
Implementing Intelligent Techniques for the 
Advanced Alarm Processing 

 

Yufan Guan and Mladen Kezunovic 
Department of Electrical and Computer Engineering 

Texas A&M University 
College Station, USA, 77843-3128 

carling@tamu.edu and kezunov@ece.tamu.edu 
 
 

Abstract—A major power system disturbance could trigger 
hundreds and sometimes thousands of individual alarms and 
events. A better and simpler description of the problems affecting 
the power system is an urgent need for the operators. The task of 
an Intelligent Alarm Processor (IAP) is to analyze thousands of 
alarm messages and extract the information that explains cause-
effect sequences associated with the network events. In this sense, 
Fuzzy Reasoning Petri-nets is a very powerful intelligent 
technique to deal with the complexities of the power system fault 
and alarm processing. A graphical FRPN model is build in this 
paper based on the optimal structure and uses fuzzy logic 
parameters to effectively tackle the uncertainties. Case studies 
are presented to demonstrate the capability of the IAP under real 
fault scenarios. 
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I.  INTRODUCTION 
LARM processing has been a traditional feature of the 
power system Energy Management System (EMS) and 
has been studied over the past decades.  Despite variety 

of proposed solutions, operators still have a strong need for a 
better way to monitor the system than what is provided by the 
existing alarm processing software [1]. An EPRI study [2] has 
listed issues that operators face with alarms during their day-
to-day operation of a power system: 

• Alarms which are not descriptive enough 
• Alarms which are too detailed 
• Too may alarms during a system disturbance 
• False alarms 
• Multiplicity of alarms for the same event 
• Alarms changing too fast to be read on the display 
• Alarms not in priority order 
Operators are expected to monitor the system condition and 

take actions immediately after the alarms occur. However, 
when all problems mentioned above mix up, operators are 
severely restrained to perform properly in a timely manner. 

In the recent years, a lot of efforts about the concepts of 
filtering and suppressing alarms based on the intelligent 
techniques have been used in many practical systems [3]. 
Those major intelligent techniques used so far include: 

a. Expert System (ES) technique  
Expert system (ES) technique [4-7] is well suited for a 

diagnosis problem like fault section estimation because it 
mimics the behavior of fault analysis experts which perform 
fact-rule comparisons and search of consequent steps. The 
disadvantage is that an expert system has to be developed 
using formalized knowledge that correctly captures the 
expertise, which may require an extensive expert interviewing 
effort.  
b. Fuzzy Logic (FL) technique 

FL technique [8,9] offers a convenient means for modeling 
inexactness and uncertainties, hence a powerful solution to 
handle the imprecise and incomplete data may be implemented. 
The disadvantage is the need to have empirical data that helps 
determine the membership function and properties of fuzzy 
variables. 
c. Petri-nets (PN) technique 

Petri-nets (PN) based technique [10-13] possesses the 
characteristics of graphical discrete event representation and 
parallel information processing. While very fast, the dynamic 
nature of the temporal change of the alarms cannot be easily 
captured with the standard Petri-net approach unless further 
adjustments are made. 
d. Fuzzy Reasoning Petri-nets (FRPN) technique 

Fuzzy Reasoning Petri-nets (FRPN) technique [14-16] gains 
the advantages of Expert System and Fuzzy Logic, as well as 
parallel information processing. Some of the disadvantages of 
previously mentioned individual techniques may be offset by 
the benefits coming from combining the techniques. 

 
An implicit disadvantage of the traditional knowledge-based 

systems is that they may be incapable of handling complex 
scenarios that are not encountered during knowledge 
acquisition, implementation, or validation. They may also 
suffer from the slowness in analysis due to involved knowledge 
representation and inference mechanism. Solutions based on 
discrete event view of Petri-nets also have several limitations. 
For instance, the number of initial inputs is limited and it is 
difficult to model inexactness and uncertainties. Consequently, 
to accurately identify fault sections under complex 
circumstances, substantial heuristic rules and information are 
additionally required [17]. 
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This paper proposes an advanced Fuzzy Reasoning Petri-
nets (FRPN) diagnosis model after the structure adopted in 
[17]. This Intelligent Alarm Processor (IAP) model is 
expected to achieve the following goals: 

• Suppress multiple alarms from one event 
• Generate a single conclusion through logical cause-effect 

relationship 
• Automate the process to get answers quickly 
• Make graphical and numerical information concise and 

easy to follow 
The proposed approach introduces novel techniques for 

achieving efficiency and speed in alarm processing developed 
by using SCADA data and additional data obtained from 
substation intelligent electronic devices (IEDs). A real fault 
case that happened in Texas, USA on September 2007 is used 
to test the model.  

Paper starts with an introduction of the proposed technique 
in section II and elaborates on the description of the actual 
case used in this study in section III. Required modeling and 
case study results are given in subsequent sections. 
Conclusions are given at the end.  

 

II. FUZZY REASONING PETRI-NETS 

A. Definition 
Paper [16] has defined Fuzzy Reasoning Petri-nets (FRPN) 

as an 8-tuple.: 
( , , , , , , , )P R I O H Cθ γ  

where 
1) 1 2{ , , , }nP p p p= "  is a finite set of places or called 
propositions. 
2) 1 2{ , , , }mR r r r= "  is a finite set of transitions or called 
rules. 
3) : {0,1}I P R× →  is an n m×  input matrix defining the 

directed arcs from propositions to rules. ( , ) 1i jI p r = , if 

there is a directed arc from ip  to jr , and ( , ) 0i jI p r = , if 

there is no directed arcs from ip  to jr , for 1, 2, ,i n= "  

and 1, 2, ,j m= " . 
4) : {0,1}O P R× →  is an n m×  output matrix defining 
the directed arcs from rules to propositions.  
5) : {0,1}H P R× →  is an n m× matrix defining the 
complementary arcs from propositions to rules. 

( , ) 1i jH p r = , if there is a complementary arc from ip  to 

jr , and ( , ) 0i jH p r = , if there is no directed arcs from ip  

to jr , for 1, 2, ,  and 1, 2, ,i n j m= =" " . 

6)  θ  is a true degree vector. 1 2( , , )T
nθ θ θ θ= " , where 

[0,1]θ ∈  means the truth degree of ip , 1, 2,i n= " . The 

initial truth degree vector is denoted by 0θ . 

7) : {0,1}Pγ →  is a marking vector. 1 2( , , )T
nγ γ γ γ= " . 

1iγ = , if there is a token in ip , and 0iγ = , if ip  is not 

marked. An initial marking is denoted by 0γ . 

8) 1 2{ , , }mC diag c c c= " . ic  is the confidence of ir , 
1, 2, ,j m= " .  

The 5-tuple ( , , , , )P R I O H  is the basic FRPN structure 
that defines a directed graph. The updates of the truth degree 
vector θ  through execution of a set of rules describe the 
dynamic reasoning process of the modeled system. If the truth 
degree of a proposition is known at a certain reasoning step, a 
token is assigned to the corresponding proposition, which is 
associated with the value between 0 and 1. The token is 
represented by a dot. When a proposition ip  has no token, 
which means that the truth degree is unknown at that step, 

0iθ = . 

B. Execution Rules 
In order to describe the execution rules of a FRPN, the 

following operators are used: 
1) : A B=D⊕ ⊕ , where A, B, and D are all m n× - 
dimensional matrices, such that max{ , }ij ij ijd a b= .  

2) : A B=D⊗ ⊗ , where A, B, and D are all ( )m p× , 
( )p n× , ( )m n× - dimensional matrices, such that 

1max { }ij k p ij ijd a b≤ ≤= ⋅ . 

The execution rules include enabling and firing rules. 
1) A rule jr R∈  is enabled if and only if ip  is marked, 

or 1iγ = , ip∀ ∈  {input propositions of jr }. 

2) Enabled at marking γ , jr  firing results in a new 'γ . 

'( ) ( ) ( , ),                    jp p O p r p Pγ γ= ⊕ ∀ ∈  

The truth degree vector changes from θ  to 'θ  
'( ) ( ) ( , ),         j j j ip p c O p r p Pθ θ ρ= ⊕ ⋅ ⋅ ∀ ∈  

where 
min { | ,   ( , ) 1;  

                           =1-   ( , ) 1}
i i

j i i i i j
p r

i i i j

x x if I p r

x if H p r

ρ θ

θ
∈

= = =

=

i

 

and 

{ | ( , ) 1  ( , ) 1,  }i i i j i j ir p I p r or H p r p P= = = ∈
i

 
3) All the enabled rules can fire at the same time. A firing 

vector μ  is introduced such that 1jμ = , if jr  fires. 
After firing a set of rules, the marking and truth degree 
vectors of the FRPN become 

' [ ]Oγ γ μ= ⊕ ⊗  (1)
' [( ) ]O Cθ θ ρ= ⊕ ⋅ ⊗  (2)

where 



1 2( , , )T
mρ ρ ρ ρ= " , which is called control vector. 

: {0,1}Tμ →  is the firing vector.  

 

III. CASE DESCRIPTION 

A. Background 
On September 5th 2007, a tornado in the area resulted in the 

tripping of two 345 kV lines and two generators in one of the 
substations.  As a result of the unit trips, the bus split into two 
buses due to the configuration of the substation. Two cases 
taken from the Supervisory Control and Data Acquisition 
(SCADA) database that was used by the EMS to monitor the 
area are used. The first was captured at approximately 07:49 
AM, before the event occurred, and the second was captured at 
approximately 07:54 AM, just after the event occurred. 

 

B. Current Alarm Processing Solutions 
The control center is equipped with an alarm processor that 

helps operators deal with various operating contingencies. A 
major power system disturbance could trigger hundreds and 
sometimes thousands of individual alarms and events. The 
following is a typical screen shot that the operators usually see 
in the control center. 

Fig.1. Alarm Screen Shot 
For the case in question, there were 2125 alarm messages 

that appeared within only 45minutes. Obviously it is beyond 
the capacity of any operator to handle. Thus, operators may not 
be able to respond to the unfolding events in time, and even 
worse, the interpretation by the operators may be either wrong 
or inconclusive. Operators also admitted that the list of large 
number of alarms provide little help for them. 

 

IV. MODEL ESTABLISHMENT IMPLEMENTING FRPN 

A. Power System Configuration 
The alarm diagnosis algorithm and model used for this case 

are illustrated in an earlier paper [17]. The protection system 
configuration for this case is shown in Fig.2. 
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Fig.2. Protection System Configuration Diagram 
The system consists of 9 sections, including 3 buses, 2 

generators and 4 transmission lines. 
When one or more faults occur on certain sections of the 

power system, protection devices will reach certain status 
accordingly. The observed circuit breaker status signals 
obtained from RTUs of SCADA systems are used as inputs for 
estimation of the faulted sections. The logic reasoning method 
uses the relay status obtained from the online-database to 
validate each candidate fault section. The strategy is to build 
one FRPN diagnosis model for each section of the power 
system. Each model establishes reasoning starting from a set 
of SCADA data to the conclusion of fault occurrence on its 
associated section with certain truth degree value. 

We use backward reasoning concept to structure the FRPN 
diagnosis models and generalize the design for transmission 
lines and buses. Fig. 3 and Fig. 4 illustrate backward reasoning 
concept for structuring transmission line and bus diagnosis 
models respectively [17]. The ‘AND-OR’ structure concisely 
represents all the possible combinations of main, primary 
backup and secondary backup protection operations for 
inferring a fault. 

Fig.3. Backward Reasoning Concept for Structuring Transmission Line 
Diagnosis Models 



Fig.4. Backward Reasoning Concept for Structuring Bus Diagnosis Models 
 
Based on the proposed structure introduced earlier [17], all 

the FRPN diagnosis models are developed. As examples, Fig. 
5 and Fig. 6 show the FRPN models for the transmission line 
BBSES_60A and Unit 1 respectively. 

 

Fig.5. A FRPN Model for BBSES_60A Fault 
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Fig.6. A FRPN Model for Unit 1 Fault 
 
Each proposition is given a “truth degree value” to 

illustrate the strength of confirmation. We use a “weighted 
average” operation when calculating the truth degree value of 
a consequent proposition from the truth degree values of its 
antecedent propositions. Fig. 7 illustrates the operation for r1 
in Fig. 5. 
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Fig.7. An Example of “Weighted Average” Operation 
 
The “weighted average” operation has two benefits [17]. 

First, the relative significance of antecedent propositions in 
implicating the consequent proposition is recognized by the 
weights of antecedent propositions. This is particularly 
meaningful when the cause-effect relation among antecedent 
propositions is considered. In our assumption, circuit breaker 
opening is the effect of relay trip. The “circuit breaker opens” 
proposition is generally given larger weight than that of the 
“relay trips” proposition because circuit breaker opening 
indicates the completion of a protection operation more 
directly. For example, regarding the rule r3 in Fig. 6, the 
proposition p5 “BLR4160 Trip” will be given a weight 0.4; 
the proposition p6 “CB4160 Open” will be given a weight 0.6. 

Second, the false data problem is effectively handled by 
averaging the truth degree values of antecedent propositions. 
For example, when the relay MLR4160 trips and the circuit 
breaker CB4160 opens as a consequence of a fault on the line 
BBSES_60A, and “MLR4160 Trip” is not observed, p15, 
which stands for “main protection operates”, will still get a 
moderate truth degree value instead of 0, hence a moderate 
truth degree value for the final conclusion. It is apparent that 
the larger the number of input data, the impact of false data is 
more effectively countered.  

 

V. CASE STUDY 
Though the operator in this case was not able to provide 

relay data, our algorithm still works by having only SCADA 
data as inputs. 

A. Simulation Results 
CASE 1: No protective relay signals. Circuit breaker CB4210, 
CB4220, CB4160, CB4920 status changes are detected.  
 
Diagnosis result: Line BBSES_60A is faulted, and its truth 
value is 0.5130. 

Fig.8. FRPN Model Analysis Procedure for Line BBSES_60A 



CASE 2: This report assumes the operation of the circuit 
breaker is tripped by the associated relays, thus allowing the 
relay status to be obtained to validate the fault. We assumed 
that we received the relay signals related to this case. All the 
devices worked correctly with no false signals. Circuit breaker 
CB4210, CB4220, CB4160, CB4920 are detected. 
 
Diagnosis result: Line BBSES_60A is faulted, and its truth 
value is 0.8550. With the input of the related relay signals, the 
fault certainness has been increased dramatically. 
 

Fig.9. FRPN model analysis procedure for Line 
BBSES_60A_with_assumed_relay_data 

 
CASE 3: No protective relay signals. Unit 1 tripped, and 
circuit breaker CB4210, CB4220, CB4160, CB4170, CB4920 
are detected.  
 
Diagnosis result: Unit 1 is faulted, and its truth value is 
0.8550. 
 

Fig.10. FRPN Model Analysis Procedure for Unit 1 
 

B. Discussion 
From the simulation test, we may draw the conclusion that 

by using only SCADA data, our proposed Intelligent Alarm 
Processor model still works properly for the practical cases. 
Here is a list for the comparison between existing and our 
solutions: 

 
Table. I. Solutions Comparison 

 Existing TEES 

Method 

Use the Alarm Browser 

priority groupings and  search 

through the EMS one line 

diagrams to check flows and 

other system parameters 

manually 

Use IAP system and generate 

the fault analysis report 

automatically 

Time Time consuming Within seconds 

Without relay 

inputs 
Certain 

Accuracy Not applied 
With relay 

inputs 

Very 

Certain 

In practice, the weight factors need to be assigned through 
collaboration of the experienced operators and maintenance 
staff, who are especially familiar with the importance and 
reliability of each component in the power system of interest.  

To reduce the operators’ burden, the ultimate screen in the 
control center will not show any redundant numerical truth 
degree factors or alarm messages. Instead, a final fault 
analysis result and some possible recommendations will pop 
up to help the operators to make a quick decision. On the other 
hand, the intermediate cause-effect analysis procedure is 
available any time the operators are ready to monitor it. 

 

VI. CONCLUSION 
From the review of the existing intelligent techniques used 

for Alarm Processing, it was concluded that existing solutions 
have both advantages and disadvantages hence new approach 
is needed to eliminate disadvantages.. Simulation results from 
our approach tested using real fault scenario case confirms the  
feasibility and advantages  of the proposed Intelligent Alarm 
Processor. In summary, compared with current solutions, our 
model has the following advantages: 
• The fault alarm analysis report can be generated 

automatically and immediately after the fault occurs. 
• The FRPN models can be built in advance based on 

power system and protection system configurations and 
stored in files. In such a way, the FRPN models can be 
easily modified according to the changes of input data as 
well as power system and protection system configuration. 

• This solution can use only SCADA data and does not 
need detailed data from IEDs or other measurement 
devices. 

• Further improvement could be made by incorporating 
protective relay data, which will greatly increase the 
accuracy even with missing or false alarm signals. 
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