessing the hazrads and vulnerabilites, 

3) Optimal on-demand asset management by developing a 

maintenace strategy that reduces the outage risk. 

The goal is to integrate the environmental data into the power 
system models and studies, build a model that integrates and 
exploits all types of data, evaluate system and component risk in 
real time, and contrast the existing static asset management 
practices with the new dynamic approach. 

III. PREDICTIVE ASSET MANAGEMENT 

The study improves the current asset management practices 
at three levels illustrated by the environment shown in Fig. 1: 

1) Data Level: The study includes a variety of different data 

coming from multiple data sources. The data is collected at 

multiple temporal and spatial scales. Data sets may contain 

bad and missing data. The uncertainty levels of data may 

vary from one set to another. We show how such cases may 

be handled.  

2) Analysis Level: The study uses the prediction algorithm 

[14-17] capable of leveraging the spatial and temporal 

aspects of heterogeneous data as a knowledge source. 

Graph based machine learning methods are used for 

prediction. The analysis has to be robust to missing and bad 

data. We demonstrate such data analytics features.  

3) Economic Level: The maintenance decision-making is 

focused on minimizing the risk level while maintaining the 

economic investment limits. While the cost of periodic 

maintenance stays the same, the reactive maintenance cost 

is optimized and reduced.  

Other details about implementation of predictive risk-based 
asset management can be found in [10-12, 18]. 

IV. OPTIMAL RISK-BASED  MAINTENANCE STRATEGY 

The maintenance scheduler has a goal to minimize the risk 
for the whole network while spending only the predetermined 
maintenance budget. Two types of maintenance cost are 
identified: 1) planned maintenance typically has a 
predetermined budget, and is performed periodically, 2) reactive 
maintenance includes the actions that occurred after the 
unexpected outage or asset failure, and the budget is variable.  

The specific optimization problem has to be defined 
separately for each distribution asset type (pole, transformer, 
insulator…) but the overall procedure can be defined as follows. 
Minimize the total risk for the network: 

TABLE I. COMPARISON OF ASSET MANAGEMENT APPROACHES 

Approach/Feature Run-to-
failure/Periodic 

Condition-based Reliability-
centered 

Optimization techniques Our Approach 

Monitoring cost No expenses High High High High 

Cost of reinstating 
services High Low Low Low Low 

Preventive capability No Yes Yes Yes Yes 

System or component 
level 

Component 
level 

Component level System level Both Both 

Data No 
One or several 

different 
measurements 

One or several 
parameters 
observed 

One or several parameters 
observed 

Big Data – wide variety 
of parameters 

Predictive No No Yes – statistical No 
Yes – better accuracy 
with machine learning 

Spatiotemporal 
analysis 

No No Limited No 
All data spatiotemporally 

referenced 

Dynamic real-time 
assessment No Yes Limited Limited Yes 

Interdependencies 
between components No No No No 

Geographical and 
electrical 
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where ∆𝑅𝑛,𝜃 = 𝑅𝑛,(𝜃−1) − 𝑅𝑛,𝜃 is the difference in risk value for 

feeder n before and after the action is performed, R is a total 
reduction in risk, Cn,t is the cost of maintenance of section n in 
the time instance t; and TC is a total budget allocated for the 
periodic tree trimming during the observed quarter. A total of T 
time instances is created. The risk is calculated for each of the N 
asset components. 

The optimization problem solver will iterate various actions 
(component maintenance, component repair, component 
replacement, environment assessment such as tree trimming, 
etc.) until it finds the best asset management schedule. For each 
time step each component has an action flag that indicates if 
there is an action on that component and what type of action is 
performed. This makes the optimization problem nonlinear. In 
order to provide feasible solution in time, the heuristic solvers 
need to be considered.  

The impacts of the environment and component 
vulnerabilities for each moment in time are accumulated in the 
dynamic risk value we are trying to minimize. The limits of the 
budget for periodic (planned) actions are taken into account as 
constrains.  

The last component, reactive maintenance, is target for 
minimization, and it is used for validation and testing of this 
approach performance. Our goal is to, by minimizing the 
network overall risk, also minimize the cost of reactive 
maintenance. As part of validation, after the optimization 
problem is solved, we compare the reactive asset management 
cost that was spent during the period of interest to the evaluated 
reactive maintenance expense that would be spent if optimal 
asset management schedule was followed.  

Following are the required steps of the optimal maintenance 
scheduler, as presented in Fig. 2: 

1) Generate risk maps based on the historical data and weather 

forecast and store the risk value for each component in the 

network. This step containes three tasks: 

a) Calculate weather hazard using weather forecast [19]. 

In this step we are evaluating the expected unfolding 

weather conditions that will affect the network in a 

certain moment in time. 

b) Calculate network vulnerability using historical data 

and current profile of the network and environment. In 

this step we learn from the historical outage and 

weather data [20,21] what the vulnerabilities of the 

network are, and we calculate based on the knowledge 

from the past what is the probability of an outage under 

an existing unfolding weather conditions. 

c) Generate action on a specific component. By 

performing any of the countermeasures it is possible 

 

Figure 1. Weather testbed environment 

 



to reduce the network vulnerability to the unfolding 

weather conditions. Optimization algorithm will 

iterate multiple generate action configurations until it 

finds the optimal schedule. 

2) Calculate the system risk by averaging or sumarizing the 

risk over all components.  

3) Define the optimization problem that minimizes the 

calculated system-level risk. In this step the objective 

countermeasures need to be selected. For example, if we are 

observing vegetation management, the main 

countermeasure would be tree trimming. In another 

example, if we are targeting insulators, countermeasures 

may include insulator cleaning, insulator repair, insulator 

replacement, etc. 

4) Set the optimization constrains to limit the periodic asset 

management expense. In this step the specific practices 

followed by utility need to be observed in order to set the 

realistic economic constrains. 

5) Solve the nonlinear optimization problem by applying the 

heuristics (for example Lagrangian Relaxation, Support 

Vector Machine, Neural Network, etc.).  

6) Calculate the reduction in reactive maintenance cost after 

the outage. During the validation process the reduction in 

reactive maintenance can only be estimated. After the 

deployment in the field the testing process can observe the 

changes in reactive maintenance expense before and after 

dynamic maintenance scheduling. 

V. EXAMPLE OF RESULTS 

The model is tested on the real distribution network, 
experiencing ~500 outages during the period of 5 years from 
2011 to 2015. The data obtained for the first four months in year 
2016 was used for testing of optimal maintenance scheduler. 

Fig. 3 presents the predicted outage probabilities for multiple 
events in year 2015, including all weather related outages caused 
by lightning, vegetation, rain, etc. The binary values on x axis 
correspond with “1” for the occurrence of the type of event, and 
“0” for the absence of observed type of event. For most outage 
occurrences the corresponding predicted outage probability 
value is higher than the predicted outage probability value when 
there was no outage.  

In our work we were able to achieve accuracy of outage 
probability prediction greater than 64%. Our experience for 
applications in transmission shows accuracy greater than 75% 
[10-12, 22]. We can conclude that the predictive capabilities in 
distribution are still significantly behind our capabilities to 
predict risk in transmission. This is due to distribution network 
being smaller in size and denser, thus requiring better spatial and 
temporal resolution of input data that is not available for all 
datasets. Also, a number of measurement that are collected in 
transmission is much more than what is collected in distribution, 
which reflects on the number of input parameters that can be 
used for predictions. The trends are changing in recent years 
with an increase in data available for prediction in distribution, 
in addition to many datasets improving their spatial and 
temporal resolutions over time. We expect the performances on 
prediction of outages in distribution to come closer to the 
performances in transmission soon. 

The example of risk map is presented in Fig. 4. The risk maps 
are created dynamically, so there is a separate risk map for each 
moment in time. The example in Fig. 4 presents the risk map 
generated for March 30th, 2016, when the network experience 
the outage. These maps are generated every three hours, and 
contain risk values for each component individually. The risk 
maps could be of great value to Distribution System Operators 
since they provide a prediction of areas that may experience 
outages in the future. With this kind of information, the operator 
can make better decisions about allocation of maintenance crews 
in the network. 

 

Figure 2. Optimal Risk-based Scheduler 

 

Figure 3. Outage probabilities predicted in 2015 based on the training data from 2011 to 2014 for weather outages. 
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A collection of risk prediction maps for the month of January 
2016 was used to create optimal maintenance schedule. Total of 
248 risk maps in different time points were created and used as 
inputs to optimization algorithm. The optimization objective 
was to reduce overall risk for the network including both 
insulators and vegetation. The economic limits for insulators and 
vegetation management were observed separately, as two 
independent constrains.  

Fig. 5 presents example of optimal asset maintenance 
schedule for one month in 2016. The chosen actions that were 
used in the optimization are tree trimming, insulator 
replacement, and insulator repair. In addition to selecting the 
asset (pole, feeder section) that needs to be maintained, 
algorithm sets the deadline by which the action should be 
performed to achieve maximum risk reduction.  

VI. CONCLUSIONS 

This paper introduces a new framework for optimal 
maintenance scheduling based on predictive risk assessment for 
distribution assets. More specifically, the following are the 
specific innovations: 

1) The study uses variety of datasources, some collected by 

utility such as outage and assets data; and extensive set of 

enviromental data, such as weather station data, weather 

forecast, vegetation, lightning. 

2) The temporal and spatial interdependencies between 

component and events in the network are levaraged for the 

improvement of prediction algorithm accuracy, and its 

capability to deal with bad and missing data. 

3) The dynamic asset management system based on 

optimization was build to reduce the predicted risk of 

outages and component failure while mainteining 

predetermined economic investment in periodic asset 

maintenance.   

4) The method is applied to the real utility data and the 

prediction performance in a real life setting is evaluated. 
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