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Abstract—Frequency is one of the most vital parameters used in 

power system monitoring, protection, and control. The common-

ly used frequency domain methods for frequency estimation are 

based on the compensation of DFT spectrum. Some accurate 

frequency estimation methods utilize the linearization of local 

DFT spectrum, such as interpolated DFT, primarily aiming at 

higher estimation accuracy of local maxima of signal spectrum. 

The accuracy of these methods is questionable due to the distor-

tion from spectrum leakage and picket fence effects. An algo-

rithm that estimates the frequency of quasi-steady state sinusoi-

dal signals is presented in this paper. The proposed algorithm 

produces accurate frequency estimation by calculating DTFT 

parameters using nonlinear interpolation method on DFT spec-

trum. IIR filter is utilized for signal conditioning. To expedite 

iteration process, autocorrelation function of the original signal 

is analyzed. Test results show that the proposed algorithm 

achieves higher accuracy than the requirements from IEEE 

standard C37.118.1a-2014. 

Index Terms—Autocorrelation function, discrete Fourier trans-

form, frequency estimation, power system measurements, spec-

tral analysis 

I. INTRODUCTION 

Frequency estimation is crucial to maintaining a more se-
cure, resilient and adaptable power grid. Accurate determina-
tion of frequency of the fundamental phasor is the basis of 
many smart grid applications and control schemes [1-3]. Facil-
itated by powerful phasor estimation algorithms and GPS-
synchronized hardware platforms, phasor measurement units 
(PMUs) and PMU-enabled intelligent electronic devices 
(IEDs) have become the reliable data sources of modern smart 
grid. Those devices also benefit from and depend on accurate 
fundamental frequency estimation to calculate amplitude and 
phase angle.[4,5] Recently, researchers have begun construct-
ing a cost-efficient measurement network that enables syn-
chronized wide-area observation of power system frequency, 
using the aforementioned IEDs.[3,6] 

In the majority of operating time, the power grid is in 
steady state, where the frequency may be off-nominal but re-

mains constant; or in a quasi-steady state, such as during the 
inter-area oscillations [7], where the frequency is slowly 
changing, but can be considered fixed in one observation win-
dow. Therefore, frequency estimation in such scenarios is of 
particular importance and should maintain high accuracy and 
consistency. Within the wide spectrum of frequency estima-
tion methods, zero-crossing [8] is the existing method sug-
gested in IEEE standard. This approach can cause large error 
in the presence of noise and DC offset. Another widely used 
method calculates frequency from the derivative of phase an-
gle measurements.[9,10] This method essentially performs 
averaging of instantaneous frequencies over the time instants 
associated with phase angle measurements. This approach 
exhibits problems in timestamp alignment, as well as in the 
error magnification from derivative calculation.[11] More 
accurate methods attempt to model frequency and noise pa-
rameters directly in the signal model. The examples are the 
Newton-type method [12,13], and the Kalman filter method 
[14]. These methods are often time-consuming and may raise 
stability and convergence issues. 

A large proportion of literature is focused on interpolated 
DFT (IpDFT), which was first introduced in [15], as an effort 
to estimate the frequency using off-nominal frequency static 
input. Usually, linearization is used to approximate DTFT, 
which is the continuous signal spectrum. Typically, three DFT 
harmonics are used to estimate the local maximum of DTFT, 
which corresponds to the frequency offset determined by off-
nominal frequency input. To alleviate the influence from 
negative frequency leakage, raised cosine windows with lower 
side lobe levels, such as Hamming or Hann windows, are of-
ten used instead of rectangular window. An enhanced interpo-
lated DFT method was proposed in [16], in which the three 
DFT harmonics are refined to alleviate the tails produced by 
other frequency components before further estimation. Re-
cently, a frequency estimation algorithm that iteratively esti-
mates the peak of signal amplitude spectrum was proposed 
[17].The algorithm produces higher accuracy than lineariza-
tion-based IpDFT, but overlooks the fact that due to complex 
number superposition, the peak of amplitude spectrum does 
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not necessarily corresponds to frequency offset. Besides, un-
known amplitude and phase angle further complicate the non-
linear optimization problem and can potentially raise conver-
gence issues. 

In this paper, an algorithm that estimates the frequency 
offset using the interpolation on the spectrum of signal auto-
correlation function is proposed. The rest of the paper is orga-
nized as follows. In section II, discrete input Fourier trans-
forms are revisited, and the theoretical background is intro-
duced. Frequency estimation algorithm using spectral interpo-
lation of autocorrelation function is proposed in section III. 
Simulations are performed and the results are analyzed in sec-
tion IV. Conclusions are given in section V. 

II. DISCRETE INPUT FOURIER TRANSFORMS BACKGROUND 

A. Continuous Spectrum of Rectangular Window 

Rectangular window is extensively discussed for its sim-
plicity, also because various commonly used window func-
tions are derived from the sidelobe cancellation of rectangular 
window spectrum. [18]  

The continuous spectrum, presented by discrete-time Fou-
rier transform (DTFT), of rectangular window is calculated in 
(1), 

 𝑋𝑅𝑒𝑐𝑡(𝜔) =  ∑ 𝑒−𝑖𝜔𝑛𝑁−1
𝑛=0 =

sin
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where asinc𝑁(𝜔) denotes the aliased sinc function. 

It is known that discrete Fourier transform (DFT) is the 
sampling of DTFT in one period of 2𝜋 at normalized frequen-

cies 𝑘𝜔0 =
2𝜋𝑘

𝑁
=

2𝜋𝑘𝑓0

𝑓𝑠𝑎𝑚
 , where 𝑓𝑠𝑎𝑚 is the sampling frequen-

cy, 𝑁 is the number of samples in a window, and 𝑓0 is system 
nominal frequency.[19] As shown in Fig. 1, where DTFT is 
depicted as dashed line, sampling 𝑋𝑅𝑒𝑐𝑡(𝜔)  at points 𝜔 =
𝑘𝜔0, shown as the black dots, we acquire the DFT of rectan-
gular window: 

 𝑋𝑅𝑒𝑐𝑡(𝑘𝜔0) =  𝑋𝑅𝑒𝑐𝑡(𝜔)|𝜔=𝑘𝜔0
 

 = 𝑁 ∙ asinc𝑁(𝑘𝜔0)𝑒−𝑖
1

2
𝑘𝜔0(𝑁−1)

 (2) 

It should be noticed that one equivalent interpretation of 
the relationship between DTFT and DFT is, DTFT is the non-
linear interpolation of DFT samples using asinc(*) function. 

B. DFT Spectrum Interpolation Method Revisited 

In signal processing, it is well known that a single-tone si-
nusoidal signal can be expressed as the combination of two 
complex signals shown in (3): 

𝑥(𝑡) = 𝐴cos(𝛺𝑥𝑡 + 𝜙𝑥) = 𝐴
𝑒𝑗(Ω𝑥𝑡+𝜙𝑥)+𝑒−𝑗(Ω𝑥𝑡+𝜙𝑥)

2
 (3) 

The DTFT of single-tone input  𝑥(𝑡), or 𝑋𝑆𝑇(𝜔), can be 
achieved by (4): 

 𝑋𝑆𝑇(𝜔) =  ∑ 𝑥𝑆𝑇(𝑡)|𝑡=
𝑛

𝑓𝑠𝑎𝑚

∙ 𝑒−𝑖𝜔𝑛+∞
𝑛=−∞  

 =
𝐴

2
𝑋𝑅𝑒𝑐𝑡(𝜔 − 𝜔𝑥)𝑒𝑗𝜙𝑥 +

𝐴

2
𝑋𝑅𝑒𝑐𝑡(𝜔 + 𝜔𝑥)𝑒−𝑗𝜙𝑥  (4) 

where 𝛺𝑥 denotes the unknown signal frequency in rad/s, 𝜔𝑥 
represents unknown signal frequency normalized by 𝑓𝑠𝑎𝑚. 

  
Figure 1.  DTFT and DFT of Rectangular Window 

Shown in Fig. 2, blue dashed line is spectrum with positive 
frequency offset, 𝑋𝑅𝑒𝑐𝑡(𝜔 − 𝜔𝑥) , and the red dotted line 
shows the spectrum with negative frequency offset, 𝑋𝑅𝑒𝑐𝑡(𝜔 +
𝜔𝑥), the black solid line shows the DTFT of original signal 
and, DFT is shown in black dots. 

  
Figure 2.  DTFT and DFT of Single Tone Sinusoidal Input 

Interpolated DFT (IpDFT) method typically uses three 
DFT samples to estimate the x-coordinate of the maxima of 
linearized DTFT curve. It is worth noting that, however, the 
maxima of DTFT curve (black solid line) will generally devi-
ate from the actual frequency offset, denoted by the maxima 
of asinc functions (red, blue lines). The deviation is caused by 
leakage effect from high sidelobe level. Accordingly, window 
functions with reduced sidelobe levels, such as Hamming and 
Hamm windows, are commonly used. To some extent, such 
solution reduces leakage effect. However, if higher estimation 
result is desired, a higher order window function, which re-
quires data window longer than four cycles, needs to be ap-
plied.  

Moreover, nonlinear curve fitting techniques [20] can be 
used to estimate 𝜔𝑥 , since the structure of signal model is 
practically known as (4). Given the initial value, which is set 

to be normalized nominal frequency 𝜔𝑥
(0)

=
2𝜋𝑓0

𝑓𝑠𝑎𝑚
, Levenberg-

Marquardt algorithm [13] can be leveraged for estimation of 
unknown parameters 𝐴, 𝜙𝑥 , and 𝜔𝑥 , with .fast and accurate 
convergence. 

III. FREQUENCY ESTIMATION USING SPECTRAL 

INTERPOLATION OF AUTOCORRELATION FUNCTION 

A single-tone sinusoidal signal can be described using 
three parameters: amplitude, frequency (deviation), and phase 
angle. Usually all three parameters are unknown, and frequen-

 

 



cy estimation depends on parameters relevant to amplitude 
and phase angle estimation, for instance, time-domain meth-
ods [9-11]. This paper proposed an algorithm that only pre-
serves the frequency information of a sinusoidal wave. 

A. Autocorrelation Function of A Sinusoidal Signal 

The autocorrelation function (ACF) of a signal is widely 
used in time-series analysis, and it is an indicator of how a 
signal resembles its time-shift copy.[21] By doing so, patterns, 
such as periodicity of the original signal, can be revealed. 
ACF at lag 𝜏 is theoretically expressed in (5) 

 𝜌(𝜏) =
𝛾(𝜏)

𝛾(0)
=

ℰ[(𝑥(𝑡)−𝑥̅)(𝑥(𝑡+𝜏)−𝑥̅)]

√ℰ[𝑥(𝑡)−𝑥̅]2∙ℰ[𝑥(𝑡+𝜏)−𝑥̅]2
 (5) 

where ℰ(∗)  denotes the ensemble average, 𝑥̅  is the sample 
mean, and as can be easily seen,  𝜌(𝜏) ≤ 𝜌(0) ≡ 1. 

Assuming stationarity and ergodicity, which is usually the 
case, the ensemble average can be estimated using the data 
from one single experiment, in which auto-covariance 𝛾(𝜏) is 
calculated using (6):  

 𝛾(𝜏)  = ℰ[(𝑥(𝑡) − 𝑥̅)(𝑥(𝑡 + 𝜏) − 𝑥̅)] 
 = ℰ[𝑥(𝑡)𝑥(𝑡 + 𝜏)] − 𝑥̅2 (6) 

where ℰ[(𝑥(𝑡)𝑥(𝑡 + 𝜏)] is calculated as shown in (7): 

 ℰ[(𝑥(𝑡)𝑥(𝑡 + 𝜏)] = lim𝑇→∞
1
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Note that in (7), the limit term will be suppressed since 
both sine terms have finite boundaries, therefore, the ACF: 

 𝜌(𝜏)  =
𝐴2

2
cos𝛺𝜏−𝑥̅2

𝐴2

2
−𝑥̅2

 (8) 

As can be seen from (8), the ACF of an off-nominal fre-
quency sinusoidal wave is a sinusoidal wave with unit ampli-
tude, zero phase angle, and the same frequency as the original 
signal. As shown in Fig. 3, a 55Hz off-nominal sinusoid with 
initial phase angle 𝜋 4⁄ , and its ACF, which is a pure cosine 
wave at the same frequency. Therefore, by taking the ACF of 
off-nominal frequency signal, only frequency information of 
original signal is extracted.  

  
Figure 3.  DTFT and DFT of Rectangular Window 

B. Frequency Estimation 

As shown in Section II, the DTFT of the ACF of an off-
nominal sinusoidal signal takes the form of: 

 𝑋𝐴𝐶𝐹(𝜔) =  𝑋𝑅𝑒𝑐𝑡(𝜔 − 𝜔𝑥) + 𝑋𝑅𝑒𝑐𝑡(𝜔 + 𝜔𝑥) 

= 𝑁 ∙ asinc𝑁(𝝎 − 𝜔𝑥)𝑒−𝑖
1
2

(𝝎−𝜔𝑥)(𝑁−1)
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2
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where 𝜔𝑥 =
2𝜋𝑓𝑥

𝑓𝑠𝑎𝑚
=

𝛺𝑥

𝑓𝑠𝑎𝑚
.  

Per discussion in Section A, the frequency estimation can 
be eventually equated with the frequency estimation of its 
ACF, which has the general form of 𝜌(𝜏) = cos (𝛺𝑥𝜏). There-
fore, nonlinear curve fitting method, as discussed in Section 
II.B, can be developed to estimate off-nominal frequency 𝛺𝑥. 

Note that theoretically, signal phase angle will always be zero 
after taking the ACF. Therefore, rigorous filtering techniques 
can be applied, even though such conditioning of original sig-
nal may cause nonlinear group delay, which is always avoided 
in other methods. 

IV. IMPLEMENTATION AND SIMULATION RESULTS 

A. Frequency Estimation Procedure 

The raw input signal for PMUs and other IEDs features 
noise and harmonics, and therefore, should be conditioned 
before feeding into the algorithm. Infinite Impulse Response 
(IIR) filters are used, because 1) phase distortion from IIR 
nonlinear group delay will not affect estimation after taking 
the ACF, and 2) IIR filters can be implemented with lower 
order than Finite Impulse Response (FIR) filters to achieve 
comparable performances, hence shorter window length. The 
procedure of using proposed algorithm to estimate frequency 
is depicted in Fig. 4.  

  
Figure 4.  Frequency Estimation Procedure 

B. Hardware Implementation 

The frequency estimation algorithm, as well as data acqui-
sition code is implemented in National Instruments Com-
pactRIO

TM
 (cRIO) device coded in LabVIEW

TM 
, as shown in 

Fig. 5. The data acquisition program is coded on FPGA chip 
so that speed and stability is guaranteed. Data conditioning, 
processing and computing is conducted on host computer em-
bedded in the chassis, which runs LabVIEW

TM
 Real-Time 

system. Since FPGA is pure hardware-based, the execution of 
program on FPGA is faster than signal processing code on 

 

 



host computer, which is software-based. Therefore, sampled 
raw data are transmitted through first-in-first-out (FIFO) buff-
er between FPGA and host computer to allow lossless data 
transfer. The hardware system is located at Power System 
Control & Protection Lab on Texas A&M University campus. 

  
Figure 5.  Hardware Implementation 

C. MATLAB Simulation and Result Analysis 

Three scenarios are considered in algorithm testing: pure 
single-tone sinusoidal input, sinusoidal input with harmonic 
injection, and slow-varying oscillation input. 

1) Single-Tone Sinusoidal Input:  
Single-tone sinusoids at frequencies ranging from 55Hz to 

65Hz with 1Hz increment are utilized as test signals in this 
scenario. The initial value for frequency iteration is normal-
ized nominal frequency. Test results shows that, under theoret-
ical signal input, the proposed algorithm can achieve zero es-
timation error. 

2) Sinusoidal Input with Harmonic Injection:  
Single harmonic from 2

nd
 to 50

th
 order is injected into si-

nusoids at frequencies within 2Hz range around nominal fre-
quency. The total harmonic distortion (THD%) level is 1%, 
referencing the IEEE standard for PMU testing.[22] Type I 
Chebyshev filter is used to achieve minimum flat frequency 
response in stopband. As shown in Fig. 6, frequency estima-
tion errors in all test cases are smaller than 0.16mHz, which is 
at least 10 times higher than IEEE standard requirement 
(5mHz). 

3) Slow-Varying Oscillation Input 
Power system is subject to low-frequency oscillations typ-

ically within 2Hz.[23] In this test, the oscillation is modeled as 
a pure amplitude modulation signal.[24] Cases with oscillation 
frequency ranging from 0Hz (no oscillation) to 2Hz, frequen-
cy deviation within ±2Hz from nominal are tested and depict-
ed in Fig. 7. In Fig. 7, results represented by larger red dots 
indicate that absolute frequency errors are within 30mHz, 
which is 10 times better than [22], otherwise they are shown 
as smaller blue dots. As can be seen, the algorithm can with-
stand oscillations slower than 1Hz and frequency deviation 
from -1Hz to 2Hz. The proposed method has better accuracy 
at positive frequency deviation when the mainlobes of off-
nominal component are less interfered by the spectral leakage 
from modulation components. 

D. Hardware Testing and Result Analysis 

In this test scenario, National Instrument cRIO device is 
connected to the power socket on the wall. Single phase volt-
age is continuously sampled at 5kHz. It is expected that volt-
age amplitude and frequency are constant in a short estimation 
window length, and the waveform should be around 60Hz and 

contains harmonics. Fast Fourier transform (FFT) is first per-
formed to provide a rough illustration of sampled voltage, 
with a window length of 500ms so that FFT frequency resolu-
tion can be as high as 2Hz. Then frequency is estimated ac-
cording to Fig. 4. 

 
Figure 6.  MATLAB Simulation Results for Harmonic Injection Tests 

 
Figure 7.  MATLAB Simulation Results for Oscillation Input Tests 

Shown in Fig. 8 is the FFT spectral analysis of raw sample 
from the power socket. It is shown that a wide range of har-
monics in presented in the samples, with 5

th
 and 7

th
 harmonics 

being the predominant ones. A zoom-in picture of the fre-
quency components around 60Hz shows that the frequencies 
are spread out around nominal frequency, which is caused by 
spectral leakage, indicating that the frequency is off-nominal.  

Frequency of the signal from 110V power socket was es-
timated over the course of 240s. In order to show frequency 
fluctuation, estimation results are reported every 5 seconds. 
Because of the absence of a reliable frequency reference, fre-
quency information from [25] was used for a qualitative com-
parison with the calculations from proposed method. The es-
timation result is shown in Fig. 9. 

V. CONCLUSION 

In this paper, a frequency estimation method that uses the 
spectral interpolation of signal autocorrelation function is pro-
posed. The proposed algorithm aims to calculate frequencies 
at quasi-steady states: off-nominal with harmonic input, and 
low frequency amplitude oscillations. The contributions are 
summarized as follows: 

 The proposed frequency estimation method can achieve 
high accuracy under off-nominal input, even with the pres-

 

 

 



ence of harmonics. It can withstand slow-varying ampli-
tude oscillation under 1Hz. 

 Spectral interpolation utilized in frequency estimation im-
proves estimation improves traditional linearized interpo-
lated DFT method. 

 Autocorrelation function is used to extract only the fre-
quency information from original signal, thereby increas-
ing estimation efficiency.  

 Infinite Impulse Response filters are used to achieve better 
frequency response performance. The nonlinear group de-
lay caused by IIR filters will not affect frequency estima-
tion after using autocorrelation function.  

 The propose method has been implemented in National 
Instruments hardware and is pending further testing. 

 
Figure 8.  FFT Spectral Analysis of Input Signal 

  
Figure 9.  Frequency Estimation on Power Socket 
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