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Abstract--This paper introduces a new artificial intelligent 

based approach for detecting and classifying the faults in power 
system networks. This approach utilizes unique type of neural 
network specially developed to deal with large amount of input 
data. A model of an actual power network is implemented in ATP 
program and used for simulating the fault scenarios on 
transmission lines. Protective algorithm is implemented in 
MATLAB and interacts with the network model simulations in 
ATP. Procedures of generating training and testing patterns are 
performed carefully to ensure covering of all possible events. 
Training and testing phases of the neural network algorithm are 
optimized to improve classification of a variety of previously 
unseen patterns. 
 
Keywords--clustering methods, electromagnetic transients, 

neural networks, pattern classification, power system faults, 
protective relaying, testing, training. 

I.  INTRODUCTION 

HIS paper introduces artificial neural network based 
technique for detecting and classifying faults on 

transmission lines. Transmission line faults happen randomly, 
and they are outcome of unpredictable conditions. Several 
varying parameters: type of fault, fault location, fault 
impedance, and fault incident time determine the 
corresponding transient current and voltage waveforms 
detected by the relays at line ends. The main role of the 
relaying principle is detecting and classifying the faults, based 
on three phase voltage and current samples. The new detection 
and classification approach has to reliably conclude, in a very 
short time (1-2 cycles), whether and which type of fault occurs 
under a variety of time-changing operating conditions [1]. 
Protective relay accordingly performs action, usually 
disconnecting faulted phase/line and/or initiating some alarm 
and control signals. 

Various applications of neural networks were used in the 
past to improve the distance relaying of transmission lines [2]. 
These applications are mainly based on multilayer feed-
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forward networks. Training of these networks is very slow, 
needs much larger training sets, and very easily converges on 
local minima, whenever input patterns with large 
dimensionality are present as in this particular case. 
Furthermore, retraining of this type of network with new 
training data is rather difficult. 

Instead of using multilayer neural network, a unique type of 
neural network may be used for fault classification [3-6]. This 
network is based on ISODATA clustering algorithm [7] and 
belongs to a group of special neural networks named Self-
Organizing Maps [3]. The adaptive behavior of the neural 
network is described by Adaptive Resonance Theory [8]. The 
main aim of this work is to enhance that neural network based 
clustering algorithm. In the previous version of the algorithm 
relatively small number of training and testing patterns was 
used. Training patterns did not cover different values of fault 
angles and significant performance deterioration became 
obvious, due to insufficient network training. Number of 
passes through the stabilization phase was limited (to speed-up 
the training) and this prevented establishing optimal clustering 
structure. Classification of test patterns was done based on 
predetermined number of nearest clusters, instead of selecting 
optimal number of neighbors for each implementation. Also, 
fault location classification was performed in three cycles 
making it challenging for an on-line classification of the fault 
zone in one cycle. 

The new algorithm has to overcome observed deficiencies. 
It has to show the importance of proper generation of the sets 
of training and testing patterns and apply extended set of 
scenarios for improved algorithm design and evaluation. 
Moreover, some steps in the algorithm training and testing 
phases may be improved assuring smaller classification error. 
Additional task is establishing specially devoted simulation 
environment, where training and testing procedures can be 
easily controlled and performed. This is done through 
interfacing different programs, exchanging simulation 
parameters and results, and using appropriate graphical 
interface. 

A specially developed power network model has been 
implemented in the electromagnetic transient program ATP 
[9]. That model has been interfaced to MATLAB package for 
automatic simulation of a large number of scenarios [10-12]. 
Simulation outputs are used as a signal generator for the neural 
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network algorithm design, implemented in MATLAB. 
The paper is organized as follows. Description of the neural 

network detection and classification algorithm is given in 
section II. Section III through its subsections shows the 
selected model of an actual power network, design 
implementation steps (devoted to pattern generation, algorithm 
training and testing), and provides the classification results. 
The conclusion is given at the end. 

II.  NEURAL NETWORK CLASSIFICATION ALGORITHM 

Neural networks try to produce a concise representation of 
system's behavior through identifying natural groupings of data 
from large data sets. The aim of this procedure, called 
clustering, is to partition a given set of input data (patterns) 
into several groups or clusters, so that each pattern is assigned 
to a unique cluster. Patterns that belong to the same cluster 
should be as similar as possible, while patterns that belong to 
different clusters should be as different as possible. Class label 
is assigned to each cluster, where class symbolizes a group of 
patterns with a common characteristic. 

Self-organizing maps are special type of neural networks, 
and they map input patterns with similar features into 
contiguous clusters after enough input patterns have been 
presented. The similarity between patterns is usually measured 
by calculating the Euclidean distance between two n-
dimensional vectors. After training, self-organized clusters 
represent prototypes of classes of input patterns. 

Adaptive Resonance Theory defines forming a new cluster 
whenever a pattern, sufficiently different from all previously 
presented patterns, appears. Adaptive resonance architectures 
are capable of continuos training with non-stationary inputs. 

This neural network is without hidden layer and its self-
organized structure depends only on the presented input data 
set. The neural network training consists of unsupervised and 
supervised learning phases. In the unsupervised learning, 
patterns are presented without their class labels, and this 
procedure tries to identify prototypes that can serve as cluster 
centers. In the supervised learning the class label is associated 
with each data point. Vigilance parameter is a confidence 
measure and is being tuned, consecutively decreasing during 
iterations. It controls the number and size of generated 
clusters. The large values allow large deviations from the 
cluster centers and hence lead to a small set of clusters, while 
small values lead to a large number of tight clusters. 

The initial data set, containing all the patterns, is firstly 
processed using unsupervised learning. The outcome of 
unsupervised learning is a stable family of clusters, defined as 
hyperspheres in an n dimensional space, where n denotes the 
number of input features. Unsupervised learning forms stable 
family of both homogenous (having patterns with the same 
class label) and non-homogenous (having patterns with two or 
more class labels) clusters. It does not require either the initial 
guess of the number of cluster, or the initial cluster center 
coordinates. It consists of two steps: initialization and 
stabilization. 

Initialization phase begins with calculating the center of the 

entire data set. Then Euclidean distances between each pattern 
and the center are calculated and sorted in an increasing order. 
Now, the first cluster is formed by taking pattern closest to the 
center of data set, and with the radius equal to actual value of 
the vigilance parameter. Furthermore, all the remaining 
patterns are presented, in order of the sorted distances. 
Distances between the pattern and existing clusters are 
calculated. The minimum distance and corresponding (nearest) 
cluster are found. If the minimum distance is less or equal to 
the vigilance parameter, then the actual pattern is classified 
into the nearest cluster and the cluster center is updated by 
adding new pattern to the cluster. Otherwise, if the minimum 
distance is greater then the vigilance parameter, the actual 
pattern forms a new cluster. 

During stabilization phase the clustering algorithm is 
reiterated until a stable cluster structure occurs and there are 
no patterns changing their cluster membership during the 
iterations. All patterns are presented again. Distance between 
each pattern and existing clusters are calculated, and minimum 
distance and corresponding (nearest) cluster are found. Also, a 
cluster where the pattern was previously classified is found. If 
pattern was classified into the actual nearest cluster and 
minimum distance is less or equal to the vigilance parameter 
then there is no learning (no changes in the cluster structure). 
If the pattern was not classified into the actual nearest cluster 
and minimum distance is less or equal to the vigilance 
parameter then the pattern is moved to the actual nearest 
cluster and that cluster as well as the cluster where pattern was 
previously classified are updated. If minimum distance is 
greater then the vigilance parameter, a new cluster is formed 
and the cluster where the pattern was previously classified is 
updated. After processing all patterns, clusters remained 
without patterns are discarded, because their patterns have 
been moved to other clusters. Stabilization phase is repeated 
many times until no pattern changes its cluster membership. 

Supervised learning separates non-homogenous clusters 
from the homogeneous ones. It assigns class labels to the 
homogeneous clusters, and these clusters and their patterns are 
extracted from further iterative training process. Set of 
remaining patterns (patterns in non-homogeneous clusters) is 
transformed into new, reduced data set of training patterns. If 
new set of training patterns is not empty, vigilance parameter 
is decreased, and unsupervised and supervised learning 
procedures are repeated. Otherwise, if either all actual training 
patterns are members of only homogeneous clusters, or current 
value of vigilance parameter is less then specified value, 
learning is completed. 

During the testing phase Euclidean distances between test 
pattern and established clusters (prototypes) are calculated, 
and k-nearest neighbor rule [13] is used to classify the pattern. 
Given a set of classified data, the k-nearest neighbor rule 
determines the classification of a new pattern based on the 
most represented class label amongst the k nearest clusters, 
retrieved from the cluster structure adopted during training. 
The outcome of the testing phase are class labels assigned to 
testing patterns. 
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III.  DESIGN IMPLEMENTATION 

A.  Power Network Modeling 

A typical 345 kV power system section, from Reliant 
Energy (RE) HL&P company, was modeled for the testing and 
simulation studies. The reduced network equivalent was 
obtained by using the load flow and short circuit data, and 
verified using both the steady state and transient state results. 
Fig. 1 shows one-line diagram of the reduced equivalent for 
the used section. STP-SKY section model has nine buses and 
contains both short and long transmission lines. This reduced 
system is convenient for producing fault waveforms to be used 
for transient testing of protective algorithms. 

B.  Generation of Training and Testing Patterns 

Model of the given power network (Fig. 1) is implemented 
in Alternative Transient Program (ATP) program, and shown 
in Fig. 2. This model is used for simulating various fault 

scenarios on one of its transmission lines (STP-SKY), by 
varying fault parameters. An intelligent, neural network based, 
algorithm is located at the bus SKY, at one end of the selected 
line (notation AB1 on the scheme in Fig. 2). It takes voltage 
and current measurements from that end of the line and has to 
be trained and simulated to recognize the fault on that line. 
Current and voltage samples obtained through simulations are 
used for forming training and testing patterns for protective 
algorithm learning and evaluation. 

The MATLAB program interacts with ATP simulations. 
Generation of patterns may be deterministic or random. The 
classification algorithm requires deterministic generation of 
training patterns, by specifying several values for each of the 
four fault parameters and combining these values to cover 
diversity of fault cases. This forms prototypes that represent 
the space of possible events. The number of training patterns is 
limited and has to roughly cover all important situations in the 
power network. Random generation is based on the random 
setting of all fault parameters only constrained by the user. 
This is the requirement for generating testing patterns for 
algorithm evaluation in heuristic, previously unseen situations. 

The testing patterns might be very heterogeneous and quite 
different from the training patterns since there are many 
operating states and possible events in the power network. 
They are classified according to their similarity to prototypes 
adopted during training. 

This implementation includes all 11 types of fault (AG, BG, 
CG, AB, BC, CA, ABG, BCG, CAG, ABC, ABCG) and the 
normal state. Possible values for fault distance from the SKY 
bus are anywhere between 0-100 percents of the total line. 
Fault resistance might be theoretically anywhere between 0 
and ∞ Ohms. Fault angle is between 0 and 360 deg. Fault 
angle is transformed into corresponding fault incident time, 
where 0 deg is equal to the initial fault incident time, and 360 
deg is equal to the initial fault incident time increased for 1 
cycle. Parameters are also the initial fault incident time (for 
angle 0 deg), and simulation step and end times. 

Combinations of selected values for fault parameters define 
total number of simulation cases. After each simulation, output 
data in specific ATP format containing time and three phase 
voltage and current variables as well as characteristics of the 
implemented fault are converted into MATLAB format. The 
example of the simulation output data for one specific case, 
phases A to B to ground fault (ABG), is shown in Fig. 3. 

Examples of training patterns for different values of fault 
parameters are shown in Figs. 4 to 8. The algorithm uses 
training patterns formed by sampling all three phase voltage 
and/or current measurements in the selected time window. 
Parameters used for algorithm training in this particular 
simulation example are: three phase currents selected as the 
data for training; starting time for taking patterns is 0 seconds 
after the fault incident time; time window is 16.7 ms or 1 
cycle; sampling frequency is 2 kHz (33 samples per cycle). 
Features of the training patterns are extracted by using 
simulation data obtained in a desired time window and with 
selected sampling frequency. Phase A, B, C currents sampled 
during one cycle after the fault occurs are extracted and placed 
together in one row (Fig. 9) to form feature vector of 99 
components (3 phases with 33 samples each). Then all training 
patterns are normalized by scaling all features of all patterns to 
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Fig. 1.  RE HL&P STP-SKY Power Network Model 

Fig. 2.  RE HL&P STP-SKY network model implemented in ATP program 
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have the mean zero, and variance one, and this scaling value is 
used later for normalization of the testing patterns. Different 
values of fault parameters have to be taken into account for 
training, to avoid misclassification later. Figs. 4-7 show 
responses during varying type of fault, fault distance, 
impedance and angle, respectively. Fig. 8 shows how 
combination of varying parameters may cause 
misclassification of faults in Zone I and Zone II, supposing 
that the bound between zones is established at 80% of the line 
length, counting from SKY bus. 

Parameters used for generation of the training patterns in the 
simulation example given to illustrate the whole algorithm 
design are: all 11 types of fault and normal state; fault 
distances 5 to 95 % in increments of 10%; fault resistance (for 
ground faults) 0, 10, 20 Ohms; fault angle 0 to 330 degrees, in 
increments of 30 degrees. Total number of training patterns by 
combining all parameters is 2652, and all training patterns are 
shown in Fig. 9. 

Parameters used for generation of testing patterns are 

Fig. 4.  Example of training patterns for all 11 types of fault. Other fault 
parameters are constant. 

Fig. 5.  Example of training patterns for different fault distances. Type of fault
is ABG and other fault parameters are constant. 

Fig. 3.  Voltage and current samples for ABG fault, fault distance 50%, fault 
impedance 0 Ohm, and fault incident angle 0 deg. 

Fig. 6  Example of training patterns for different fault impedances. Type of
fault is ABG and other fault parameters are constant. 

Fig. 7  Example of training patterns for different fault incident time. Type of 
fault is ABG and other fault parameters are constant. 
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uniformly random selection of fault type, distance between 0 
and 100%, angle between 0 and 360 deg, and normally random 
selection of fault resistance, with mean 0 Ohms and variance 
10 Ohms (taking only positive values). Total number of testing 
patterns is 5000. 

C.  Algorithm Training 

Selection of data for training includes either three phase 
currents, or three phase voltages, or both the three phase 
currents and voltages. Vigilance parameter (cluster radius) is 
defined with its initial (maximal) and minimal values, as well 
as with the decreasing factor during iterations. Type of 
classification might be based on detection of fault type 
(Normal, AG, BG, CG, AB/ABG, BC/BCG, CA/CAG, 
ABC/ABCG), fault zone (Normal, Zone I, Zone II), fault 
resistance (Normal, Low, High), or any combination among 
them. Boundary distances between zones I and II of the fault, 
and between low and high fault resistance, also have to be 
specified. 

The first step in algorithm training is to extract the training 
patterns from generated patterns and it is described in the 
previous section. Two types of classifications were 
implemented. Training I was performed for establishing the 
cluster structure capable of recognizing only the type of fault. 
Training II was performed for establishing the cluster structure 
capable of recognizing type of fault and zone of fault. 
Boundary distance between the first and second zone is 80% 
of the line length. After several hours of iterations, both 
training procedures terminated successfully. Simulation output 
of Training I is the cluster structure containing 269 clusters, 
and of Training II is the cluster structure containing 706 
clusters. 

D.  Algorithm Testing and Classification Results 

In the testing phase, input to the neural network is in the 
form of the “sliding” data window containing samples of phase 
currents and/or voltages. Classification of testing patterns is 
performed by using cluster structure established during 
training and applying the k-nearest neighbor rule. Input 
parameter for algorithm testing is only the number k of the 
nearest neighbors for the rule. Testing patterns are extracted 
from generated patterns using the same procedure as for 
training patterns and have equal number of features. Testing 
patterns are normalized by scaling all features of all testing 
patterns with the same factor used for scaling of training 
patterns. For each testing pattern, distances to all clusters are 
computed and sorted in an increasing order. The most frequent 
class label of k nearest clusters is computed and assigned to 
actual pattern. If the input pattern belongs to any of the 
“normal-state” clusters then the input window is "moved" for 
one sample and the comparison is performed again. If the input 
pattern does not belong to the “normal-state” clusters then 
fault is detected and execution of the fault classification logic 
is initiated. The parameter used to force the neural network to 
make the final decision is the time. After decision time has 
expired, if pattern still does not come back to the normal state, 
neural network will classify fault event according to the fault 
type detected in that instance. 

Average classification error for the entire testing set of 
patterns for selected values of the nearest neighbors from 1 to 
12, is established by comparing the true and computed class 
labels. It is shown in Fig. 10 for both training cases. The 
graphic helps in finding optimal values for parameter k in both 
cases. Optimal value k for Training I is 1, and classification 
error for optimal k is 0.48%. Optimal value k for Training II is 
1, and classification error for that k is 6.34%. Obviously, 
classifying the zone of fault is much more difficult task then 
classifying the type of fault. 

IV.  CONCLUSION 

The most important aspect of this research is to show that 
the proposed neural network approach enables better detection 
of faults in power system networks and proper action to 
protect the network. An example of an actual power network 
was modeled in ATP program and used to simulate various 

Fig. 8  Example of training patterns for combined different values of fault
parameters. 

Fig. 9  All training patterns. 
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fault events in the network. Training and testing patterns are 
extracted from the measurements. Neural network based 
clustering algorithm, implemented in MATLAB, is used to 
form pattern prototypes, homogenous structure of clusters 
representing various classes of input data set. Testing patterns 
are classified by combining cluster structure and k-nearest 
neighbor rule. 

This advanced algorithm has several important benefits 
comparing to the previous version of the algorithm. New 
algorithm offers easy selection of desired scenarios and 
algorithm parameters by using MATLAB. Various types of the 
classification may be selected and combined. Bounds between 
zones of fault may be easily changed. Libraries of the training 
and testing patterns, and cluster structures might be generated 
and combined to achieve better algorithm training and 
validation. Extended sets of training and testing patterns have 
been implemented. Since training patterns are generated 
uniformly, testing patterns are generated randomly to ensure 
heuristic covering of all possible events. Also, previous 
version was trained only for particular values of fault angle (0 
and 90 deg), while the new algorithm is trained for all possible 
values of fault angle (0-360 deg). Fault location classification 
is now performed in one cycle, instead of in three cycles as it 
was done earlier. Number of passes through stabilization phase 
is now unlimited and enables forming more realistic 
prototypes. Tuning of the new algorithm finds optimal value 
for number of neighbors in k-nearest neighbor rule, while in 
the previous version only predetermined number of three 
nearest neighbors was used. 
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Fig. 10.  Results of classification error for Training I and Training II. 


