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Abstract--This paper presents an overview of resource 

optimization approach for transmission system maintenance 
selection and scheduling. The approach is based on failure rate 
estimation and risk reduction calculation followed by resource 
optimization. It also presents probabilistic models developed for 
circuit breakers and power transformers. An effort is made to 
quantify the effect of maintenance using the circuit breaker 
monitor’s data.  
 

Index Terms--Condition data, maintenance, optimization, 
power system, reliability, risk, security, transmission equipment 

I.  BACKGROUND 
REQUENTLY used maintenance strategies are reviewed 
and reported in [1].  They range from scheduled 

maintenance to reliability-centered maintenance (RCM) and 
condition based maintenance (CBM). Industry is slowly 
moving from scheduled maintenance to ‘maintenance as 
needed’. This leads to the development of probabilistic 
maintenance models which help in optimizing the 
maintenance intervals and hence it is possible to quantify the 
effect of maintenance on reliability [2]. They allow modeling 
the component deterioration process and linking them to the 
condition of the device [3].  These models are further 
developed for circuit breakers and transformers with objective 
being Mean Time to First Failure (MTTFF), failure 
probability and cost analysis [4]-[7]. Reliability analysis and 
risk analyses often demand the effect of maintenance 
especially for devices like circuit breakers and power 
transformers. Quantifying maintenance is necessary to see the 
effect on reliability and it demands estimation of failure rates. 
A clear understanding of failure modes of components is 
necessary to develop failure rate estimation models [8]-[10]. 
 The paper starts with discussion of proposed probabilistic 
maintenance models for both circuit breakers and 
transformers. Sensitivity analysis of model parameters at each 
stage is carried and the results are corroborated with that of an 
equivalent mathematical model. Various approaches for 
failure rate estimation are discussed. Circuit breaker failure 
rate estimation model is proposed which utilizes the control 
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circuit data. The paper ends with a discussion of resource 
optimization approach for transmission system maintenance 
selection and scheduling [11]. 

II.  COMPONENT ANALYSIS FOR LONG TERM MAINTENANCE 
SCHEDULING 

Long term maintenance scheduling is based on individual 
component performance and the objective is to maximize the 
residual life of equipments. The output is just recommended 
maintenance/inspection interval (usually in the unit of year) 
for components and it does not consider the network 
constraints and load trajectory. This is because for the long-
term time frame, it is difficult to get accurate forecast on 
network model and loading conditions. There are multiple 
constraints which will affect the result of maintenance 
scheduling such as budget, labor, feasible time and many 
other factors. Also, the utility companies must consider the 
load variation during the maintenance time period, in the 
reason of maintaining system reliability. This information will 
be used in transmission maintenance scheduling.  

 

 
Fig.1 Probabilistic maintenance model of circuit breaker 
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A.  Probabilistic Maintenance Model  
Probabilistic maintenance models are proposed utilizing the 

concept of device-of-stages for both circuit breakers and 
transformers [4]-[5]. Fig. 1 shows the maintenance model for 
circuit breaker. The deterioration process is represented by 
three stages. At each stage, inspection test is implemented to 
determine the component condition during investigation 
process. Depending upon the maintenance action taken, the 
subsequent condition of the components will be determined.  

B.  Sensitivity Analysis of Model parameters 
Table I shows the list and definition of parameters that are 

used in the circuit breaker maintenance model [7]. The 
probabilities in model parameter 3 can be treated as equivalent 
transition rates from one stage to others. The equivalent model 
is introduced to clarify this point later. Parameters 1 and 3 can 
be approximated from the historical data of a physical circuit 
breaker condition [3]. Whereas, parameter 2, which is the 
inspection rate of each stage can be varied to achieve high 
reliability with minimum cost. Therefore, this parameter is of 
the most concern in the analysis. The analysis covers two 
aspects: probability of failure and all associated costs (failure 
cost, maintenance cost and total cost). Model parameters used 
in simulation and the results from MATLAB are listed in [7]. 
Fig. 2 and 3 show probability of failure and total cost analysis 
with respect to the inspection rate of stage 3. Results suggest 
that small inspection rate of stage 1 and high inspection rate of 
stage 2 and stage 3 will lead to cost effective maintenance. 
Readers are advised to go through the mentioned references 
for full discussion of results. 

C.  Equivalent Mathematical Model 
In order to check the validity of the maintenance model 

presented in Fig. 1, it is necessary to introduce an equivalent 
mathematical model. Fig. 4 shows the equivalent model with 3 
discrete stages representing the deterioration process of the 
breaker. Assume that maintenance is implemented at every 
inspection, maintenance and inspection rate of each stage is 
considered to be an equivalent repair rate. 
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Fig. 2: Failure probability vs. Inspection rate of stage 3 
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Fig. 3: Total annual cost vs. Inspection rate of stage 3 
 

 
  
Let D1: stage 1  
       D2: stage 2, minor deterioration 
  D3: stage 3, major deterioration TABLE I 
  F: failure stage LIST OF MODEL PARAMETERS AND DEFINITIONS [7] 
     = mean time in stage 1 (year) 1yModel 

parameters Definition 
  = mean time in stage 2 (year) 2yIt is defined as mean time the device spends in each 

stage. The inverse of the mean time is the transition 
rate of the corresponding stage in the deterioration 
process. 

1. Mean time in 
each stage 

  = mean time in stage 3 (year) 3y
  21μ = repair rate from stage 2 to 1 (/year) 

2. Inspection 
rate of each 
stage 

It is defined as the rate at which the inspection is 
done. The inspection may be followed by the 
maintenance. 

  32μ = repair rate from stage 3 to 2 (/year) 
  31μ = repair rate from stage 3 to 1 (/year) 

These parameters are the probabilities of transition 
from one state to others. These probabilities include:     Fμ = repair rate (/year). 
• The breaker conditions after the inspection 

process 
• Transfer from any breaker condition to a given 

stage 

3. Probabilities 
of transition 
from one 
state to others 

 
Transition rate from stage 1 to 3 ( 13λ ) is introduced to 

describe an imperfect inspection of stage 1. This accounts for 
the probability that inspection of stage 1 might cause the 
system to transit to stage 3.  The mathematical analysis is 

• Basic maintenance or replacement 
• Transferring to each stage after the maintenance 



 3

based on steady state probability calculations and the 
equations will be used to verify the simulation results 
presented in previous section. The analyses cover both the 
probability of failure and cost analysis. Detailed mathematical 
equations and analysis can be found in [5] and [7].  

 
 
 

 
Fig. 4: Equivalent mathematical model 

 

III.  QUANTIFICATION OF MAINTENANCE 
Both circuit breakers and power transformers and are 

critical and capital intensive asset within a power system. Due 
to the limited capital investment for new facilities, many 
breakers and transformers are close to or beyond their 
designed life. As these components age beyond their expected 
life, there is a risk of an increasing number of catastrophic 
failures. There is a great deal of focus on maintenance and life 
extension of aged circuit breakers and transformers to 
maximize the return on investments. This naturally leads to 
the use of reliability centered maintenance (RCM) approach 
where equipments with higher failure probabilities are given 
higher priority in maintenance. Thus failure probability 
estimation of equipment is required in maintenance asset 
management. Hazard function model and Markov model are 
widely used in quantifying the effect of maintenance by 
estimating failure rates of transmission equipment. These 
methods demand a clear understanding of relation between 
various failure modes and corresponding maintenance tasks 
[4]-[6] and [13].  

A conceptual description of the deterioration process is 
effectively communicated using the hazard function. Consider 
the hazard function for a typical transmission equipment 
failure mode as shown in Fig. 5. In Fig 5 we observe that there 
are 4 deterioration levels corresponding to four different 
failure rate areas. Consider that the effect of a maintenance 
task could be to move the deterioration level from 3 to 1. The 
benefits from doing so are quantified in two ways: the failure 
probability is lowered by Δp, and the life is extended by Δt. 
The relative magnitudes of these two benefits depend on 
where the component is on the curve when the maintenance is 
performed. If the component is far to the right, then Δp/Δt is 
large. If the component is far to the left, Δp/Δt is small.  
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Fig. 5: Hazard function and maintenance induced contingency probability Δp 
[11] 

 
The Markov model adapted from [3] is further developed 

to compute failure rates from condition measurements [11]. 
The model, together with its development procedure, is 
illustrated in Fig. 6. Three steps in implementing the approach 
are: (1) obtain the deterioration function g(x), (2) perform the 
statistical processing necessary to estimate the transition 
intensities, and (3) use the model to calculate failure 
probability.  
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Fig. 6: Computing contingency probability reductions [11] 

 
A detailed discussion of the model is reported in [11].  The 

main features of this approach are described in what follows 
[12]. 

(a) Deterioration function: The deterioration function, 
denoted by g(ck), may be an analytical expression if one is 
available or it may be a set of rules encoded as a program, 
consisting of a nested set of if-then statements that returns a 
scalar assessment value. 

(b) Transition intensities: The transition intensities between 
the various states of the model can be obtained from life-
histories of multiple units of the same manufacturer and 
model. In the case of Fig. 6, λ12, λ23, and λ34 are computed. 

(c) Desired failure probability: For a particular set of 
transition intensities, the transition probability matrix for the 
model can be calculated using steady state probability 
calculations. The expected time to failure is captured by 
computing the first passage times [14]-[15]. An illustration of 
the whole process on a practical system is presented in [11]. 
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IV.  ESTIMATE OF CB MAINTENANCE INTERVALS USING DATA 
FROM CB MONITORS (CBMS) 

Quantifying the effect of maintenance is a challenging task 
for reliability engineers. It is not easy to see the effect of 
maintenance, especially with equipment like circuit breaker 
which rarely operates. This section discus the possibilities of 
utilizing circuit breaker control circuit data in evaluating the 
effect of maintenance and in estimating the failure rate as 
well. The idea is to first develop a procedure to relate the 
control circuit data to the health of the breaker in terms of 
different condition levels. Having these condition levels and a 
history of data as inputs, a Markov model will be developed to 
estimate the failure rate of the breaker. The proposed concept 
is at its early stages and needs further research. Fig. 7 shows 
the proposed failure rate estimation model which utilizes both 
Bayesian approach and Markov model concepts. In this paper, 
an attempt is made to apply the Bayesian technique to update 
the parameter distributions. 

 
Fig. 7: Proposed failure rate estimation model of CB 
 

Control circuit data is basically a record of wave forms 
taken from the circuit breaker control circuit by using a 
portable [16] or on-line recorder [17] and respectively 
manually or automatically forcing an operation. Signal 
processing and expert system modules developed in [18] can 
be used to extract the various features of waveforms. A 
maximum of ten such features, also called as events, and 
corresponding signal parameters are defined in Table II [19]. 
Fig. 8 shows typical record of waveforms taken during the 
closing operation of circuit breaker.  

A history of each signal parameter is developed using the 
waveforms taken from control circuit over a period of time, 
and is listed in appendix. The records are taken on a group of 
circuit breakers of same manufacturer. Of these ten parameters 
(T1-T10), only a few are considered (T2-T6) for now because 
of their relative importance and for the ease of analysis. The 
idea is to see how the estimates of these parameters change as 
the new data come. Following subsections present the 
problem formulation and implementation followed by a brief 
discussion on how to make use of the simulation results in 
evaluating the effect of maintenance. 

 

 

 
 

Fig. 8:  Event features for a circuit breaker closing operation [19] 

A.  Bayesian Approach to Update the Parameter Distribution 
Assume that Y1-Y5 represents the signal parameters T2-T6 

under consideration. Let yij is the jth observation of ith variable 
and ‘n’ is the sample size, 

 ~    (1) ijy 4,3,2,1,),,( 2 =∀ ijN ii σμ

where iμ and are sample mean and variance of variables 
Y1, Y2, Y3 and Y4 respectively. Since there is a linear 
relationship between Y4 and Y5, Y5 is expressed as, 

2
iσ

 jyy jjj ∀++= ,54105 εββ  (2) 

  ~  (3) jy5 ),,( 2
5410 σββ jyN +

where is the error variance and, 2
5σ 0β and 1β are constants. 

The parameter set of the problem is,  

        (4) ],,,,,,,,,,[ 10
2
5

2
4

2
3

2
2

2
14321 ββσσσσσμμμμ=Θ

Assuming non informative prior for all and uniform 
prior for all other parameters, the prior distribution is, 

2
iσ

 ∏
=

∝
5

1
2

1)(
i i

p
σ

θ  (5) 

History of control circuit 
signals 

Extract signal parameters 
(T1-T10) and fit 

distribution to each 
parameter 

Markov Model to compute 
failure probabilities 

Bayesian updating 
technique to update each 
parameter’s distribution 

individually 

Monitored 
control circuit 

data

Find the condition of 
breaker using parameter 

distributions 

TABLE II 
WAVEFORM ABNORMALITIES AND SIGNAL PARAMETERS [19] 

EVENT EVENT DECRIPTION SIGNAL 
Trip or close operation is initiated (Trip 
or close initiate signal changes from 
LOW to HIGH) 

1 T1 
 

Coil current picks up T2 2 
Coil current dips after saturation T3 3 
Coil current drops off T4 4 
B contact breaks or makes (a change of 
status from LOW to HIGH or vice versa) 

5 T5 

A contact breaks or makes T6 6 
Phase currents breaks or makes T7 7 
X coil current picks up T8 8 
X coil current drops off T9 9 
Y coil current picks up 10 T10 
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The likelihood function is, 
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where ‘n’ is the sample size. The joint posterior distribution is 
given as, 
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B.  Implementation and Results 
It is difficult to compute the normalizing constant that 

makes the above posterior distribution a density. Hence, 
Markov Chain Monte Carlo (MCMC) technique is used to 
estimate the posterior distribution of the parameters. MCMC 
using Gibbs sampler is implemented as it is easy to obtain 
conditional and marginal distributions for this particular 
normal distribution [20]. The above mentioned procedure is 
implemented in MATLAB. Mixing of Markov chains and 
kernel density are plotted for each parameter. For the purpose 
of understanding, plots of selected parameters are shown in 
Figs. 10 and 11. It can be seen that the Markov chains mixed 
very well and the kernel density is almost normally 
distributed. 

Table III shows the 95% Highest Posterior Density (HPD) 
region for all the parameters under consideration. It means 
that the sample values of the parameters fall under this 
interval with a probability of 0.95. As the new data comes, it 
is possible to update the parameter distributions using the 
Bayesian approach described above. One way to see the effect 
of maintenance is to compare the hazard rates of each 
individual parameter before and after maintenance. Any 
difference at a particular instant is the direct result of 
maintenance. However more research is needed towards 
relating these individual parameter distributions (or hazard 
rates) to the health of the breaker interns of condition levels. 
Currently we are exploring various possibilities in this regard. 

 
Fig. 9: Mixing and Kernel density plots of parameter 3μ  
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V.  RISK-BASED RESOURCE OPTIMIZATION 
This section briefly discusses the developed resource 

optimization approach for transmission system maintenance 
selection and scheduling that is based on the cumulative long-
term risk caused by failure of each piece of equipment [11], [ 
12]. The approach has three steps: 1) long-term simulation 
with risk-based security assessment performed at each hour, 
2) risk reduction calculation, and 3) optimal selection and 
scheduling, illustrated in Fig. 11. Here, the long-term 
sequential simulator, when integrated with hourly risk-based 
security assessment capability, provides year-long hourly risk 
variation for each contingency of interest. The risk-based 
security assessment performs a contingency analysis for each 
hour using power-flow analysis for overload, cascading 
overload, and low voltage, and continuation power flow for 
voltage instability analysis.  

The year-long hourly risk variation, when combined with a 
set of proposed maintenance activities and corresponding 
contingency probability reductions, yields cumulative-over-
time risk reduction associated with each maintenance activity 
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and associated possible start times. This cumulative risk-
reduction captures, cumulatively over the next year (or more), 
the extent that failure of the component will adversely affect 
the system or other components in the system. Then, step 3) is 
an optimization whereby we select a number of task-time 
options subject to the constraints on feasible-times, total cost, 
and labor, with the objective to maximize the cumulative-
over-time risk reduction. 
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Fig. 11: Overview of developed process for maintenance selection/scheduling 
[11], [12] 

 
As indicated in Fig. 11, the simulator is first run to 

compute risk as a function of time for each hour over a long-
term such as a year and then the risk reduction associated with 
each proposed maintenance task is computed. This results in 
triplets comprised of: {maintenance task, task duration, risk 
reduction}. These triplets serve as input to the optimizer. An 
optimization problem constrained by a cost budget has been 
developed and its application to a practical system is discussed 
in [11], [12].  

VI.  CONCLUSION 
Probabilistic maintenance models find their importance in 

long-term planning and allocation of resources over the life 
time of transmission equipment such as circuit breakers and 
power transformers. Reliability and risk analyses demand 
estimation of failure rates of components. Risk-based resource 
optimization for transmission system maintenance selection 
and scheduling is developed. It is illustrated with the case of 
circuit breaker condition based monitoring.  
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