
 1 

 

Abstract—This paper introduces an application of the 

Gaussian Conditional Random Fields (GCRF) model for 

forecasting the solar power in electricity grids. The introduced 

forecasting technique is capable of modeling both the spatial and 

temporal correlations of various solar generation stations. It will 

be demonstrated in this paper how the suggested solution can 

significantly improve the forecast accuracy compared to the 

conventional forecasting models such as the persistent (PSS) 

model and the autoregressive with exogenous input (ARX) model. 

Besides, the GCRF model outperforms the other two models 

under the scenarios with unavailable or missing data. The 

suggested probabilistic model of the GCRF can also help better 

managing the existing uncertainties of the solar generations. The 

numerical experiments are conducted through which the 

effectiveness of the proposed approach is validated. 
 

Index Terms—Forecast; solar power; spatial-temporal; 

Gaussian conditional random fields.  

I.  INTRODUCTION 

Year 2014 has seen a new record in the U.S. solar industry, 

which has grown by 34% over year 2013, and the country’s 

solar capacity is estimated to double by the end of year 2016 

[1]. With the rapid growth of the solar industry, the variability 

and intermittency of this renewable source of energy brings 

about major challenges in energy balancing which may 

jeopardize the system reliability and flexibility [2]. Therefore, 

it is very critical to have an accurate real-time forecast of the 

solar generation so that both higher system operation 

efficiency and maximum solar utilization can be achieved. 

There have been a lot of research efforts on the solar 

generation prediction techniques, which can be roughly 

clustered into three categories: 1) the numerical weather 

prediction (NWP)-based forecast [3]-[6]; 2) the data-driven 

methods [2], [7]-[16] which are, nowadays, the most popular 

methods; and 3) combinations of the NWP and the data-driven 

methods [17]-[19]. Recent studies have demonstrated the 

potential strong spatial correlations among geographically 

dispersed solar PV power plants [2], [12], [20]. Among the 

aforementioned studies, [2], [4], [11]-[13] consider the spatial 

correlations of solar sites, while the rest are proposed solely 

based on the local meteorological measurements. Studies show 

that the prediction accuracy can be significantly improved 
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when spatial correlations are considered [2], [4], [11]-[13]. 

Gaussian Conditional Random Field (GCRF) is a structured 

learning method which can well exploit the correlations among 

output variables, resulting in significant improvements of the 

prediction accuracy. Besides, its Gaussian nature facilitates the 

inference as well as the learning efficiency [21]. 

No studies have been devoted to the solar power forecast 

through application of the GCRF models. GCRF provides a 

probabilistic framework for exploiting complex dependence 

structure among output variables [22], [23], which can help 

model the spatial correlations among different solar generation 

stations more effectively. In this paper, the GCRF model is 

introduced to forecast the solar power considering both the 

spatial and temporal correlations. Different from the previous 

works, the proposed methodology captures the probabilistic 

nature of the GCRF model which will further help modeling 

the inherent uncertainties of the solar generation.   

The rest of the paper is organized as follows: Section II 

provides the background information on the relationship 

between solar generation and solar irradiance; Section III 

introduces several solar power forecast models including the 

PSS, the ARX, and the GCRF models and the performance 

indices; Numerical experiments are conducted in Section IV to 

compare the forecast performances of different models under 

several scenarios; and finally Section V concludes with the 

contributions of this paper. 

II.  SOLAR GENERATION VS SOLAR IRRADIANCE 

According to [12], the relationship between the solar power 

generation and the solar irradiance on a given material can be 

reasonably assumed as a linear relationship, as shown in (1). 

solar solarP I S     (1) 

where Psolar is the solar generation power; Isolar is the solar 

irradiance (kWh/m2); S is the area of the solar panel (m2); and 

η is the generation efficiency of a given material. With this 

assumed relationship, the solar generation can be easily 

predicted once the solar irradiance forecast is available.  

III.  SOLAR IRRADIANCE FORECAST MODELS 

A.  PSS Model 

The basic idea of the PSS model is to use the solar 

irradiance at a given time interval as the forecast value at the 

next time interval, as described in (2): 
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1t t

k ky y   (2) 

where t

ky is the forecasted solar irradiance of the kth solar 

station at time t and 1t

ky  is the measured value at time t-1. The 

PSS model is usually regarded as a benchmark forecast model. 

As a result, a forecast model performance is considered to be 

exceptional if it outperforms that of the PSS model.  

B.  ARX Model 

The ARX model is a data-driven method and 

mathematically modeled in (3): 

1 1, 1

jnp m
t t i t l

k i k jl j t

i j j k l

y c y z   

   

     
 

(3) 

where 
t l

jz 
 is the historical measurement from station j at time 

t-l, which is the exogenous input as the measurements do not 

come from the target station k; βjl is the coefficient of the 

exotic input t l

jz  ; φi is the coefficient associated with t i

ky   

which is the historical measurement within the target station k; 

c is a defined constant; and εt is the white noise. 

Other than the temporal correlation, the ARX model is also 

able to consider the spatial correlations, which is achieved by 

taking into account the measurements z from other solar 

generation stations.  

C.  GCRF Model 

Similarly, the GCRF model takes into account both the 

spatial and temporal correlations. In this model, entire effort is 

to obtain the conditional distribution P(y|x) through a large 

volume of historical data, and then forecast the output variable 

based on the obtained distribution. y=[yt
1,yt

2,…,yt
N]T is the 

forecasted solar output in multiple stations from 1 to N at the 

next time interval t; vector x represents the historical solar 

measurements in different stations, as shown in (4):  
1 21 2 1 2
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    
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x
 (4) 

The conditional distribution P(y|x)  modeled in conditional 

random fields (CRF) is expressed in (5): 

1

1
( ) exp ( , y , ) ( , y , y , )

( , , )

N

i i j

i j i

P A I
Z 

 
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x α β

 
(5) 

where A(α,yi,x) is the association potential which associates 

the output yi with input vector x; I(β,yi,yj,x) is the interaction 

potential to relate two output variables yi and yj [23]. In CRF 

applications, A and I could be approximated by linear 

combinations of pre-determined feature functions with 

corresponding parameters α and β, as denoted in (6) and (7). 

1

( , y , ) ( , )
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α x x  (6) 

 
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l

I g y y


β x x  
(7) 

 If the feature functions fk and gl are defined in quadratic 

forms, as shown in (8) and (9), the association potential A and 

interaction potential I would also be quadratic functions of y.  

    
2
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 (9.b) 

where Gl is the graph which imposes the relation between the 

output variables yi and yj.    l

ijS x is the function representing 

similarity between outputs yi and yj. And Rk(x) is a single 

prediction of yi based on the input variables x. Under this 

scenario, the conditional probability distribution P(y|x) 

becomes multivariate Gaussian distribution, namely 

P(y|x)~N(µ,Σ), where µ is the mean vector and Σ is the 

covariance matrix. P(y|x) can be re-formed in (10) and (11).  

     
22 ( )

1 1 , 1

exp

( )
( , , )

i iK LN
l

k i k l ij i j

i k i j l

y R e y y

P
Z

 
  

 
    
 

 x x

y x
x α β

 (10) 
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where Σ-1=2(Q1+Q2), and Q1, Q2 are expressed in (12), (13). 
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And µ=Σb in (10), and b can be calculated in (14). 

 
1

2
K

i k k

k

b R


 
  

 
 x  (14) 

 To obtain the conditional probability distribution, the 

parameters αk and βl need to be determined since fk(yi,x) and 

gl(yi,yj,x) are both pre-determined. Such parameters can be 

learnt through maximizing the conditional log-likelihood of the 

training sets, as denoted in (15) and (16), which can be 

achieved by the application of the gradient descent algorithm. 

   , logL P   y x  (15) 

    
,

, arg max ,L
α β

α β α β   
(16) 

 Since the model is Gaussian, µ can be evaluated and used as 

the forecast of the output. Besides, according to the property 

of the multivariate Gaussian distribution, stating that its 

marginal distribution over a subset of its random variables is 

also a Gaussian distribution, the probability distribution of a 

single output yi can be obtained as follows:  

   ,i i iiP y N  x  (17) 

With such probability distributions, the forecast result can 

be more compatible with other system applications such as 

stochastic modeling, risk modeling, etc. 

D.  Forecast Performance Indices 

Two indices are selected to evaluate the performance of the 

forecast models: the mean absolute errors (MAE) and the root 
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mean square error (RMSE), as denoted in (18) and (19). 

1

1
MAE

Z

t t

t

y y
Z 

    
(18) 

 
2

1

1
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Z

t t

t

y y
Z 

 
, 

(19) 

where 
ty is the forecasted and  yt is the measured value. 

IV.  NUMERICAL EXPERIMENTS 

A.  System Description 

Hourly solar irradiance data of 8 solar stations in the year 

2010 are collected from the California Irrigation Management 

Information System (CIMIS) and adopted in our simulations. 

The locations of the selected solar stations are illustrated in 

Fig. 1 (more information is provided in [24]). The station No. 

1 is selected as the target station in all the simulations, as 

denoted in green in Fig. 1. In order to enhance the spatial 

correlations in the system, two artificial stations (No. 9 & No. 

10) are added very close to the target station. Therefore, it 

would seem reasonable to assume that the hourly solar 

irradiance measurements for such stations should be quite 

similar to those of station No. 1. Hence, the data from station 

No.1 plus some low level noise is used as the measurements of 

these two artificial stations.   

B.  Parameter Configuration of the ARX and GCRF Models 

Based on the available data described above, parameter m 

introduced in the ARX model [see eq. (3)], which is a data-

driven method, is selected to be 9. Besides, p=10, and nj=10, 

which implies that the previous ten historical measurements of 

each solar station are considered for the forecasting purpose.  

 Regarding the GCRF model, entire attempt is devoted to 

model both the spatial and temporal correlations, as illustrated 

in Fig. 2. The temporal correlations are modeled through the 

association potential A(α,yi,x), illustrated as the red dot line, 

by using the autoregressive (AR) model. Therefore, Ki=1 [see 

eq. (5)], and ( )R x in (8) can be calculated using (20): 

1

( )
ip

t m

i m i

m

R x c y 



   (20) 

where pi is selected to be 10 to consider the previous 10 

historical measurements. We model the spatial correlations 

through the interaction potential I(β,yi,yj,x) in the GCRF  

 
Figure 1.  Location and spatial information of the studied solar stations. 

 
Figure 2.  Spatial and temporal correlations in the GCRF model. 

model, illustrated as the black line in Fig. 2. In (7), Li=1 is 

selected and the graph in (9) is considered to be the 

geographical graph including all the solar stations. Therefore, 

Sij in (9) is calculated in (21), where Dij is the distance between 

station No. i and No. j. The reason to take the reciprocal is that 

the bigger the Sij is, the closer yi and yj will be and vice versa. 

2

1
ij

ij

S
D


 

(21) 

C.  Simulation Cases and Scenarios 

Four cases are generated in the training and validation 

periods and are listed in Table I. Basically, two scenarios are 

considered in the numerical simulations: Scenario1 where 

there are no missing data, and Scenario 2 where there are some 

missing data points (This scenario is tested since some 

measurements may not be available all the time due to various 

reasons such as equipment failure, communication issues, etc. 

Moreover, when a solar station is newly created, few historical 

data is available for training purposes).  

There are several sub-scenarios considered in Scenario 2 as 

follows: Scenario 2-1 in which only one hourly data set 

happens to be missing in the target station; Scenario 2-2 in 

which two successive hourly data sets happen to be missing in 

the target station; Scenario 2-3 in which one hourly data set 

happen to be missing in several stations; and Scenario 2-4 in 

which no data is available in one station, and therefore this 

station is excluded from the training process.  

D.  Simulation Results 

The forecast results corresponding to the three studied 

models under Scenario 1 are tabulated and compared in Table 

II. In addition, the detailed forecast performances of the 

studied techniques in Case 3 under Scenario 1 are illustrated in 

Fig. 3 and Fig. 4. The green line denotes the ideal prediction 

performance, i.e., the closer the prediction result is to the line, 

the better the forecast is done. It can be seen that the GCRF 

model has the best performance in all cases under Scenario 1.  

Figures 5-7 demonstrate the performance indices of PSS, 

ARX and GCRF models in the studied Scenarios 2-1, 2-2 and 

2-3, respectively. The results are demonstrated only for case 3 

in all scenarios due to the page limitations. When one data is 

missing, we simply use the measurement of the previous hour 

to approximate that missing measurement. From Fig. 5 and 

Fig. 6, we can observe that the GCRF model is superior to the 

other two models when dealing with the cases with missing  
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TABLE I.  TRAINING AND VALIDATION PERIODS 

Case 1 2 3 4 

Training 

Period 

January, 

March 
May 

July, 

September 
November 

Validation 

Period 

February, 

April 

April, 

June 

August, 

October 

October, 

December 

TABLE II.  PERFORMANCE INDICES OF VARIOUS FORECASTING MODELS: 
SCENARIO 1 

Index Cases 
Forecast Model 

PSS ARX GCRF 

MAE 

Case 1 90.3676 56.5334 55.1527 

Case 2 98.1372 51.8562 40.4062 

Case 3 96.6623 35.5478 25.5906 

Case 4 92.8664 51.6816 29.6195 

RMSE 

Case 1 111.9337 76.7467 74.4007 

Case 2 116.5823 81.9164 60.6969 

Case 3 111.6060 55.8073 40.6566 

Case 4 108.1498 67.8648 43.7008 

 

 
Figure 3.  Prediction performance of ARX and GCRF models:                   

Scenario 1 (Case 3) 

 
Figure 4.  Prediction performance of PSS model: Scenario 1 (Case 3) 

 
Figure 5.  Performance indices of various forecasting models:             

Scenario 2-1 (Case 3) 

 
Figure 6.  Performance indices of various forecasting models:             

Scenario 2-2 (Case 3) 

data. The ARX model, however, may compromise a lot and its 

performance may become even worse than the PSS model 

especially when more missing information is encountered. 

Fig. 7 illustrates the MAE performance indices of the three 

models when missing data occur in multiple solar stations. It 

can be observed that: 1) the GCRF model has the best results; 

2) when there is no missing data in stations No. 9 & 10, the 

GCRF performs very well, and the less the missing 

information, the better its performance would be [see the first 

two sub-figures]; 3) by comparing the sub-figures in the first 

and second row, one can see that GCRF performance may also 

be compromised a bit when the data is missing in the added 

stations. However, it still outperforms the other two models 

most of the time.  

The better performance of the GCFR model, especially 

when there is missing data, is due to its modeling of the spatial 

correlations among different solar stations. Here, the spatial 

correlations among stations No. 9, No. 10, and the target 

station No. 1 are relatively strong as they are physically very 

close to each other. Therefore, the measurements in station No. 

9 & No. 10 can somehow serve as the backup when there is 

missing data in the target station. GCRF’s performance also 

compromises a bit when missing data occur in station No. 9 or 

No. 10.  Scenario 2-4 simulates this situation when the data 

from Station No. 5 are not available for training, and the  

 
Figure 7.  MAEs corresponding to various forecasting models:           

Scenario 2-3 (Case 3) 
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TABLE III.  PERFORMANCE INDICES OF VARIOUS FORECASTING MODELS:        
SCENARIO 2-4 

Index Cases 
Forecast Model 

PSS ARX GCRF 

MAE 

Case 1 96.6623 58.2602 55.9011 

Case 2 96.6623 47.7145 43.0316 

Case 3 96.6623 50.2712 26.8112 

Case 4 96.6623 56.3702 30.7201 

RMSE 

Case 1 111.6060 79.2030 75.6125 

Case 2 111.6060 76.5143 63.7870 

Case 3 111.6060 68.0714 41.8258 

Case 4 111.6060 72.0233 44.8699 

TABLE IV.  GCRF’S PERFORMANCE FOR PROBABILITY DISTRIBUTION 

MODELING: SCENARIO 1 (STATION NO. 1) 

 Case 1 Case 2 Case 3 Case 4 

±1 σ 35.82% 58.61% 57.61% 55.91% 

±2 σ 59.96% 80.22% 80.19% 78.67% 

±3 σ 78.74% 89.74% 92.75% 88.53% 

 

results are demonstrated in Table III. The GCRF model still 

has the best performance, although it is compromised a bit 

compared to that in Scenario 1. In contrast, the performance of 

the ARX model is not quite predictable and it is compromised 

a lot in Case 3.  

By applying the property of multivariate Gaussian 

distribution, as described in (17), Table IV shows the GCRF’s 

performance for the probability distribution modeling of the 

output from station No.1 under Scenario 1. The table shows 

the percentage of the real measurements that falls within the ±

m σ (m=1, 2, 3) range of the forecast values. The uncertainty 

of the studied solar forecast basically fits the normal 

probability distribution, although the percentages are less than 

those of the standard normal distribution, especially in Case 1. 

Future work is to improve the performance of GCRF technique 

for modeling the probability distributions. 

V.  CONCLUSIONS 

The contributions of this work are summarized as follows: 

 Novel solar power forecast considering both the spatial 

and temporal correlations among different solar 

stations is introduced using the GCRF model  

 Performance comparisons are conducted among the 

PSS, ARX and GCRF forecast models through 

extensive numerical experiments and various scenarios 

with and without missing data. 

 Forecast uncertainty modeling is accomplished by 

utilizing the property of the multivariate Gaussian 

probability distribution. 
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