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Abstract—In this paper, we present a systematic approach for

quantifying the impact of unscheduled line outages on real-time 
Locational Marginal Price (LMP). The probabilistic LMP is 
formulated with consideration of generation, load, and topology 
uncertainties. A computationally efficient 2n+1 point estimation 
method is adopted to calculate statistical moments of LMP due to 
unscheduled transmission line outages. The proposed approach is 
demonstrated in a modified PJM five-bus system. Result of such 
study is beneficial for power market participants in developing a 
more comprehensive bidding strategy. 

Index Terms—Probabilistic LMP; Electricity markets; 
uncertainty analysis; network topology

I.  INTRODUCTION

n competitive electricity markets each participant may 
make bids based on expected electricity price at the 
location. The locational marginal price (LMP) model has 

been adopted in some major Regional Transmission 
Organizations (RTOs). Since the financial settlements of 
individual market participants are based on the LMP, thorough 
understanding of how LMP works, in particular under 
uncertain situations, is of critical importance in market 
particiants’ decision making process [1]. 
In major RTOs, energy and ancillary services bids are made at 
a variety of time scales such as day-ahead, hour-ahead, and 
ten-minute ahead of market closing. In real-time markets, 
Security Constrained Economic Dispatch (SCED) is executed 
every five or ten minutes ahead of the actual operation. One of 
the by-products of the SCED is the real-time LMPs. Although 
precise load forecasting methods have been proposed [2-4], 
still some degrees of uncertainty exist. In [5-6] probabilistic 
LMP has been proposed to take into account these 
uncertainties.  Impact of demand uncertainty on LMP has been 
studied in [5] and [6] addressee that of the participants’ bid. 

Another source of uncertainty is unscheduled network 
topology change. It is quite possible a given line goes out of 
service due to permanent fault. Unlike two sources of 
uncertainties mentioned before (bid of others, and demand), 
topology change usually causes huge price change. Even 
though, it does not happen frequently and there is a probability 
of occurrence associated with it.  A systematic approach 
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should be developed to quantify impact of unscheduled outage 
of the lines on estimated LMP. This analysis is useful for 
generation companies or load serving entities to formulate 
their bidding strategies, as well as for the risk hedging policies 
[5]. In this paper LMP estimation is formulated as an 
uncertainty analysis problem. Although it is possible to utilize 
the widely used Monte Carlo Simulation (MCS) to solve this 
problem, it is computationally expensive as it requires huge 
number of iterations. Therefore, 2n+1 point estimation method 
which is computationally efficient is utilized [7]. The result of 
the method is demonstrated by using modified PJM five-bus 
system. 

The paper is organized as follows. In section II sources of 
uncertainty in power market are discussed. Impact of 
unscheduled topology change on LMP is studied in section III 
and a systematic approach for its quantification is proposed. 
Section IV presents case study result by using modified PJM 
five-bus system. Finally Section V concludes the paper. 

II.  POWER MARKET IN UNCERTAIN CONDITIONS

In this section sources of uncertainties in power market are 
discussed. Impacts of two sources of uncertainty (demand, 
participants’ bid) are studied briefly. The third source of 
uncertainty (topology of the network) which is the focus of 
this paper is discussed in the rest of the paper.

Equation (1) [6] shows the process conducted in an 
electricity market. The goal is maximizing social welfare 
while satisfying the constraints. The objective function G is 
function of demand and supply and their associated price. 
Uncertainty in participants’ bid shows in equation (1-a).
Equating supply and demand based on power flow equations 
is one of the main constraints. These equations are function of 
demand and supply among others. Uncertainty in forecasted 
demand demonstrates itself in these constraints (1-c, 1-d). 
Power flow equations are function of network topology. In 
security limit constraints (1-e), if a line goes out of  service,   

maxijP and   maxjiP become zero. 

     According to (1), clearing price depends upon the demand 
among other factors. It is quite possible to get different market 
prices for different demands. To quantify impact of demand 
estimation uncertainty on clearing price, performing 
conventional load-flow computations for every possible or 
probable combination of demand is impractical due to large 
computational burden.  To solve this problem usually 
probabilistic load flow is carried out. Instead of deterministic 
value, a probabilistic distribution function is assigned to each 
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max),( ijij PVP  e) security limit
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max),( ijij IVI  f) thermal limit
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maxmin VVV  g) voltage limit

maxmin GGG VQQ  h) generator limits   

where 

SD CC , supply and demand bids in $/MWh

DS PP ,   bounded supply and demand power bids in MW

ijji PP ,   the power flow through the lines in both directions 

jiij II ,    line current limit

V,       bus phasor voltages and angles,

GQ         generator reactive powers

load and/or generator as well as parameters of the network.
Instead of deterministic value for a desired output, its 
probability distribution is yielded. In electricity market 
desirable value is the clearing price. In [6] a probabilistic 
method has been proposed to take into account impact of 
uncertainty in load forecasting on LMP.  LMP has been 
viewed as a random variable and named probabilistic LMP. 
The probability mass function (PMF) of LMP is calculated. 
Having this PMF it is possible to estimate certainty of the 
price prediction. 
     Another source of uncertainty in the competitive market is 
participants’ behavior.  Each participant bids independently 
based on its estimate of residual demand (the demand curve 
each participant faces). The residual demand curve is 
constructed by calculating horizontal difference of the demand 
and supply of other participants at each given price, as shown 
in Fig. 1 [8].

To determine bidding price, the supplier intersects its 
supply curve (which in ideal competitive market should be its 
Marginal Cost (MC)) with the residual demand curve. 
However in real market the supplier tends to bid higher than 
its MC. As the price increases, the demand decreases. 
Moreover, other supplier will provide the demand. So, it is not 
possible to increase the bidding price without a limit. Fig.2 [9] 
shows the procedure of bidding in real market. The supplier 
bids higher than its MC until the gain due to price increase 
becomes equal to loss due to reduction in the demand. 

In the above explained procedure a given supplier does not 
have exact information about demand and supply of other 
market participants which implies that bidding price is result 
of uncertain factors.  Since only estimate are used, their 
accuracy depends on accuracy of the method used to estimate 
such values. In uniform-price auction markets if a supplier is 
the marginal unit its behavior could affect the clearing price of 
the market.     

Figure. 1. Residual demand calculation process

Figure. 2. Process of determining the bid based on residual demand curve

To quantify impact of the uncertainty in participants’ bid 
on the LMP, [6] has used probabilistic optimal power flow. 
LMP has considered as a probabilistic variable which is 
function of the participants’ bid. Instead of one deterministic 
value for LMP, its Probability Distribution Function (PDF) is 
calculated.  This information could be used by firms when 
they making bids 

III.  IMPACT OF NETWORK TOPOLOGY CHANGE ON LMP

One peculiarity of the electricity market that makes it 
different from other markets is presence of transmission and 
distribution systems for delivering the power from the 
suppliers to the consumers. Power that flows though each line 
follows the Kirchhoff’s laws rather financial contracts 
between suppliers and consumers. A change in one part of the 
network can affect power flows on the other parts of the 
network.

It is quite possible that a given line goes out of the service 
due to permanent faults or maintenance. Although there is a 
predefined schedule for the maintenance of the lines, 
occurrence of the fault is not predictable and may happen at 
any time.

According to equation (1), security constrained power flow 
is carried out based on the present topology of the network. 
Assuming a given topology for the network the optimal power 
flow is computed while the constraints are taken into account. 
When an unpredicted outage of the line happens some 
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constraints change. For instance, maxijP and maxjiP becomes 

zero for that line. More over outage of a given line changes the 
power flow equations. 

In some cases this change causes drastic variation in the 
LMPs. Especially in deregulated power system such lines are 
loaded at their maximum capacities.  LMP comprises three 
components including marginal energy price, marginal 
congestion price, and marginal loss price [1]. Each of these 
components can be affected by change in the flow of the 
power in the lines. If a given line goes out of the service the 
power that already flows though the line should be distributed 
through the rest of the lines which may cause congestion of 
the heavily loaded lines. As a result the LMPs of the power 
system may change.

It is notable that unscheduled topology change does not 
happen frequently and there is a probability associated with it.  
A systematic approach should be developed to quantify impact 
of unscheduled outage of the lines on LMPs.

It is possible to express LMP at each point as follow:

),,( 21 nxxxfLMP                                                    (2)                                

Where 
LMP: Locational Marginal Price
   ix : Factor that affects the LMP. As discussed before 

some of these factors are as follows:

   1x : Forecasted demand    

   2x : Capacity of the line (if the line goes out of the 

service the capacity becomes zero) 

   3x : Bid of others

   f(·): the function that relates the input factors( ix ) to the 

output (LMP). The f(·) can be assumed as Security 
Constrained Economic Dispatch (SCED)  presented in (1). 
According to (1) LMPs at each nodes of the network are 
function of uncertain values. For instance, there are always 
uncertainties associated with forecasted load or it is not 
possible to exactly estimate behavior of the other participants 
in the market. Moreover, topology of the network could 
change unexpectedly due to random occurrence of permanent 
fault.  

     To estimate the LMP, performing SCED for every 
possible combination of loads, parameters of the network, and 
network topologies is impractical because of the large 
computational effort required.

   A systematic approach should be developed to consider 
all these uncertainties in the network while still making it 
computationally affordable. As discussed in section II, the 
concept of probabilistic LMP (PLMP) has been proposed in 
the literature to address this issue. The uncertainty in the 
topology of the network has not been addressed yet which is 
the focus of this paper. The following procedure is suggested 
for taking into account the impact of the topology uncertainty 
on estimated LMP

A.  Probability distribution function assignment 

In (1), if a line goes out of the service maxijP and   

maxjiP become zero. Therefore, Bernoulli distributions could 

be assigned to the line capacity
Prob (capacity of the line=nominal value)=p
Prob (capacity of the line=0)=q

Where
q is probability of unscheduled  outage of the line due to a 

fault.

According to [10] the probability of fault occurrence on a 
line can be modeled as the Poisson distribution with a constant 
fault rate. The probability of not having a fault occurrence in 
the time period t is given by
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where 

noP : the probability of no fault occurrence

0 : the average fault rate

    t  :the considered duration
The probability of a fault occurrence in t is

t
o eP 01                                                                      (4)

If  10 t , the following equation holds:

tPo 0                                                                            (5)

The average fault rate 0 can be approximately replaced 

by the frequency of fault occurrence, which could be obtained 
from historical records. For a particular transmission line k, 
the number of faults per unit time (year) and per unit length 

(100 miles), 0k , is known. If kL is the length of the line (in 

the same units), the expected number of faults on line k per 
year is [11]

k = 0k × kL                                                                   (6)

 depends on condition of the weather among others. It is 

possible a line traverses two regions where Region 1 is in the 
adverse weather and Region 2 in the less severe weather. 
Assuming the length exposed to the adverse weather condition 

is x the total failure rate of the line  is: x 1 + (1-x) 2 [12].

As usually  is a small number and probability of fault 

occurrence is low. For instance, a 10-mile transmission line 
with 10 faults per year per 100 miles will have a fault with 
probability of 0.01% over 1 hour and 0.002% over 10 minutes.

B.  Probabilistic LMP calculation

It is possible to conduct widely used Monte Carlo 
Simulation (MCS) to estimate probabilistic LMP at each bus. 
However, MCS is computationally expensive and requires 
huge number of iterations. The alternative method is 2n+1 
point estimation method where n is number of uncertain 
factors. For instance, the five bus PJM system, shown in Fig. 3 



[5],  has 6 lines, 3 loads, and 5 generators, so in this case the 
required number of simulation is 29 (2*14+1). 

A brief description of the 2n+1 point estimation method is 
presented here. The details of this method can be found in [7]. 

For ),,,()( 21 nxxxhXhz  , where X is a set of 

random variables kx , k = 1,2…,n. Assume  k , k denote the 

mean, and standard deviation of variation of kx respectively 

and ij is the correlation coefficient between variable ix and 

jx i≠j. Moreover, assume ij =0, i≠j. When ij ≠ 0, rotational 

transformation based on the eigenvector of the covariance 
matrix can be used to transform the set of correlated random 
variables, X, into an uncorrelated set of random variables, X' 
[7]. The ikp , is defined as concentrations (or weights) located 

at ),,,,,,( 1,21 nnikx   where

kikkikx  ,,            , i=1,2,..,,m   k=1,2,…,n          (7)

Where, m is the number of concentrations per input 
variable. The standard location ik , and the weight ikp , are 

obtained by solving the following equations [7] 
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It is notable that 1,k equals zero, 2,k equals one, and 3,k

and 4,k are the coefficient of skewness and coefficient of 

kurtosis of kx , respectively.

     Once all the ikp , and ikx , are obtained, the jth raw 

moment of the output random variables can be estimated as 
follow:
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Having the jth raw moment it is possible to calculate the jth
central moment of the output random variable. For instance, 
mean and standard deviation of the random variable can be 
calculated as follow:
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Skewness, and Kurtosis and other statistical moments of the 
random variable can also be calculated easily by having jth 
raw moment [13].

If m = 2 the followings hold:
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     It should be noted that in (15) the standard location 

ik , depends on the number of input random variables. When n 

becomes large, inaccuracies occur as has been studied in [14]. 
To overcome this problem, 2n+1scheme has been proposed in 
[7] and [15]. It requires only one additional evaluation of 
function compared to the 2n scheme. This scheme is derived 
from solving (8) and (9) for m=3 with one of the three 

standard location ik , set to zero.

Let 03, k . Then, the standard locations and weights are:
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It is notable in (7), setting 03, k yields kkx 3, .So, n 

of 3n locations are the same 

point ),,,,,,( 121 nnk   . It is enough to run only 

one evaluation of function at this location, provided that the 
corresponding weight is updated as follow:
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From (18), it can be seen that the standard location values 
of the scheme 2n+1do not depend on the number of input 
random variables, n, as do the m×n type schemes. This is a 
common feature of all the m×n+1 concentration schemes [15].  

IV.  CASE STUDY

To demonstrate above mentioned discussions numerically, 
modified PJM five-bus system, shown in Fig.3, is selected [5]. 
Tables I and II show parameters of the network.

Suppose a supplier wants to make a decision about its bid 
for next hour. If normal topology of the network is considered, 
estimated LMP at bus D becomes $15 as shown in Fig.4. 



Figure.3. Modified PJM five-bus system
TABLE I

LINE IMPEDANCE AND FLOW LIMITS

Line AB AD AE BC CD DE

X 2.81 3.04 0.64 1.08 2.97 2.97

Limit 
(MW)

400 -- -- -- -- 240

TABLE II
GENERATORS DATA

Generator A1 A2 C D E

MC 14 15 30 35 10

Limit 
(MW)

40 170 520 200 600

TABLE III
LMP CHANGE AT BUS D DUE TO OUTAGE OF DIFFERENT LINES AT DIFFERENT 

LOADING CONDITIONS

               
Line
Demand

D-E D-A D-C E-A A-B B-C

600 MW
Before
After

15
15

15
35

15
15

15
30

15
30

15
15

900 MW
Before
After

30
30

30
35

30
30

30
30

30
30

30
30

Line between buses D and E is close to its limit. A possible 
scenario is that line between buses D and A goes out of  
service due to permanent fault as shown in Fig.5. In this case 
line between buses D and E is congested and other lines get 
closer to their limits. LMP at bus D becomes $35. It is notable 
that amount of the price change depends upon condition of the 
system and location of the LMP under study.  

Table III shows LMP change at bus D due to outage of 
different lines at different loading conditions.  According to 
that, outage of line D-E does not have any impact on LMP at 
bus D. Moreover, while LMP changes from $15 to $30 due to 
outage of line E-A at demand of 600MW, it does not change at 
demand of 900MW. 

As the goal of this paper is studying impact of unscheduled 

topology change on the LMP, in (2) ix s are line capacities. 

Figure.4. Load flows and LMP at Bus D before outage of line D-A

Figure. 5. Load flows and LMP at Bus D after outage of line D-A

As PJM five-bus system, shown in Fig.3, has 6 lines, eq. 
(2) has 6 input variables as well. Now, according to (12) it is 
possible to calculate jth raw moment of the LMP at bus D.

According to eq. (13) and eq. (14), at demand of 900 MW 

in hour-ahead market, expected value (  ) and standard 

deviation ( ) of LMP at bus D are 31.57 and 2.35

respectively. In the case of 10 min-ahead market, they are 
30.45 and 1.37 respectively

This information is useful for market participant to develop
a better bidding strategy.

V.  CONCLUSIONS

In this paper we formulated a probabilistic LMP framework 
in consideration of network topology uncertainties. In addition 
to the previous work studying the impact of load uncertainty 
on LMP, here we proposed a systematic approach to analyze 
the statistical moments of LMP due to unscheduled 
transmission line outages. A 2n+1 point estimation method 
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was utilized to calculated statistical moments of LMP. The 
processes presented in this paper could be beneficial for 
generation companies and/or load serving entities to develop 
better bidding strategies.
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