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Abstract – This paper deals with neural network protec-

tion algorithm aimed at classifying transmission line faults. 

The approach utilizes self-organized adaptive type of neu-

ral network specially developed to deal with large amount 

of data. Various procedures of preprocessing neural net-

work inputs are extensively investigated. The classification 

performance for different values of data window length 

and sampling frequency is demonstrated and illustrated. 

Simulation results show satisfactory algorithm responses in 

each of the implemented cases. 

Keywords: Power System Faults, Neural Networks, 

Learning Systems, Protective Relaying, Pattern Clus-

tering Methods 

1 INTRODUCTION 

This study discusses a new protective relaying princi-

ple for transmission lines based on the artificial neural 

network based pattern recognition. The approach is to 

apply the neural network directly to the samples of volt-

age and current measurements instead of using tradi-

tional concept of impedance measurement. The main 

role of the relaying principle is detecting and classifying 

the faults, based on three-phase voltage and current 

samples. Transmission line faults happen randomly, and 

they are outcome of varying conditions. Several varying 

parameters (type of fault, fault location, fault imped-

ance, and fault incident time) as well as many other 

conditions imposed by actual network configuration 

(source/load variations, and variety of switching events), 

determine the corresponding transient current and volt-

age waveforms detected by the relays at line ends. All 

these effects influence relay's classification capability. 

Traditional concept is based on computing the settings 

ahead of time taking into account only easily anticipated 

fault conditions, and not the prevailing real conditions.  

The new concept is based on special type of neural 

network ideally suited for protection tasks [1-4]. The 

current and voltage samples of the three transmission 

line phases are recognized as features of the events in 

the power network. They identify whether, where and 

which type of fault occurs under a variety of time-

varying operating conditions [5-6]. Whenever any 

change in the prevailing conditions at the relay location 

occurs, this self-adaptive algorithm is capable of adjust-

ing its response to deal with similar situations that may 

happen in the future [7-8]. 

Special attention is placed on the sensitivity of the 

neural network protection algorithm to the variations in 

the input signal preprocessing steps, including the data 

window size and choice of sampling frequency. Condi-

tioning of input signals may adversely affect the algo-

rithm behavior during the training as well as the per-

formance during the testing. Mentioned parameters 

determine the number of neural network inputs, and 

influence the trade-off between performing the fault 

characterization more accurately and making the deci-

sion in real time. Requirements for real time fault classi-

fication impose the amount of calculation allowed to 

produce the final outcome, while the requirements for 

accuracy also need to be met. 

For algorithm design and evaluation, one typical 

model of an actual power network was implemented in a 

program for simulating power network transients [9]. 

This model is used to simulate various fault and no-fault 

events in the network. Simulation output data are used 

for forming the training and testing patterns submitted as 

inputs to the neural network. 

The paper is organized as follows. Description of a 

self-organized neural network algorithm is given in 

section II. Section III shows the selected model of an 

actual power network. Simulation of scenarios and pre-

processing of neural network input signals are explained 

in Section IV. Simulation results obtained through algo-

rithm training and testing are provided in Section V. The 

conclusions are given at the end. 

2 SELF-ORGANIZED NEURAL NETWORK 

CLUSTERING ALGORITHM 

2.1 Neural Networks for Protective Relaying 

Various applications of neural networks were used in 

the past to improve recognition of the impedance util-

ized in distance relaying of transmission lines [10]. 

These applications are mainly based on widely used 

multilayer feed-forward networks with back-propagation 

learning rule [11]. Implementation of these networks for 

patterns with large dimensionality imposes slow training 

procedure, very easily converges to local minimum and 

on-line learning requires presenting the entire set of 

training patterns again. This type of network gives an 

output in a continuous range, and there is a difficulty in 

how to interpret such values for protection tasks. 

Instead of using multilayer neural network, an idea is 

to apply neural network directly to the samples of volt-



ages and currents, and produce the fault type and zone 

classification in real time. The problem which impose 

special requirements on this task is the large number of 

training and testing patterns due to a variety of power 

network fault and no-fault events. Also, a large dimen-

sionality of patterns due to frequent taking of samples of 

3-phase voltages and currents in given data window may 

pose a problem. Consequently, a very large amount of 

data may be expected due to the specific nature of the 

process and selected classification task, which usually 

includes detection of the fault type and zone. To be able 

to produce the fault detection and classification in real 

time, a special type of neural network is used. 

2.2 The Structure of Used Neural Network 

This neural network does not have a typical prede-

termined layered structure but rather an adaptive and 

self-organized structure, typical for Adaptive Resonance 

Theory (ART) networks [8]. Network structure depends 

only on the characteristics and presentation order of the 

input data set. It is a clustering algorithm which allo-

cates input patterns into groups called clusters, depend-

ing on mutual similarity between the patterns. The clus-

ter centers are recognized as pattern prototypes. The 

algorithm, based on modified ISODATA clustering 

algorithm, discovers the most representative positions of 

prototypes in the pattern space [12]. Similarly to Self-

Organizing Maps (SOM) and Radial Basis Function 

(RBF) networks, the cluster (prototype) positions are 

dynamically updated during presentation of input pat-

terns [7,13]. But contrary to SOM, RBF and ISODATA, 

the initial number of clusters and their positions are not 

specified in advance. The training starts by forming the 

first cluster with only the first input pattern assigned. A 

new cluster is formed incrementally whenever a new 

pattern, dissimilar to all previously presented patterns, 

appears. Otherwise, the new pattern is allocated into 

cluster with the most similar patterns. Using presented 

technique, the on-line training due to non-stationary 

inputs may be easily implemented. The similarity be-

tween patterns is measured by calculating the Euclidean 

distance between their features (input vector compo-

nents). After training, the centers of self-organized clus-

ters represent typical prototypes of input patterns so that 

each pattern is assigned to a unique cluster. However, 

each cluster contains one or more similar input patterns. 

The cluster center (pattern prototype) represents the 

center of gravity of all patterns allocated to that cluster. 

A class symbolizes a group of clusters with a common 

characteristic (in this particular case a class is a specific 

type of fault in a specific zone of relay protection), and 

each cluster belongs to one of possible classes. The 

number of classes corresponds to the desired number of 

neural network outputs, determined by the given classi-

fication task. The neural network training consists usu-

ally of few hundreds of iterations with consecutively 

alternating unsupervised and supervised learning phases 

(Fig. 1). 
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Figure 1:  Neural Network Clustering Algorithm. 

2.3 Unsupervised Learning 

The initial data set, containing all the patterns, is 

firstly processed using unsupervised learning, applied as 

the clustering algorithm. During unsupervised learning, 

patterns are presented without their class labels. This 

procedure tries to identify characteristic (typical) pat-

terns or prototypes that can serve as cluster centers. The 

number of clusters is not specified, but a strong inter-

class distance measure is specified. It does not require 

either the initial guess of the number of cluster, or the 

initial cluster center coordinates. The outcome of unsu-

pervised learning is a stable family of clusters, defined 

as spheres in an n-dimensional space, where the space 

dimension is determined with the length of input vector 

(i.e. number of features). Unsupervised learning forms 

both "clean" (having patterns with the same class label) 

and "mixed" (having patterns with two or more class 

labels) clusters. It consists of the initialization and stabi-

lization phases. 

The initialization phase establishes initial cluster 

structure based on similarity between the patterns, and 

by presenting each pattern only ones. During stabiliza-

tion phase the clustering algorithm is reiterated many 

times until a stable cluster structure occurs when no 



pattern changes its cluster membership during the itera-

tions. 

2.4 Supervised Learning 

In the supervised learning the class label is associated 

with each data point (pattern). Supervised learning sepa-

rates "mixed" clusters from the "clean" ones. "Clean" 

clusters create a reference set of labeled clusters, be-

cause they are recognized as characteristic prototypes of 

presented input data set. Vigilance parameter is a tuning 

parameter and is being decreased after each iteration. It 

controls the number and size of generated clusters. The 

whole procedure, including unsupervised and supervised 

learning, is repeated many times until only "clean" clus-

ters exist. In this case the problem of convergence dur-

ing learning does not exist as in the standard supervised 

learning, because the learning is controlled by only one 

tuning parameter. 

One illustrative example of a reference set of clusters 

related to fault classification requirements of transmis-

sion line protective relaying is shown in Fig. 2. It relates 

to classification of fault type and fault location (zone of 

relay protection where fault has happened). It is signifi-

cantly simplified and given in only two dimensions. 

 

 

Figure 2:  Example of cluster structure established during 

training. 

2.5 Testing 

Test patterns are classified according to their similar-

ity to prototypes adopted during training. Classification 

is performed by applying the K-nearest neighbor classi-

fier (decision rule) to the cluster structure established 

during training [14]. Given a set of classified data, the 

K-nearest neighbor classifier determines the classifica-

tion of a new pattern based on the most represented 

class label amongst the K nearest clusters, retrieved 

from the cluster structure adopted during training. This 

classifier is efficiently implemented since the number of 

optimized prototypes is significantly smaller than the 

number of training patterns. Consequently, input pa-

rameter for algorithm testing is only the number which 

determines how many nearest neighbors have to be 

taken into account. The outcome of the testing is a class 

label assigned to each test pattern. Thus, output of this 

neural network is in the discrete form inherently reflect-

ing different types of faults common in protective relay-

ing. 

3 POWER NETWORK MODEL AND FAULT 

SCENARIOS 

 

A typical 345kV power system section, from Reliant 

Energy (RE) HL&P, was modeled for relay testing and 

simulation studies (Fig. 3). The modeling involved two 

major steps: first, obtaining reduced Thevenin equiva-

lent sources for all the boundary buses; second, detailed 

modeling of all the elements of the studied section 

(STP-SKY). The reduced network equivalent was ob-

tained by using the load flow and short circuit data, and 

verified using both the steady state and transient state 

results (recordings captured during actual fault events in 

the system). This reduced system is to be used for simu-

lation of various fault events and operating states. Ap-

propriate transient signals from this system will be util-

ized for performing evaluation and testing of the relay-

ing algorithm. 
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Figure 3:  RE HL&P STP-SKY Power Network Model. 

4 IMPLEMENTATION 

4.1 Simulation of Scenario Cases 

Model of the given power network is implemented in 

the Alternative Transient Program (ATP) program [15]. 

This model is used for simulating various fault scenarios 

on one of the transmission lines (STP-SKY), by varying 

fault parameters. Neural network based protection algo-

rithm takes voltage and current measurements from the 

SKY end of the line and has to be trained to recognize 

the characteristics of any fault on that line. The charac-

teristics include fault type and corresponding fault loca-

tion in either zone I or II of relay protection. Specially 

developed custom interface enables running simulations 

for a large number of different scenarios by changing 

network topologies and parameters. Current and voltage 

samples obtained through simulations are used for form-



ing training and testing patterns for the neural network 

algorithm design, implemented in MATLAB [16]. 

Scenarios for neural network training are generated 

by specifying several values for each of four fault pa-

rameters and combining such values to cover diversity 

of fault cases. Parameters used for generation of the 

training patterns are: all 11 types of fault (AG, BG, CG, 

AB, BC, CA, ABG, BCG, CAG, ABC, ABCG) and 

normal state; fault distances at 5 to 95 % of the line 

length in increments of 10%; fault resistance (for ground 

faults) of 0, 10, 20 Ohms; fault angle between 0 to 330 

degrees, in increments of 30 degrees. Total number of 

training patterns by combining all the parameters is 

2652. 

A set of test patterns for algorithm evaluation in pre-

viously unseen situations was generated by random 

setting of all fault parameters. Total number of testing 

patterns is 1000. 

4.2 Preprocessing of Neural Network Input Signals 

The example of the simulation output data for one 

specific case, phase-A-to-B-to-ground fault (ABG), is 

shown in Fig. 4. 

 

 

Figure 4:  Moving data window for voltage and current sam-

ples. 

Before the neural network training starts, certain pre-

processing of the network inputs is needed. Pattern ex-

traction from obtained measurements depends on several 

tuning parameters and they significantly determine qual-

ity of subsequent algorithm training. Phase current 

measurements are filtered by an analog filter and sam-

pled with desired sampling frequency. Each pattern is 

extracted from the samples obtained in a desired length 

of a moving data window, normalized, and arranged 

together to form a common vector with feature compo-

nents. 

The effect of selecting different data windows is illus-

trated in Fig. 5. for the window lengths of 0.5 and 1 

cycles (8.33 and 16.67 ms). Taking longer window in-

creases the number of features used for training, and 

gives better information about the signals. At the same 

time it means slower training and testing, and may cause 

difficulties in classifying the fault in real time. 

Sampling frequency has similar effect on forming the 

patterns as the data window does. Pattern feature vectors 

for sampling frequencies of 2 kHz and 4 kHz are shown 

in Fig. 5. Increased sampling frequency offers improved 

signal detection but also may cause significant computa-

tional burden. 

 

 

Figure 5:  Example of the patterns for different values of the 

data window and sampling frequency. 

The scaling ratio is a value used for multiplying only 

the voltage samples (during pattern extraction) to assign 

a higher or lower impact on the relay decision versus 

current samples. Using this value, the voltage contribu-

tion may be increased or decreased over the current 

contribution (Fig. 6). Optimal scaling ratio should be 

determined for each particular implementation whenever 

either the training set or classification task is changed. 

 



 

Figure 6:  Example of the patterns established using different 

scaling ratios for multiplying voltage samples. 

Parameters used for forming the patterns are: 3 phase 

voltages and currents selected as data source for train-

ing; second order analog Butterworth filter with selected 

crossover frequency of 1 kHz; time window for taking 

patterns of either 8.33 (1/2 cycles) or 16.67 ms (1 cy-

cle); sampling frequency of either 2 kHz (33 samples 

per cycle) or 4 kHz (66 samples per cycle). Features of 

the training patterns are extracted by using simulation 

data obtained in desired time windows. The selected 

values for data window and sampling frequency give 

four possible combinations with 96, 198 (two times) and 

396 components, as shown in Fig. 5. Also, data were 

normalized, and the same normalization factor has been 

used for normalizing the test patterns. 

There are 4 sets of training patterns, based on simula-

tion of the same cases. The waveforms are sampled with 

different sampling frequency and taken with different 

time length of the moving data window. 

5 SIMULATION RESULTS 

Training was performed for establishing the cluster 

structure capable of recognizing different types of fault 

(Normal, AG, BG, CG, AB/ABG, BC/BCG, CA/CAG, 

ABC/ABCG) and zones of fault (Normal, Zone I, Zone 

II). The boundary between the first and second zone is 

preset to be at 80% of the line length.  

After numerous iterations, the training procedures for 

each set of training patterns terminated with various 

number of clusters (prototypes). For each cluster struc-

ture the training was repeated several times until optimal 

scaling ratio between voltage and current samples is 

identified. The outcome of training is the cluster struc-

tures given in Tab. 1. 

 

patterns characteristic 

cluster 

structure 
data 

window 

(cycles) 

sampl. 

freq. 

(kHz) 

dimension 

(number of 

features) 

number of 

generated 

clusters 

classif. 

error 

[%] 

I 0.5 2.0 96 530 3.1 

II 0.5 4.0 198 534 2.3 

III 1.0 2.0 198 589 2.0 

IV 1.0 4.0 396 646 1.9 

 
Table 1:  Cluster structures as outcome of trained network for 

various values of data window and sampling frequency. 

Optimal value for parameter K is 1 in each imple-

mented case, hence the cluster identified as the nearest 

cluster always completely determines the classification 

of each test pattern. 

Classification results obviously show that the case 

with longer data window and higher sampling frequency 

(with 396 vectors) gives the lowest error. Increasing 

data window and sampling frequency enables better 

classification. The results are still very good for smaller 

data window and lower sampling frequency, which cor-

responds to commonly used frame for standard distance 

relaying. 

Propagation of classification error during testing for 

all cluster structures is shown in Fig. 7. In the beginning 

of testing, presented number of testing patterns is quite 

small and classification error considerably varies, but 

then slowly converges to the final stable value. 

 

 
 

Figure 7:  Propagation of classification error during testing. 

It can be observed that the proposed approach assures 

satisfactory detection of the fault type and zone, even for 

the short data window and low sampling frequency. This 

is the most important requirement for proper action 

when protecting the network against transmission line 

faults. 



6 CONCLUSION 

This study discusses neural network based protective 

relaying approach implemented as adaptive, self-

organized clustering algorithm based on combined use 

of unsupervised and supervised learning strategies. This 

algorithm guarantees well tuned pattern recognition 

capabilities for the prevailing operating conditions. 

An example of actual power network was modeled 

and used to simulate various fault events in the network. 

Neural network based clustering algorithm is used to 

form pattern prototypes (homogenous structure of clus-

ters representing various subsets of input data set) re-

lated to different events. Testing patterns are classified 

by combining the established cluster structure and K-

nearest neighbor classifier. 

The most important aspect of this research is to show 

how various preprocessing steps may influence the algo-

rithm classification capability. Conditioning of input 

signals, i.e. selecting the values for data window and 

sampling frequency for taking the patterns, play signifi-

cant role in the algorithm behavior during training and 

performance testing. Different aspects of these factors 

are illustrated through several examples. Furthermore, 

classification of the test patterns is analyzed through 

comparison of various cluster structures, generated 

through training, based on combination of different 

values for data window length and sampling frequency. 

Selecting longer data window and higher sampling fre-

quency gives better information about the signals, but 

produces slower training and testing. This may cause 

difficulties in classifying the fault in a real-time applica-

tion. Optimal scaling between voltage and current sam-

ples has also been applied in each particular case. 

Proposed tunings of the neural network algorithm 

may enable better selection of the most representative 

set of samples that forms a neural network input. Simu-

lation results show satisfactory behavior of the algorithm 

for each of the implemented cluster structures used in 

classifying the fault type and zone of the fault. 
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