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Abstract—An active machine learning technique for monitor-
ing the voltage stability in transmission systems is presented. It
has been shown that machine learning algorithms may be used to
supplement the traditional simulation approach, but they suffer
from the difficulties of online machine learning model update and
offline training data preparation. We propose an active learn-
ing solution to enhance existing machine learning applications
by actively interacting with the online prediction and offline
training process. The technique identifies operating points where
machine learning predictions based on power system measure-
ments contradict with actual system conditions. By creating the
training set around the identified operating points, it is possible
to improve the capability of machine learning tools to predict
future power system states. The technique also accelerates the
offline training process by reducing the amount of simulations on
a detailed power system model around operating points where
correct predictions are made. Experiments show a significant
advantage in relation to the training time, prediction time, and
number of measurements that need to be queried to achieve high
prediction accuracy.

Index Terms—Machine learning, active learning, data min-
ing, synchrophasors, prediction methods, power system analysis,
power system planning, power system stability, power transmis-
sion, smart grids.
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I. INTRODUCTION

OWER grid operation needs new monitoring systems
Pthat increasingly provide more accurate measurements
about the grid behavior to the operator [1]. The utilization of
data from new substation equipment such as PMUs contributes
to improved decision making and operation [2]. Because the
measurements are typically gathered at both high velocity
and volume, it becomes imperative to exploit new online
data analytics with fast data processing capability.

Traditional time-domain simulation approach, based on the
first principles modeling of a power system is computation-
ally intensive and may not meet the requirements of real time
applications. Researchers have therefore turned to machine
learning techniques to allow for on-line decision-making. The
machine learning approach has the generalization ability where
the data-based model, if properly trained, can make accurate
predictions from measurements that it has not been exposed
to previously.

Examples of machine learning applications in power grids
include: a) predicting wind farm power output [3]; b) detecting
the substations most affected during major disturbances [4];
¢) analyzing the faulted transformers [5]; d) obtaining cus-
tomer load profiles [6]; e) performing dynamic security
assessment [7]; f) enhancing the data debugging in power
grid operations [8]; g) tackling voltage security concerns [9];
h) building classifiers for stability assessment [10]; i) ana-
lyzing power quality data for load estimation [11]; and
j) estimating the stability margins from synchrophasor
measurements [12]. A wide range of machine learning appli-
cations for power grids may be found in [13] and [14].

While the machine learning algorithms excel in their fast
decision making capability, two technical difficulties have not
been fully resolved yet: a) how to update the machine learning
models when predictions contradict the actual system condi-
tions; and b) how to efficiently prepare the training data to
eliminate redundant offline power system simulations.

Voltage stability in a transmission system is among major
challenges to the operation of an electric grid. For efficiency

1949-3053 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3118

and economic benefits, grid operators tend to operate the
network close to its physical limits [15]. The ability to pro-
vide decision-making support in real time is desired and can
greatly improve the stability, security and reliability of a power
system.

The main contribution of this work is the adaptation of
pool-based active learning methodology to power system mea-
surements such as synchrophasor data used to assess voltage
stability. It accounts for the uncertainty of machine learning
models and the computational burden of training and volt-
age instability prediction, which have not been taken into
consideration by the previously reported work.

The rest of the paper is organized as follows. After the
introduction, a background of machine learning applications in
power systems is given. The proposed methodology, the results
from case studies, and the discussion of results are presented
next. The paper ends with the conclusions and references.

II. BACKGROUND

A. New Voltage Stability Monitoring Techniques Motivated
by New Data Acquisition Capabilities

For a transmission system, one critical aspect of operation
is maintaining its voltage stability. Considering the large scale
of transmission systems, data collection based on traditional
SCADA system from geographically dispersed locations may
cause fast decision making to become challenging due to large
amount of measurements to be processed at each scan period.

New PMU data acquisition technology offers accurately
measured GPS-synchronized phasor magnitude and phase
data, or synchrophasors, at rates between 30 and 240 sam-
ples per second [16]-[18]. The judicious placement and high
data-sampling rate of the new data acquisition systems have
greatly motivated the application of the measurement-based
approaches for monitoring voltage stability problems using the
machine learning technique described here.

B. Drawbacks of Existing Machine Learning Applications

When using machine learning in power system studies,
many approaches are based on a black box methodology [19],
and very few papers try to interpret the trained models [20].
Recently, the most popular choices in literature have been the
SVMs [21], ANNs [22], and DTs [23]. Because of the dif-
ficulties in interpreting these models, most past work either
employs models that are easy to interpret, or applies the SVMs,
ANNs and DTs in a potentially limiting way.

The performance of a machine learning tool depends on the
capacity of known system behavior represented by the train-
ing data set. Therefore, existing machine learning approaches
usually employ a brute force method to generate the knowl-
edge base using physical system model-based simulations. Due
to the computational complexity from the large amount of
required simulations, a single, unchanged knowledge base has
been used in many applications. The machine learning tools
trained in this way are “passive” and suffer from three main
drawbacks when embedded in online applications:

o The initial training set is formulated at a certain physical

system operating condition. When subsequent updates are
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Fig. 1. Proposed approach versus existing approaches.
not accounted for, the machine learning tool may fail as
system operating conditions evolve;

o« When machine learning models are updated, without
reducing the amount of required simulations, the training
based on the same brute force simulation method greatly
delays the resumption of the online application.

« The knowledge base is created solely based on the power
system model. When fidelity of the system model is ques-
tionable, the prediction accuracy of the machine learning
tools is adversely impacted.

C. Benefits of the Proposed Active Machine
Learning Approach

Active learning is employed in this work to tackle the men-
tioned drawbacks. Fig. 1 shows the difference between the
proposed approach and the existing machine learning algo-
rithms. The active learning technique is iteratively building
the knowledge bases, which is optimized for size and accuracy.
Instead of using the exhaustive simulation method, it interac-
tively selects the most representative OPs when building the
training data set. Instead of relying on all-inclusive simula-
tions based on a power system model, the proposed approach
actively searches for the OPs where inaccurate machine learn-
ing predictions occur. It then performs special simulations to
create new mappings around the identified OPs and adds them
to the existing pool of training data set. This helps capture the
hidden system behavior not represented in the training process
previously.

In most cases, simulations based on power system model-
ing are used to verify the prediction accuracy and identify any
contradictions between machine learning prediction and actual
system behavior. In some rarer cases, such contradiction may
be observed without simulation verification. When the moni-
tored power system has lost its voltage stability but the voltage
stability predictor still reports stable condition is a good exam-
ple of an obvious contradiction. The proposed approach also
includes these directly observed contradictions in the training
pool. The objective is to minimize the negative influence from
inaccurate models of power system components.

Our approach is general enough to accommodate most com-
mon machine learning models, which can function as a prob-
abilistic classifier. The uncertainty of a probabilistic classifier
is examined to guide the knowledge base creation. The active
learning approach has been successfully applied in the past
to tasks such as land cover classification [24], medical image
classification [25], and text categorization [26]. More recently
the focus has shifted towards stream mining [27], novel
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applications in medicine [28], collaborative filtering [29], as
well as more thorough theoretical analysis [30].

In our work, the proposed approach applied to the volt-
age stability problem illustrates the potential for improvement
by quantifying the performance of several common machine
learning models in terms of training time, prediction time, and
accuracy. The voltage stability margin is computed to label
each OP as stable or unstable given a transmission system
state.

With pool-based active learning, a labeled data set is created
from a large pool of unlabeled data using an “oracle” which at
great cost produces an accurate label. The term “oracle” refers
to the steady-state or dynamic simulation based on a detailed
power system model. The data set refers to the OPs generated
by the physical system model-based simulation at various sys-
tem operating conditions. In the presented work, the labeled
OP can also be the known mapping between streamed mea-
surements and actual system behavior. The machine learning
model is then trained to approximate the oracle in a man-
ner which minimizes the number of queries to the oracle.
Pool-based active learning has been investigated frequently
in similar cases where human experts provide labels for
data [28]. These approaches are useful because of the large
difference between the speed with which the system operator
can provide labels and the duration of the machine learning
model’s training and prediction phase.

III. METHODOLOGY
A. Voltage Stability in Transmission Systems

Voltage stability refers to the ability of a power system
to maintain steady voltages at all buses in the system after
being subjected to a disturbance from a given initial operating
condition [31]. In this work, the long-term voltage stability
of a power transmission system in response to slowly vary-
ing load conditions was studied. As mentioned earlier, grid
operators tend to operate the network close to its physical
limits. When these limits are breached, the system may expe-
rience several forms of system-wide failures including voltage
collapse [32].

Voltage stability may be approximated by calculating the
distance of the current OP from the VCP [33]. As indicated in
Fig. 2, voltage instability conditions arise when load demand
attempts to move beyond maximum deliverable power. Normal
system OPs are above the VCP, along the line defined by
the relationship between demand and corresponding voltage
magnitude at the load bus. When the OP moves to a point
below the VCP, catastrophic consequences may occur.

An indicator of the voltage stability, VSM at a load bus may
be computed as:

Poax — Pe
VSM — max current (1)
max
where P,y is the maximum deliverable power, Pcyyrens 1S the

load active power demand at the current OP.

B. Problem Statement

In order to train a machine learning model to provide the
desired predictions in a power grid, a knowledge base that
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Fig. 2. VCP and VSM on the load demand — voltage magnitude curve.

captures sufficient power system behavior needs to be created.
In an example where synchrophasor measurements are avail-
able, the knowledge base consists of N OPs represented by D
data channels, or attributes, recorded by PMUS in the system.
Each OP is represented by synchronized magnitude and phase
angle measurements of voltages and currents. Synchrophasors
summarize the i-th OP with the vector x; = [x;1, xj2 . . . xip]?
where x;; is the feature, or the value of a certain elec-
tric quantity recorded from channel j when the system was
at operating point i. The set Dy is an unlabeled data set,
Dy = X = [x1, X2, ...Xy]. For each OP, x; is associated with
its appropriate quantity of interest y;, the vector of labels is
Y = [y, y2, ... on]

For the voltage stability application in transmission systems
a three-class problem has been considered, where y; = 1 repre-
sents OPs with stability margins that are larger than the mean
stability margin value of all OPs, y; = 2 for OPs with a sta-
bility margin in the second quartile, and y; = 3 if the stability
margin is in the smallest quartile. The range of VSM was from
0.1% to 6%, and further details can be found in [12].

Using the labeled data set makes it possible to train
a machine learning model f, which can then for an unseen
OP x; provide an approximation of the voltage stability.

The task is to build a knowledge base which will lead to
optimal learning per labeled OP. Given Dy, the objective is to
find subsets Dy, incrementally increasing in size, which opti-
mally increase the prediction accuracy of a machine learning
model trained on the current Dy .

This problem mimics the common situation in a power
system where generating OPs in Dy are computationally
expensive while obtaining OPs for Dy is cheap.

C. Classification Problem

The classification problem consists of constructing a map-
ping f between point x; from the input space and the
corresponding label y;, f(x;) =~ y;.

In order to solve the multi-class problem where y; € {1, 2, 3}
a set of 3 classifiers approximate sign(f,(x;)) ~ id(y;, ¢) for ¢
taking the values 1, 2, and 3, and id being the identity function.

D. Probabilistic Classifiers

Probabilistic classifiers predict a probability distribution
function across all possible labels. An advantage of such
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classifiers is that they can provide confidence along with
predictions.

For the 3-class problem of transmission system voltage sta-
bility classification, the probabilistic prediction for the i-th OP
consists of

[o (i) /2, 0 (%)) /2, 0 (f3(x0)) /2] 2)

where z = ¥ [0 (f.(X;))] is a normalization constant and o is
the logistic sigmoid function.

E. Artificial Neural Networks

The ANN was trained to predict one label as a continuous
output. One specific property of ANNs used for binary clas-
sification is that they generalize the entire input space even
if only very few OPs are used for training. A good heuristic
approach to solving this problem involves including at least
one OP from each class into the training set. Experiments were
performed using the MATLAB Neural Network Toolbox [34].

For the binary case the class probability p(y; = 1]x;) also
indicates p(y; = 0|x;) = 1 — p(y; = 1|x;). We obtained the
relative uncertainty from the proximity of p(x;) to 0.5, or the
proximity of the i-th OP to the decision boundary.

F. Support Vector Machines

During the deployment of applications which are based on
the SVM for classification, new OPs are classified by this
model according to their similarity to a set of OPs chosen to
represent a decision boundary.

The locality of the RBF kernel implies that unlike ANN,
confident predictions about OPs dissimilar to data in the train-
ing set are not usually made. The LIBSVM library was used
for experiments [35].

G. Decision Trees and Random Forests

In an ensemble like the RF, the number of trees used dic-
tates the potential number of values that are obtainable as the
probability estimate ps(y; = 1|x;) and is therefore more suit-
able for active learning than pure decision trees. A port of the
randomForest R-package [36] was used for experiments.

H. Active Learning

Instead of assuming that for all OPs x; have the appropriate
yi, the data set Dp, is initially assumed to be empty, or only
initialized with an OP from each class. Domain knowledge
may typically be used to provide several OPs of each stability
state to initialize Dy, but these OPs may not be relied upon
for accurate predictions.

Adding labels to OPs in Dy using the oracle increases the
size of Dr. This set can be used to quantify the increase in
accuracy, after each labeled OP, for both random sampling and
active learning.

1. Pool-Based Active Learning

The details of pool-based active learning are illustrated in
Fig. 3. A larger pool of unlabeled data representing power
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Fig. 4. Integration of the proposed active learning approach in power systems
data acquisition infrastructure, representing data flow.

system operating conditions is iteratively labeled with an ora-
cle (simulation based on detailed system modeling) in order
to create a labeled data set which a machine learning model
may be trained on. The machine learning model’s uncertainty
is used to select data points for labeling by the oracle. At each
iteration, a partially trained classifier chooses an example x*
from the unlabeled data pool about which the classifier is most
uncertain about.

When embedded in online power system applications, the
unlabeled data pool refers to the time-series measurements
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Fig. 5. One-line diagram of the WECC 179-bus equivalent system.
streamed to a central facility where the machine learning
model resides. The proposed technique continually compares
the machine learning model’s prediction with actual system
behavior. Once a contradiction is identified, the corresponding
OP is recorded. The “oracle” is used to generate a precise label
for the OP through model-based simulation. In the presented
work, voltage stability status is determined as a label y*,
and assigned to the OP. The newly labeled OP may now be
included into the pool of Dy, so that it can be used in the next
iteration of learning.

J. Multi-Class Sampling Strategy

For multi-class problems, several approaches can be applied
within the described framework. In order to take advantage
of additional information obtained from a prediction in
the multi-class problem, the margin sampling approach

chooses the OP with the smallest difference in probability
between the first and second most probable label, as computed
from the prediction.

K. Active Learning in Power Systems

As previously discussed, in the study of transmission system
voltage stability the VSM is used as the indicator, or label.
For a large power network, it may take hours to create labeled
OPs by using iterative continuation power flow calculation on
the detailed system model built in the commercial stability
program PSS®E [12], [37].

The integration of the proposed active learning approach in
power system applications is illustrated in Fig. 4. The syn-
chrophasor measurements are streamed from PMUs into the
Unlabeled Pool. In this example, activity does not occur simul-
taneously. The “oracle” (model-based simulation) is calibrated
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off-line, data in the Unlabeled Pool may be historical DT, RF,
or SVM. The “oracle” is used for labeling OPs, which are
then included in the Labeled Pool for learning.

By making predictions on the unlabeled pool, the most
uncertain OPs are identified. The OPs are then assigned precise
labels by the “oracle”, and stored in the labeled pool so they
can be used for later learning. Field measurements can be used
to verify and calibrate simulation tools during the initial setup
of the system.

The machine learning model has three relevant properties
in this work: 1) it is trained using the labeled pool, 2) uncer-
tainty is estimated through probabilistic classification, and
3) an explicit class may be assigned to the i-th OP by finding
pr(vilx;), the maximal value in (2).

IV. CASE STUDY

The proposed approach is evaluated in experiments using
synthetic data obtained from simulations on detailed power
system model. Its performance is quantified in terms of
prediction and training time, and prediction accuracy.

The experiment focuses on predicting the voltage stabil-
ity margins in a transmission network. The test network
is the simplified WECC system which consists of 29 gen-
erators, 179 buses, 263 transmission lines, 42 shunts, and
104 loads. The one-line diagram is shown in Fig. 5. The
knowledge base prepared by the oracle includes 5078 “sta-
ble”, 2540 “alert”, and 2529 “critical” labeled OPs. A total of
256 channels of simulated phasor data were gathered, covering
10147 selected OPs.

Because this is a 3-class problem, uncertainty and margin
sampling were both compared to random sampling by labeling
1000 OPs and quantifying the relevant metrics.

In the case of three classes, the following accuracy metric
was used,

Accuracy =Y id(yi. f(x))/N. 3)

i<N

where id is the identity function, y; € {1, 2, 3}.

In this experiment 1000 random OPs from each class for
a total of 3000 OPs were used for testing. Table I shows
the final accuracy for the transmission system voltage stability
prediction, while Table II summarizes the speedups achieved

TABLE I
ACCURACY IN TRANSMISSION SYSTEM EXPERIMENT

RF ANN SVM
Uncertainty ~ 89.91%+0.5% 88.72%+0.9% 86.59%+0.8%
Margin 90.01%+0.4% 89.73%+0.9% 86.7%+0.8%
Random 84.31%+1% 88.16%+1% 81.79%+-0.9%

TABLE 11
SPEEDUPS IN TRANSMISSION SYSTEM EXPERIMENT

RF ANN SVM
Avs#L 91%+20% 68%+82% 121%+70%
Margin = Avs TR 313%+128% 11%£19% 977%+603%
A vs TE 128%+32% 6%+11% 307%+73%
A vs#L 140%+55% 217%+150% 125%+61%
Uncertainty Avs TR 319%+128% 17%+19% 973%+572%
AvsTE 124%+33% 5%=+11% 310%+74%

over the baseline random sampling approach. The results of
this experiment are illustrated in Figs. 6, 7 and 8.

V. DISCUSSION

A feed forward, back-propagation, artificial neural net-
work’s prediction time is theoretically independent of the size
of the knowledge base, and this fact is reflected in all exper-
iments involving ANN in Fig. 6. The specific architecture
and parameterization used are well suited to the transmission
problem, where data is not as noisy.

In Fig. 6 (a) the training times decrease as the number of
OPs is increased. This may be interpreted as the training pro-
cess necessitating less iterations where more OPs are available,
where each individual iteration is more informative.

ANN prediction time is hardly affected by the training
set size in Fig. 6 (b), the RF does increase significantly in
Fig. 7 (b) as well as the SVM in Fig. 8 (b). Margin sampling
outperforms uncertainty sampling in the transmission experi-
ment in Fig. 7 (c), indicating that the additional information
used in this approach is useful for ANN training set creation.
The accuracy of uncertainty sampling improves over random
sampling only after approximately 700 OPs are labeled in
Fig. 7 (¢).

In Fig. 7 (c), margin sampling outperforms random sam-
pling only after 300 points are labeled, while uncertainty
sampling outperforms it from the beginning. The prediction
time remains mostly the same even after several hundred OPs
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are labeled in Fig. 7 (b), while training time per OP increases
slightly with an increase in knowledge base size in Fig. 7 (a).

Note the significant increase in training and prediction times
per OP as the number of labeled OPs increases in Figs. 8 (a)
and 8 (b). In Fig. 8 (c) the accuracy of uncertainty sampling
closely matches that of margin sampling.

The SVM shows increases in prediction time as more OPs
are added in Fig. 8 (b). However, even being an order of mag-
nitude slower in testing, it produces competitive results, and
is trained significantly more quickly than the ANN. In the
transmission system experiment the ANN starts to train faster
than the SVM after more than 500 OPs are included in Dy.. The
proposed sampling strategies outperform the baseline random
sampling in each case.

Experiments revealed that it is not necessary to initialize
the Dp, for SVM training with more than a single OP, because
of the locality of the kernel used. The ANN however did
not perform adequately with a single training OP, and there-
fore for comparison sake each initial Dy contained one OP
from each class. This ensured a realistic decision boundary for
ANN models and results comparable across machine learning
models.

The RF were not typically impacted beyond the train-
ing stage by training set size in Fig. 7 (b). Even though
not well suited for the active learning approach because of
the flat decision surfaces, the procedure as it is described
here performs well. However, at 100 labeled OPs the margin
sampling strategy performs significantly worse than random

Prediction time in seconds

(b) (©

Voltage stability prediction using SVMs: a) training time per OP, (b) testing time per OP, and (c) number of labeled OPs (c) on the x-axis; accuracy

10* 0 200 400 600 800

# of labels

1000

sampling, indicating a potential interplay of factors discussed
in Section III-H.

While the active machine learning shows promising perfor-
mance, it is worth noting that there are two possible drawbacks
of the proposed approach. One drawback is that as a heuristic
method it does not offer theoretical guarantees on improv-
ing performance in terms of accuracy or the number of OPs
that need to be simulated in the time domain. Another draw-
back is that data which is intentionally misleading about the
underlying uncertainty of the data generating process may
adversely affect the estimates of uncertainty by the machine
learning model resulting in poor predictive accuracy.

VI. CONCLUSION

The following conclusions can be reached:

o A weakness that the training data sets are always effi-
ciently and sufficiently built, which is often overlooked
in applying machine learning problems to power systems
has been identified.

o The proposed pool-based active learning approach can
build data sets for a machine learning model to train on
more efficiently.

o The described approach enhances the existing machine
learning models by identifying the operating points where
model predictions contradict with reality, and adding
labeled data sets around those points to the knowledge
base.
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The approach also accelerates the offline training pro-
cess by reducing the amount of model-based simulations
around other operating points where correct predictions
were made.

The approach was employed to tackle voltage stability in
transmission systems. Promising performance has been
achieved.

The improvements above the baseline random sam-
pling are quantified in all relevant metrics. Results
from the experiments analyzed each machine learn-
ing model within a comparable framework. Significant
improvements have been observed and were discussed in
Section VI.

On average the most efficient sampling strategy across
all experiments conducted was margin sampling, and the
most accurate predictor the RF.

Future directions of this work may include the significant
regression based applications in power systems which appear
to be overlooked thus far in literature.
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