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Abstract—This study evaluates the outage probability and 

electricity customer cost under the potential weather caused 

power blackouts. Risk assessment of the weather impact on 

customers is implemented and visualized in ArcGIS map. The 

methodology correlates the historical large power outage events 

with the corresponding weather condition of the time, uses 

weather forecast data to assess the risk for customers, and 

compares the results in different predicted weather conditions. 
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NOMENCLATURE 

CAIDI Customer Average Interruption Duration Index 

CDF Customer Damage Function 
CIC Customer Interruption Cost 

CS Customer Surveys 

ECOST Expected Interruption Cost Index 
EENS Expected Energy Not Supplied 

EO/C Ratio of Economic Output to Energy Consumption 

GEFS Global Ensemble Forecast System 
GFS Global Forecast System 

GIS Geographical Information System 

NAM North American Mesoscale 
NDFD National Digital Forecast Database 

SAIDI System Average Interruption Duration Index 

SAIFI System Average Interruption Frequency Index  
SVM Support Vector Machine 

I.  INTRODUCTION 

Severe weather conditions can cause damage to electricity 
delivery system and power infrastructures, leading to power 
interruptions to large number of customers. Studies indicate 
that estimated annual cost from storm-related outages to 
American economy is between $20-55 billion and the trend is 
still growing [1]. The historical blackout data from 2012 to 
2014 in Texas shows 33% of the historical outage events are 
caused by weather/ falling trees [2]. The Vermont study [3] 
analyzed 933 outage events from over 20 years and stated that 
about 44% of the events were related to different weather 
conditions. It also pointed out that some of the events are 
triggered by “multiple factors”. 

To reduce the storm-related outages, possible methods can 
be tree-trimming schedules, reliability-centered maintenance 
regulations, distributed generation support, grid redundancy 
improvement, underground cables construction, and mutual 
assistance agreement [1]. All these methods are for long-term 

purposes. In a short-term view, if the utilities are aware of an 
upcoming severe weather scenario and the estimated severity 
of the related customer impact, preventive measures can be 
deployed to mitigate the customer vulnerabilities ahead.  

There are two types of indices to measure reliability [4], 
load point reliability indices and system reliability indices 
which sum up all the load points. The most commonly used 
indices are SAIDI, CAIDI, SAIFI, and EENS. However, these 
indices consider only the outage parameters (restoration time, 
affected number of people, event frequency) and unsupplied 
energy which is the only customer parameter involved, and 
they calculate average values for a given time period, normally 
on either monthly or yearly basis. For the purpose of evaluating 
impact from a single event, CIC can be used. Brief summaries 
of the CIC estimation methods are provided in [5, 6]. The most 
common assessment is through CS [7], which are the most 
proper tools for individual customers. In most cases customers 
cannot comprehensively estimate their loss, and it takes a long 
time and requires prohibitively high cost to do that. Economists 
prefer the EO/C in terms of national economic impact [8]. The 
amalgamated CS [9] and mapped CS methods [10] are used to 
save expense and time by utilizing the existing survey results. 
Post-event analysis of blackout impact that already happened is 
used in [11]. The issue with this is the limitation of the 
geographic area, duration and characteristics of the analyzed 
outages, which were usually in urban area with high population 
density. Customers’ economic losses can be expressed by CDF 
[12, 13]. ECOST, one of the reliability indices described in [4], 
requires the output from CDF. CIC indices are often grouped 
based on outage durations and customer types. Tracking 
weather conditions in real-time reveals quite different influence 
to various customer categories not considered before such as 
the health impact and the inconvenient transportation impact. 
This paper looks at variety of weather factors and evaluates the 
probability of blackouts and the corresponding customer 
financial and health impact under the forecasted weather 
conditions. It then develops the risk assessment of the weather-
related outage impact on different customer categories. 

 This paper is organized as follows: Section II describes the 
weather data and its impacts. Section III describes the weather-
driven risk model. In Section IV, data processing and 
integration is described. Case study is presented in Section V 
and Section VI summarizes the conclusions. 

This effort was funded by NSF CURENT ERC and contracted through 
University of Tennessee under the project titled “The Use of Big Data for 

Outage Management in Distribution Systems”. 
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II. WEATHER IMPACTS 

A. Weather Data 

Two types of weather data are of interest in this paper: i) 
historical weather data used for training of prediction model, 
and ii) weather forecast data used for real time decision-
making. 

Historical weather data can be extracted from land-based 
station data, radar or satellite data, [14]. In this paper the land-
based station data has been used. In case of land-based stations 
the interpolation techniques need to be applied in order to 
provide wide-area weather conditions that can be mapped using 
GIS software such as ESRI ArcGIS, [15].  

When it comes to weather forecast data, there are several 
services that provide data such as NDFD [16] that provides 
short- and long-term weather prediction for variety of weather 
parameters. These services make weather predictions using one 
of numerical models such as GEFS, GFS, NAM, etc. [17].  

Weather parameters that are of great interest for analyzing 
power system outages are: temperature; precipitation; 
humidity; wind characteristics; storm, hail, and severe wind 
probabilities; lightning characteristics and frequency maps, etc. 

B. Weather Impact on Outages  

Weather impact on outages in power systems can be 
classified into two groups: 

 Direct impact to utility assets: This type of impact 
includes all the situations where severe weather 
conditions directly caused the component to fail. 
Examples are: lightning strikes to the utility assets, 
wind impact making trees or tree branches come in 
contact with lines, etc. In this case the outage occurs 
during the time of impact. When post fault analysis is 
performed these types of outages are marked as 
weather caused outages. 

 Indirect impact to utility assets: This type of impact 
accrues when weather didn’t directly cause the outage 
but instead created the situation in the network that 
indirectly caused the component to fail. Examples are: 
hot weather conditions increasing the demand thus 
causing the overload of the lines, exposure of assets to 
long term weather impacts causing component 
deterioration, etc. In this case the outage can occur 
after the time of impact. In post-fault analysis this type 
of outages are marked as equipment failure.  

Focus of this paper is direct impact of weather to utility 
assets. Thus, when analyzing outage data only group of data 
marked as weather causing outages has been used. 

C. Weather Impact on Customers Under Outage 

Power supply interruption can bring extensive cost to 
customers in the way of spoiling the perishable materials/food, 
damaging equipment, causing production loss, income loss, 
health impact, and extra expenses [5]. Severe weather 
conditions can deteriorate the impact by the change of 
temperature (either heatwave or cold front), unusual humidity, 
heavy precipitation, high wind, poor visibilities, etc. For indoor 
customers, temperature and humidity will be the main factors.  

Once the weather condition is out of human’s comfort range, it 
may lead to extensive health issues, especially for people with 
injury or illness. For the patients who are extremely dependent 
on the health appliances such as infusions or respirators which 
require electric power to operate, the outage may cause very 
serious health problems and it can be deadly even with only a 
few hours of outage in many cases. Appliances as simple as 
heaters or fans can also result in health issues when they are 
not working. Strokes can be triggered in a freezing house in 
winter or a sweltering house at peak summer without any air 
condition. The same applies to those requiring certain 
condition to survive, such as tropical plants or pets. Besides the 
personal health, safety issues may also arise by the increased 
robbery rate due to the non-operating street lights and security 
system. [18] 

The extent of the weather impact on different customer 
categories varies. Residential customers may not be affected by 
wind or rain if they stay inside, while the thunderstorm may 
ruin the uncovered crops or damage the outdoor equipment for 
some industries.  Commercial stores may lose business due to 
the inconvenient transportation caused by poor weather. The 
same impact also applies to the product transport for industries 
and patient transfer for health centers, etc. Property loss and 
business interruptions are usually considered when estimating 
the customer impact, because such losses are obvious and easy 
to be quantified. While it is difficult to evaluate the health 
impact on the customers, it cannot be neglected. It would be 
helpful to design a methodology for calculation and estimate 
the possible customer financial and health loss under outage 
caused by unusual weather factors and quantify it as an 
impending event risk value [19]. The results can be used by the 
utilities as a reference of how serious the customer may have to 
suffer from the upcoming event and whether certain mitigation 
measures are necessary to avoid the loss.  

III. CUSTOMER IMPACT RISK ANALYSIS 

The risk assessment framework is formulated and defined 
as follows, [20]: 

R = P[T] · P[C|T] · u(C)                              (1) 

where R is the State of Risk of the customer impact from the 
upcoming weather conditions, Hazard P[T] is the probability 
of a Threat intensity T (i.e. a certain weather scenario that may 
cause power outage), Vulnerability P[C|T] is the probability of 
blackout in case hazardous weather conditions have occurred, 
and Worth of Loss u(C) is an estimate of customer interruption 
losses in case of the power outage [21]. Simplified description 
of Risk assessment is presented in Fig. 1.  

A. Hazard 

Hazard assessment is done solely based on weather data. 
This factor describes how likely certain weather conditions will 
occur in the area. The following weather parameters are 

 

Fig. 1: Risk analysis for customer impact 
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observed: temperature, humidity, precipitation, and wind 
speed. The weather conditions have been classified in several 
groups based on values of the listed parameters. Then hazard 
probability has been assigned to each of these groups based on 
weather forecast data.  

B. Vulnerability 

Vulnerability analysis uses historical outage and weather 
data to predict what is the probability of a blackout in case of 
predicted weather. The SVM has been used for prediction. The 
SVM function classifies the data into two classes, while 
minimizing the classification error. The training data D can be 
described as: 

 𝐷 = {(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑝, 𝑦𝑖 ∈ {−1,1}}𝑖=1
𝑛          (2) 

where labels are classified into two classes: one for situations 
where weather conditions did cause a blackout (yi = 1) and one 
for situation where they did not cause a blackout (yi = -1). The 
xi is the p-dimensional real vector containing observed weather 
parameters, and n is the number of training points. 

The decision boundary is: 

𝑔(𝑥) = 〈𝑎, 𝑥〉 + b                               (3) 

Problem of maximizing the margin of separation between 
two classes (selecting a and b) can be described as quadratic 
programming (QP) optimization: 

Φ(𝑎, 𝜉) = min {
1

2
‖𝑎‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

}                 (4) 

where ξi are non-negative slack variables. All samples are 
placed on or outside the margin as: 

𝑦𝑖  (〈𝑎, 𝑥𝑖〉 + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝑖 = 1, … , 𝑛 

C. Loss 

In terms of the duration and cause of the failure, power 
interruptions can be classified into three types:  momentary, 
sporadic and chronic interruptions [22]. The cause of chronic 
interruptions is generally load shedding, while momentary ones 
are due to switching actions. Sporadic interruptions are mainly 
caused by severe weather condition which tends to last longer, 
affect larger number of customers, cause longer restoration 
time due to the affected transportation or unavailable resources 
and finally lead to high financial impacts. 

Among the existing CIC estimation methods, most of the 
results give the loss indices reflecting unsupplied energy, 
which are classified by types of customers (residential, 
small/large industrial & commercial, agricultural, etc.). Some 
methods provide indices based on different outage duration 
[10]. Some of the customer filling surveys differentiated the 
questions for winter days and summer days, but the statistical 
final indices only show the average values since they are 
evaluating the reliability on a yearly basis [7, 23-24]. This 
study considers important customer categories, i.e. health care 
centers, schools, fire stations.   

CIC is closely related to the degree of customers’ 
dependence on electricity supply [5], thus it was formulated to 
be a function of outage parameters and customer features. To 

estimate the customer loss from a weather-related power 
failure, the formula needs to be improved to consider the 
additional financial loss and health effect caused by the 
weather elements, in addition to the previous economic value 
for EENS. The improved formula is as follows.  

𝐿𝑜𝑠𝑠𝑡,𝐻𝐴 = 𝐶𝐷𝐹𝑡,𝐻𝐴(𝑑𝑟, 𝑠, 𝑑, 𝑤, 𝑐𝑓) + 

𝐸𝐿𝑡,𝐻𝐴(𝐸𝐹, 𝑐𝑓, 𝑑𝑟 ) + 𝐻𝐿𝑡,𝐻𝐴(𝐸𝐹, 𝑐𝑓)        (5) 

where the estimated Loss at target time t for each hazard area 
HA includes three monetary terms: existing CDF, additional 
economic loss EL caused by unusual environmental features 
EF, and health loss HL under outage. EF includes all the 
weather elements that may influence the customer cost, 
including temperature tp, humidity hu, storm type st, wind 
speed ws, precipitation pr, and others ot. Once t is targeted, 
season s, time of a day d, day of a week w are given. HA is 
determined by the forecasted weather. The interruption 
duration dr can be statistically estimated based on the historical 
blackout event data and the forecasted weather condition. 
Customer features cf comprise customer type, number of 
people, time schedule at t, presence of interruption-sensitive 
equipment and back-up equipment or generators, etc [25-26].  

Specifically, the three terms in (5) are defined respectively:   

𝐶𝐷𝐹𝑡,𝐻𝐴 = ∑ 𝐶𝐿𝑙𝑝(𝑑𝑟, 𝑠, 𝑑, 𝑤, 𝑐𝑓) · 𝐸𝐸𝑁𝑆𝑡
𝑙𝑝𝐿

𝑙𝑝=1
𝑙𝑝𝜖𝐻𝐴

          (6)  

 𝑜𝑟                𝐶𝐷𝐹𝑡,𝐻𝐴 = ∑ 𝐶𝐸𝑑,𝑠,𝑑𝑦,𝑤,𝑐𝑐
𝑙𝑝

𝐿

𝑙𝑝=1
𝑙𝑝𝜖𝐻𝐴

                       (7) 

At load point lp, CL represents the interruption cost per 
kWh ($/kWh) while CE represents the interruption cost per 
event. L is the total customer number based on the size of each 
hazard area. EENS can be reliably predicted if based on smart 
meter measurement. According to the data availability and 
accuracy, either (6) or (7) can be chosen to estimate CDF.  

𝐸𝐿𝑡,𝐻𝐴 = ∑ {𝐴𝐶𝐿𝑙𝑝(𝑑𝑟, 𝑠, 𝑑, 𝑤, 𝑐𝑓) · 𝐿
𝑙𝑝=1

𝑙𝑝𝜖𝐻𝐴

𝐴𝐸𝐸𝐹,𝑡
𝑙𝑝

+ 𝑂𝐸𝐹,𝑡
𝑙𝑝

}   (8)  

where ACL is the interruption cost for additional unsupplied 
energy AE for each lp and O represents other financial losses 
caused by weather, i.e. spoiled food/material, damaged 
equipment, production loss. These can be estimated based on 
the type and severity of the forecasted bad weather condition. 

𝐻𝐿𝑡,𝐻𝐴 = ∑ 𝑓𝑐𝑓
𝑙𝑝(𝐸𝐹)𝐿

𝑙𝑝=1
𝑙𝑝𝜖𝐻𝐴

                           (9) 

where f is the function to calculate the health cost for each lp in 
terms of the cf.  The function can be expressed as follows.  

𝑓𝑐𝑓
𝑙𝑝

= 𝑐𝑠𝑙𝑝 · 𝑒𝑐𝑐𝑡 · [𝛼𝑐𝑡 · |𝑡𝑝 − 𝑡𝑝𝑠| + 𝛽𝑐𝑡 · |ℎ𝑢 − ℎ𝑢𝑠| + 𝛾𝑐𝑡

· 𝑔(𝑠𝑡) + 𝛿𝑐𝑡 · |𝑤𝑠 − 𝑤𝑠𝑠| + 휀𝑐𝑡

· |𝑝𝑟 − 𝑝𝑟𝑠| + 𝜃𝑐𝑡 · 𝑘(𝑜𝑡)]                  (10) 

where 𝛼𝑐𝑡 , 𝛽𝑐𝑡 , 𝛾𝑐𝑡 , 𝛿𝑐𝑡 , 휀𝑐𝑡 , 𝜃𝑐𝑡  are the weight coefficients to 
express the impact of each weather element on the customer 
type ct. cs is the customer size at lp, and ec is the equivalent 
economic cost of health impact based on the medical cost 
standard. The value with a superscript s indicate the threshold 
of the parameter’s normal range there. Since storm type is not a 
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quantitative value, functions g and k are used to present the 
corresponding impact. All the coefficients can be set by 
utilities in their geographic and climate circumstances.  

IV. SPATIO-TEMPORAL DATA INTEGRATION  

In Fig. 2 processing steps for risk analysis are shown. The 
following data layers have been used as input data: electric 
network GIS data, weather data, customer type data, population 
count, and historical outage data.  

As part of preprocessing in Fig. 2, all historical and static 
data are analyzed in order to provide training datasets for the 
prediction model. Here historical outage data is used to select 
time instances of interest. Then weather parameters are selected 
for those times. Static maps such as population count, customer 
distribution and points of interest are used to calculate what the 
associated losses for observed outages are. It is to be 
understood that this data is changing over time, but since the 
change and data availability comes once in every few years, it 
is considered static in this study, compared to weather data 
which may change every few minutes to every few hours.  

As part of the real-time analysis in Fig. 2, weather forecast 
data obtained from NDFD is downloaded every three hours. 
This data is then overlaid with network data and static 
customer data. The risk model uses training data and weather 

forecast data to evaluate the risk for customers in case of 
weather conditions predicted by weather forecast.  

V. CASE STUDY 

A. Test Scenario  

The case study is implemented in Harris county using part 
of the network that is operated by CenterPoint Energy [27]. 
The historical blackout data has been collected from [2] (data 
from 2012/1/1 to 2014/12/31), correlated with historical 
weather conditions obtained from [14] and geo-located in the 
GIS map. The customer information such as population 
distribution [25], customer category, facility locations [26], is 
gathered and visualized in the same map. The forecasted 
weather data from NDFD [16] has been used. For comparison 
purpose, two case studies are implemented, one with normal 
weather scenario (scenario 1) and one with severe weather 
scenario (scenario 2). The network is split into small polygon 
areas grouped with the same hazard value based on the 
forecasted weather distribution scenario. The customer data in 
each area is analyzed and imported to the customer cost model, 
together with the historical outage data and forecasted weather 
data. Fig. 3 shows the hazard distribution map in scenario 2 
with the points indicating the historical outage locations. Partial 
historical outage data is stated in Table. 1. In Fig. 4, the 
population distribution is presented as colors and health care 
locations are shown as points. They are both under scenario 2. 
Based on the risk assessment theory, the corresponding risk 
index values are calculated and demonstrated in the GIS map.  

B. Study Results 

The severity of the risk is indicated by using successive 

colors from green to red in Fig. 5 where a) shows the results 

under scenario 1 and b) under scenario 2. Percentages are used 

to present the value of risk indices, where the maximum value 

in scenario 2 is regarded as the denominator. The utilities can 

define the denominator based on their standard of risk 

acceptance. According to the resulting map, utilities can make 

decisions on whether it is necessary to send pre-warning 

notifications to their customers or if just mitigation actions can 

be taken to avoid such potential customer loss. In most cases, 

the customer impact can be tremendously decreased if a 

possible power outage is pre-notified, instead of a sudden 

unexpected power interruption.  

The SVM had a success rate of 72%. For the remaining 

28% of test cases: 25% were classified into the outage group, 

however there was no significant blackout during these events; 

and 3% of total test cases were wrongfully classified as not 

leading to a blackout. The prediction model used in the study 

seems to be well suitable for this application. It is to be noted 

that main concern should be with cases where blackout 

 
Fig. 3: The hazard distribution map 

 
Fig. 4: Population distribution map 

TABLE I.  PARTIAL HISTORICAL OUTAGE EVENTS IN AREA 4 

Date Begin Time Duration Affected people Event 

1/9/2012 10:07 70 min 19716 Flash Flood 

8/16/2013 16:57 110 min 103000 
Thunderstorm 

Wind 

8/1/2014 4:00 55 min 26000 Flash Flood 

 

 
Fig. 2: Spatial integration – processing steps 
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happened but was not predicted by the model, and these cases 

were only 3% of total test cases. 

VI. CONCLUSION  

The contribution of this study lies in the risk assessment 
methodology that estimates the impact of weather parameters 
on hazard, weather-caused outage vulnerability and weather-
related customer losses. More specifically:  

 The historical blackout events and the corresponding 
historical weather conditions are used to train a 
Support Vector Machine that predicts if future weather 
conditions will cause an outage.  

 Weather factors are considered in the evaluation of 
Customer Interruption Cost for different customer 
categories and it is shown that the impact of different 
weather factors varies based on customer categories.  

 It is shown that the distribution system operators can 
benefit from the customer risk assessment results by 
being aware of the impending risk allowing them to 
take preventive countermeasures to avoid potential 
customer losses. 

 It is also shown that the utility customers can benefit 
from the customer risk assessment results by being pre-
warned of the potential blackout and being provided 
the time to make preparedness plans to mitigate their 
loss. 
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a) 

  
b) 

Fig 5: Risk maps for: a) normal weather conditions, b) severe weather 

conditions 
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