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Abstract— This paper designed a novel multiresolution analysis
method and input waveform classification scheme. The proposed
techniques serve as preprocessing procedures of input waveforms
in order to facilitate synchrophasor estimation. Simple, scalable
and time-shifted “pseudowavelets” (PWs) are employed to repeat-
edly calculate the correlation coefficients between the proposed
PWs and input power waveforms. By scrutinizing the correlation
factors with respect to frequency and time, the proposed method
is capable of revealing the temporal trajectories of frequency
and amplitude features of input waveforms. Such features are
then leveraged to classify input waveform types. The result of
such waveform classification can be applied to perform accurate
synchrophasor estimation. Contrary to traditional approaches,
where a single algorithm is designed to compute synchrophasor
accurately for all input signal types, in this paper, a framework
is proposed which enables adaptive switching of synchrophasor
algorithms, so that the most suitable algorithm can be used for
the identified waveform. The efficacy and efficiency of proposed
methods are validated with standardized phasor measurement
unit testing waveforms and simulated power system waveforms.
The results prove that the PW-based waveform classification
method is capable of distinguishing between power system
dynamic waveforms.

Index Terms— Correlation, frequency estimation, phasor mea-
surement unit (PMU) calibration, power system measurements,
pseudowavelets (PWs), spectral analysis, synchronized phasor
measurements, wavelet transform (WT).

I. INTRODUCTION

SYNCHROPHASOR measurement technology (SMT) is
empowered by the increasing deployment of phasor mea-

surement units (PMUs) and intelligent electronic devices
(IEDs) with PMU functions. Over the years, SMT has proven
to be a good investment and promising enhancement in many
power grid applications [1]–[3].

A healthy operation of synchrophasor system is guaranteed
by a life-cycle management of the system [4]. Synchrophasor
data sources, i.e., PMUs and IEDs, are calibrated before
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deployment, and maintained periodically during service in
the power grid. Either effort necessitates a highly accurate
reference to facilitate the calibration process.

The development of PMU calibration systems has been an
ongoing effort for a decade to facilitate acceptance test for
PMUs before their deployment in power grids. In this proce-
dure, test waveforms are quantified and standardized [5], [6].
So far, many organizations have developed PMU calibra-
tion labs in independent efforts. In [7] and [8], an accu-
rate signal generator is used in the lab, and synchrophasor
reference is thereby inferred from the settings of the sig-
nal generator, which are known and determined before the
tests. Practically, the credibility of such PMU calibration
systems depends solely on the accuracy of the waveform
generation system. Since waveform generation procedure is
subject to uncertainties such as noise and hardware delay, as a
result, those uncertainties should be effectively estimated and
compensated [9].

A common goal found in the literature is to utilize an
absolutely accurate algorithm applicable to all dynamic condi-
tions. Since the electric power system operating conditions are
constantly evolving and exhibiting new phenomena, this “one-
size-fits-all” approach is becoming increasingly impractical.
Research on synchrophasor estimation started from over three
decades ago, when the discrete Fourier transform (DFT)
method was proposed [10]. Over the years, synchrophasor
estimation became an interdisciplinary topic where a wide
spectrum of signal processing methods was employed. The
two most widely used strategies are to explore signal properties
in the frequency and time domains [8], [11]. The difference
between the two strategies is in the selection of signal models,
and in the approach how to compensate for model imper-
fections. DFT uses static signal model, and consequently,
frequency leakage needs to be compensated [12]. Thanks to the
frequency-selection feature of DFT, frequency-domain meth-
ods work well for signals at off-nominal frequencies and/or
when infiltrated with harmonics. Since synchrophasor was
redefined as a dynamic quantity in [13], more research efforts
were directed to dynamic synchrophasor estimation [14],
which is frequently done in time domain where curve-fitting
techniques are extensively used [11], [13]. Time-domain meth-
ods are suitable for processes with slow transients, such as
modulation, but may incur large errors with the presence of
abrupt changes, such as harmonics. As a result, variations
benefitting from both approaches have been proposed [15].
However, to the best of the authors’ knowledge, a single
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Fig. 1. Framework for synchrophasor estimation utilizing the proposed
waveform classification procedure. (a) Loop for waveform classification.
(b) Loop for synchrophasor estimation and output streaming.

synchrophasor algorithm that maintains high accuracy for all
operating conditions does not exist in the literature.

The waveforms in the electric power grid follow specific
patterns, and they have been generalized and formulated as
PMU laboratory test waveforms in [5]. As a result, each PMU
test waveform is associated with certain electrical phenomenon
in the real power grid [16]. For example, low-frequency
oscillations between areas will cause the waveforms to become
amplitude modulated; when a generator gradually loses syn-
chronism, its frequency will ramp up or down (frequency
chirp). For each type of waveform, there are mature methods
in the power grid research [8], [11]–[20]; or can be borrowed
from other disciplines where it has been extensively studied,
for instance, amplitude-modulated signals [21], frequency-
modulated signals [21]–[23], and frequency chirp [24]–[26].

Acknowledging this, this paper proposed an input waveform
classification method, which can then be leveraged to select the
most suitable algorithm for accurate synchrophasor estimation.
Section II elaborates the problem of interest. The mathematical
derivation of a novel time–frequency multiresolution analysis
method is discussed in Section III. In Section IV, a wave-
form classification method utilizing time–frequency analysis
result is described. Tests on implementation platforms are
performed and analyzed in Section V. Conclusions are listed
in Section VI.

II. PROBLEM DESCRIPTION

A. Proposed Approach for Synchrophasor Estimation

The framework is shown in Fig. 1. Waveform classi-
fication and synchrophasor estimation are encapsulated in
two decoupled loops. The proposed waveform classification
method [Loop, Fig. 1(a)] constantly retrieves the input samples
from data buffer, and saves the most recent classification
result in a register. Upon each synchrophasor estimation
[Loop, Fig. 1(b)], the latest waveform classification result is
retrieved from the register, and algorithms can be selected
adaptively for synchrophasor estimation. With identified wave-
form type, the algorithm specifically designed for that type
of waveform can be selected. Since such algorithm does not
need to accommodate multiple types of waveforms, it is also
expected to have simpler mathematical structures. Overall,

Fig. 2. Continuous WT results on 60-Hz input with different mother wavelets.
(a) db4. (b) Meyer. (c) Gaussian wavelet 4. (d) Morlet.

more accurate results and less computation time can be
achieved.

Note that in Fig. 1, Loop [Fig. 1(a)] and Loop [Fig. 1(b)]
run independently and do not need to be time synchronized.
The maximum computation time of Loop [Fig. 1(b)] is
determined by the selected reporting rate per IEEE standard.
Loop [Fig. 1(a)] can operate at a different pace which may
be reasonably slower. It is justifiable to decouple waveform
classification and synchrophasor estimation loops, since the
power grid inertia determines that waveform type does not
change in a short period of time [27]. As a result, both
accuracy and efficiency can be achieved with the proposed
strategy. Also, the procedure of creating output synchrophasor
stream is simplified in Fig. 1.

B. Feature Extraction and Classification

The key of the proposed waveform classification effort lies
in the extraction of distinct features of input waveform. Time–
frequency signatures are good candidates since approaches
to extracting such quantities in signal processing/machine
learning are relatively mature [28]. Since power system sig-
nals evolve in both time and frequency, short-time Fourier
transform (STFT) and wavelet transform (WT) may be uti-
lized. The major pitfall of STFT is invariable time–frequency
atom (resolution), and consequently, it usually cannot provide
enough details on either the time or frequency features. On the
contrary, in WT, scalable and time-shifted versions of mother
wavelet, termed “children wavelets,” are used. By repeat-
edly scanning the input waveform with children wavelets,
the correlation between child wavelet and truncated input
signal can be quantified for each time–frequency atom. In WT,
the scaling factor of mother wavelet is used as a measure of
the variations in input signal, and is considered a generalized
interpretation of frequency. In the power grid, WT is frequently
used in power quality assessment issues [29], [30], as well as
in low-frequency electromechanical oscillation studies [31],
and disturbance analysis [32]. There are multiple mother
wavelet families and members, and consequently, using dif-
ferent mother wavelets will yield distinct results, specifically
the interpretation of scales, shown in Fig. 2.
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Fig. 3. Results of continuous WT using Morlet wavelet on various
inputs. (a) Steady-state 65 Hz. (b) Steady-state 60 Hz and fifth harmonic.
(c) Amplitude modulation. (d) Frequency modulation. (e) Frequency ramp at
1 Hz/s. (f) Frequency ramp at −1 Hz/s.

Moreover, as illustrated in Fig. 3, continuous wavelet trans-
form (CWT) may reveal certain features of input waveform.
For instance, harmonic component can be seen in Fig. 3(b) as a
separate spectrum (pointed by arrow), and correlation strength
variation can be observed in amplitude modulation in Fig. 3(c).
However, even with 12-cycle data window, the time–frequency
features among different waveforms lack enough contrast from
each other to enable effective waveform classification.

Inspired by WT, this paper proposed an alternative multires-
olution tool to extract the time–frequency features of input sig-
nal, which are then used to classify input signal types. Instead
of mother wavelets, a set of customized “pseudowavelets
(PWs)” is used in order to fully employ the trigonometric
nature of input power waveforms.

III. MULTIRESOLUTION TIME–FREQUENCY ANALYSIS

BASED ON PSEUDOWAVELETS

A multiresolution analysis is performed on input power
waveforms using the proposed PW method. In the procedure,
input waveform is translated to coefficient factors with respect
to a pair of time and PW frequency. The coefficients are then
leveraged to reveal the trajectory of frequency, and amplitude
(energy) along time, which are considered as “signatures” of
an input waveform.

A. Power Waveform Revisited

In power systems, the instant power quantities at a certain
node are given by the superposition of the contributions
from generators at the node in question [16]. In general,
this superposition depends on the relative electrical distance
between the node and power generators. As a result, the basic
power signal model is shown in the following equation [5]:

x(t) = a(t) · cos

�
2π

�
f (t)dt + φ0

�
(1)

where a(t) is the instant amplitude, f (t) is the instant fre-
quency, and φ0 is initial phase angle. It should be pointed out
that the definition of “instant” amplitude and frequency is still
under debate in academia [33]. Regardless, without further
discussion, model (1) is utilized as a general expression of
input signal.

Depending on the assignments of a(t) and f (t), (1) may
denote signals under various operating conditions, which are
elaborated in the related IEEE standard [5].

B. Continuous Wavelet Transform and Proposed
“Pseudowavelet”-Based Method

CWT is defined in (2)

CWT(x, a, b) = 1√|a|
� ∞

−∞
x(t)ψ∗

a,b

�
t − b

a

�
dt (2)

where ψ(t) is the mother wavelet function, a denotes the
scaling factor, b represents the time shift, and ∗ is complex
conjugate. Functions ψa,b(t) := 1/

√|a| · ψ[(t − b)/a] are
named “children wavelet” [34].

Mathematically, CWT computes the correlation factors
between input x(t) and children wavelet ψa,b(t), characterized
by pairs of a and b values. Since wavelets have finite time
support (time limited), they also serve as windows that crop
input waveform, resulting in “hopping” windows similar to
STFT. The application of “repeated scanning” on a multiscale
level enables CWT, the capability to reveal both long-term
trends and short-term fluctuations in an input waveform. Evi-
dently, mother wavelet should be meticulously selected so that
CWT can yield the most meaningful results, and thus different
families/members of mother wavelets are applied in various
fields. Such examples may be found in chemometrics [35],
hydrology [36], and power waveform quality [37]. In the
context of power grid signals, model (1) should be leveraged
as prior information, and this is the main motivation of the
PW method.

Similar to CWT, we define a PW analysis, shown in the
following equation:

γ (x; a, b) =
� ∞

−∞
x̂(t)ϑ

�
t − b

a

�
dt (3)

where γ (x; a, b) is the correlation coefficient between x̂(t)
and ϑ(t) for selected pair of a and b, x̂(t) := [x(t) −
x̄]/max[x(t)] denotes the detrended and normalized input
signal, and ϑ(t) is the proposed PWs, which are unit-amplitude
cosine waves. Also, only real signals are analyzed, and there-
fore, complex conjugate in (2) is not applied.

C. Extracting Time–Frequency Information
Using Pseudowavelets

Similar to CWT, the proposed method essentially performs
correlation calculations on a multiresolution level, and there-
fore is also a redundant transform [34]. Since this paper only
focuses on revealing signal composition, and therefore, strict
mathematical discussions on the “transform” and “inverse
transform” are avoided.
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According to Fourier theory, x(t) can be decomposed into
an infinite number of sinusoidal waves, shown in the following
equation:

x(t) =
� ∞

−∞
X ( f )e j2π f t d f . (4)

For simplicity, only one single-frequency component x1(t)
is analyzed. Also, we denote the detrended and normalized
input signal as x(t) from now on. In the derivations, consider
the integral (3) between x1(t) and a PW xpw(t) defined at
frequency f = fpw, where fpw is in fact determined by
the scaling parameter a. Furthermore, considering that the
PW is time limited and only has values over an interval of
Tpw := 1/ fpw, it is appropriate in the discussion that we force
the beginning of PW to be τ = 0, therefore omitting the
time-shifting parameter b all together. Instead, the initial phase
angle φ1 is treated as changeable as PW moves along input
signal. Therefore, a simpler expression of (3) can be shown in
the following equation:

γ (τ, fpw) =
� Tpw

0
x1(t + τ )ϑ(t, fpw)dt (5)

where x1(t) = cos(2π f1t + φ1) is the input with unknown
frequency f1 and ϑ(t, fpw) := cos(2π fpwt). τ is time lag,
and it only changes the instant phase angle of x1(t).

If we rewrite (5), there is

γ (ω1, τ ) =
� Tpw

0
cos(ω1t + ω1τ + φ1) cos(ωpwt)dt (6)

where ω1 := 2π f1 and ωpw := 2π fpw. Denote φ�
1 :=

ω1τ + φ1. Using trigonometric properties, (5) can be broken
down as

γ (ω1, φ
�
1) = 1

2

� Tpw

0
cos

�
(ω1 + ωpw)t + φ�

1

�
dt

+ 1

2

� Tpw

0
cos

�
(ω1 − ωpw)t + φ�

1

�
dt . (7)

Depending on the value of (ω1 −ωpw), the evaluation of (6)
is discussed separately as follows:

Scenario 1: ω1 − ωpw = 0 :

γ (ω1, τ ) =
	 Tpw

0 cos


2ω1t + φ�

1

�
dt + 	 Tpw

0 cosφ�
1dt

2

= Tpw

2
cosφ�

1 = π

ωpw
cos



ωpwτ + φ1

�
. (8)

The first integral is zero since 2ω1 ≡ 2ωpw, and
the integration on the second harmonic over a period is
zero.

Scenario 2: ω1 − ωpw �= 0 :

γ = (ω1, φ
�
1) = sin



ω1Tpw + φ�

1

� − sinφ�
1

2(ω1 + ωpw)

+ sin


ω1Tpw + φ�

1

� − sinφ�
1

2(ω1 − ωpw)

= �
sin



ω1Tpw + φ�

1

� − sinφ�
1

� ω1

ω2
1 − ω2

pw
. (9)

Fig. 4. Illustration of correlation intensity at time lag 0.01 s. (a) Correlation
intensity (0.01). (b)–(d) Waveforms of 64-Hz input and PWs at 8, 21.33,
32 Hz, respectively.

D. Further Discussion on γ (τ)

Applying L’Hospital’s rule, the limit of (9) as ω1 → ωpw
can be evaluated. Note that ωpwTpw ≡ 2π

lim
ω1→ωpw

γ = lim
ω1→ωpw

�
sin



ω1

2π
ωpw

+ φ�
1

�
− sinφ�

1

�
ω1

ω2
1 − ω2

pw

= lim
ω1→ωpw

ω1Tpw cos


ω1Tpw + φ�

1

�
2ω1

+ lim
ω1→ωpw

sin


ω1Tpw + φ�

1

� − sinφ�
1

2ω1

= Tpw

2
cosφ�

1

= Right-hand side of (8). (10)

To conclude, the evaluation of (5) can be compactly
expressed using (10), when the limit value at ω1 = ωpw
is specified. The zeros of (8) are acquired by solving
[sin(ω1Tpw + φ�

1)− sinφ�
1] · ω1 = 0, ω1 �= ωpw

ω1 = kωpw, k = 0, 2, 3, 4, . . .

ωpw ≥ ωpw,min ≡ 2π

Twindow
, or (11a)

ω1 = (2k + 1)π − 2φ1

Tpw + 2τ
, k = 0, 1, 2, 3, . . . (11b)

where Twindow is the length of data observation window in
seconds. ωpw,min corresponds to the situation where only one
cycle of cosine wave spans the entire window length.

From (11a), the evaluation of integral (5) will be zero when
the PW frequency value ωpw is zero (trivial case), or the inte-
ger fractions of the actual (unknown) signal frequency. Due to
this behavior of correlation intensity γ (τ), when tracking the
zeros of γ (τ), the focus should be on the frequencies around
the integer fractions of 60 Hz. For instance, Fig. 4 shows
the correlation intensity at lag τ = 0.01 s. When the input
waveform is a steady sinusoidal wave at 64 Hz, correlation
intensities will be zero at frequencies 32, 21.33, 16, 12.8,
10.67, 9.14, 8, 7.11, and 6.4 Hz. In this case, since ten nominal
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Fig. 5. Transform result on 64-Hz signal. (a) Intensity projection.
(b) Zoomed-in intensity projection. (c) Intensity contours. (d) Zoomed-in
intensity contours.

cycles of data are used, the minimal PW frequency is 6 Hz.
The scale of frequency axis is adjusted to show details at lower
frequencies.

Moving γ (τ) along time axis while computing the correla-
tion intensity using (5) with respect to all the PW frequency
component, the values of γ (τ, ωpw) are calculated. A matrix
� can be thereafter formed, with its elements being γ (τ, ωpw).

Fig. 5 shows a simple illustration for the aforementioned
example, with time lag from 0 to 0.16 s. Geometrically, given
input signal, � is visualized as a surface, with x-axis being
time lag τ , y-axis being PW frequency ωpw, and z-axis being
the value of γ (τ, ωpw). When projected onto τ − ωpw plain,
correlation intensity, the absolute value of �, can be depicted
as brightness in Fig. 5(a) and (b), or contours in Fig. 5(c)
and (d). As can be seen, the regions of low values of � form
distinct “zero bands,” indicated by red-dotted lines.

It is worth mentioning that the proposed method is not
designed for accurate frequency estimation, since the corre-
lation integral is merely an approximation, and its accuracy
depends on the selected sampling interval and data window
length. However, the accuracy of such calculation is sufficient
for the purpose of input waveform classification. In obtaining
the zero-band frequencies, (11a) is a sufficient, but not neces-
sary condition. As shown in Fig. 4, γ (0.01) may achieve zero
values at frequencies other than the integer fractions of 64 Hz.

E. Matrix Formulation of Pseudowavelet Method
Intuitively, the time–frequency analysis method in

Sections III-C and III-D involves iterations on both frequency
and time. To expedite calculation, matrix formulation is
explored.

Similar to STFT, the proposed PW method can be consid-
ered as performing repeated calculation with hopping windows
along data array. Such procedure is illustrated in Fig. 6.
Meaningful data are depicted as greyed rectangles, forming
input signal matrix Xinput. To enable matrix multiplication,
truncated data arrays are zero padded to maintain the same
lengths. The initialization of Xinput is shown in Algorithm 1.

Fig. 6. Illustration on the matrix formation of the proposed method.

Algorithm 1 Initialization of matrix Xinput (hop size = 1,
array size = 4)
1: READ input x(t)
2: DETREND & NORMALIZE input x(t), yielding x̂(t)
e.g.: x̂ (t) = [x1, x2, x3, x4]T

3: CIRCULAR SHIFT x̂(t) and populate into matrix XN×N

e.g.: XN×N =

⎡
⎢⎢⎣

x4 x3 x2 x1

x1 x4 x3 x2

x2
x3

x1
x2

x4
x1

x3
x4

⎤
⎥⎥⎦

4: CALCULATE upper triangular matrix of XN×N

e.g.: XN×N =

⎡
⎢⎢⎣

x4 x3 x2 x1

0 x4 x3 x2

0
0

0
0

x4
0

x3
x4

⎤
⎥⎥⎦

5: FLIP along the center, and result in input signal matrix
X input

e.g.: X input =

⎡
⎢⎢⎣

x1 x2 x3 x4

x2 x3 x4 0
x3
x4

x4
0

0
0

0
0

⎤
⎥⎥⎦

The transformation matrix comprises PWs (cosine waves)
of a set of customized frequencies, and should be generated
offline. Since each PW has finite support, truncation of input
signal is also conducted when PW row vector multiplies input
signal column vector. The values of maximum frequency
of PW fpw,max as well as frequency resolution 	 f pw are
chosen, so that enough frequency details can be provided. The
value of minimum frequency of PW fpw,minis determined by
the reciprocal of total data length, which is incidentally the
frequency resolution of Fourier methods.

IV. WAVEFORM CLASSIFICATION TO IMPROVE

SYNCHROPHASOR ESTIMATION

Section III introduces a novel approach to extract time-
frequency information from input signal. For the purpose of
input waveform classification, it is of paramount importance
that this information is leveraged to highlight energy (ampli-
tude) and/or frequency features. The term “feature” in this
paper denotes the quantity that can present unique behaviors in
a certain phenomenon, similar to that in machine learning [38].
Since the power grid is dynamic system, it is intuitive to
select features that signify such nature, for instance, frequency
patterns and amplitude patterns. After input waveform type is
identified, suitable algorithms may be applied, respectively.
In this paper, a simple reference algorithm is proposed.

An overview of the proposed waveform classifica-
tion method is illustrated in Fig. 7. “Data conditioning”
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Fig. 7. Overall structure of the proposed waveform classification method
employing the proposed PW time–frequency multiresolution analysis. TOR:
time occurrence rate; FOR: frequency occurrence rate.

includes data truncation, downsampling, detrending, and
normalizing. Details of each procedure are discussed in
Sections IV-A and IV-B.

A. Frequency Trajectory Extraction

As is manifested in Fig. 5, the key is not only to extract
instant frequency values, but more importantly, the trajectory
of frequency along time. Bear in mind that Fig. 5 is in fact
a visualization of matrix �, with columns correspond to time
instants (x-axis), rows represent PW frequencies (y-axis), and
matrix elements denotes correlation intensities (z-axis), which
are depicted in color patterns. As discussed in Section III,
frequency patterns can be traced by tracking the zero bands
in matrix � elements: �i, j := γi j . By doing so, z-axis is
reduced (since correlation intensity is assumed to be zero),
and progression of frequency along time can be extracted.

With a closer observation of the contours, it can be seen
that the most prominent frequency and time information can
be tracked from the points at which the contours have zero
derivatives with respect to time (x-axis). In practice, contour
γi j = constant may not be drawn since the calculated matrix
elements do not necessarily contain the desired constant value.
Rather, a “region” in the vicinities of the specified constant
value should be considered. Moreover, the “discontinuity”
of matrix � elements makes it tricky to directly evaluate
contour derivatives using the differentials of matrix elements.
Therefore, a method evaluating the “occurrence rate spectrum”
of each frequency component is adopted, and elaborated as
follows.

1) Specify threshold and tolerance for a contour region, for
example, γi j = (20 ± 8) × 10−5. The elements falling
into this range will all be considered as one contour.

2) Extract the elements within the contour, and sort ele-
ments by their frequency (y-axis) and time (x-axis)
values.

3) The frequency indices with the highest densities (fre-
quency occurrence rate, FOR) correspond to the “flat-
test” portions of contour, and thus are the zero-band
frequency.

Fig. 8. Illustrations of the proposed analysis on amplitude-modulated signal.
(a) Contours. (b) 3-D plot of the elements of correlation matrix �.

4) Time indices with the lowest densities (time occurrence
rate, TOR) correspond to the “thinnest” portions of
contour, and mark the time instants of zero-band fre-
quencies.

The discussed schemes can be considered as projecting
matrix � elements onto frequency axis and time axis. The
derived FOR and TOR reveal the distributions in both fre-
quency and time, and can be effectively leveraged for extract-
ing frequency trajectory along time. Since zero bands are
always near the integer fraction values of nominal frequency,
in practice, only those values should be scrutinized and with
higher resolutions.

B. Envelope Extraction

When there is a variation in waveform amplitude, the cor-
relation coefficients γi j will manifest such dynamics. Fig. 8
shows the PW analysis results of an amplitude-modulated
signal. It can be seen that frequency zero bands remain stable,
while the γi j values at other frequencies are oscillating.

The extraction of amplitude feature is performed by pulling
out the elements of matrix � that associates with a single-
frequency component, revealing the trajectory of correlation
intensity with respect to time. Practically, as long as the
frequency is not zero-band frequency, oscillation patterns can
be uncovered.

Note that γi j values are in fact oscillating because of
the periodical nature of correlation calculation (10). Hilbert
transform [39] can be utilized in this situation to smooth out
the oscillation and reveal the envelope of amplitude features.

C. Synchrophasor Estimation Paradigm

The prevalent synchrophasor algorithms inevitably utilize
certain linearization in either time domain or frequency
domain, so that the quantities of interest can be solved from
linear matrix calculation, for instance, time-domain curve-
fitting-based methods [11], [13]–[15], interpolated DFT [12].
In this paper, however, nonlinear fitting methods were utilized
because of its high accuracy.

A generic model for PMU test signals is shown in (12)

x(t) = √
2Xrms[1 + kAM cos(2π fAMt + φAM)]

· cos[2π fx t + πR f t2+kFM cos(2π fFMt+φFM)+ φ0]
(12)
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where Xrms is the rms value of fundamental component,
kAM/kFM is the AM/FM level, fAM/ fFMis AM/FM frequency,
φAM/φFM is AM/FM angle, fx is input signal frequency, R f

is frequency ramp level, and φ0 is initial phase angle.
Fitting all the parameters in model in (12) is unnecessary

when not all power phenomena are prominent simultaneously.
Therefore, the model (12) is simplified according to classified
waveform type to increase computation efficiency. The idea of
applying a signal model switching mechanism was originally
proposed in [8], and the input waveform classification results
from Sections II and III can be utilized so that only the
parameters of interest are kept in the model. Although various
degrees of simplification on (12) may be applied, typically
four simplified models are of interest, as first discussed in [8],
then elaborated recently in [17]

x(t) = √
2Xrms cos(2π fx t + φ0) (13a)

x(t) = √
2Xrms cos(2π fx t + πR f t2 + φ0) (13b)

x(t) = √
2Xrms[1 + km cos(2π fmt)]cos[2π fx t + φ0] (13c)

x(t) = √
2Xrmscos(2π fx t + ka cos 2π fmt + φ0). (13d)

Equations (13a)–(13d) represents steady-state, frequency
ramp, AM, FM cases, respectively. The switching mechanism
can be conveniently realized by either “Case” structure in NI
LabVIEW, or “Switch” structure in MATLAB.

Phasors are calculated using the Levenberg–Marquardt [40]
algorithm (LMA), which are well-developed modules
in both National Instruments (NI) LabVIEW and
MATLAB. The inputs of LMA are: user-defined waveform
models (13a)–(13d), initial values for unknown parameters,
and raw sampled waveforms.

In order to boost computation efficiency and accuracy, prior
information about the power grids should be leveraged. Due
to large inertia of power grids, the value of frequency always
fluctuates within a small range around nominal frequency,
and also, consecutive frequency estimation results should be
relatively close to each other. Amplitude initial value for
phasor estimation (13) can be approximated using Hilbert
transform [40] on raw data. Moreover, frequency initial value
for phasor estimation (13) should be selected based on nominal
values or previous estimation results.

V. HARDWARE PLATFORMS, TESTS, AND COMPARISON

A. Hardware Platforms and Test Plans

Two physical hardware platforms are considered for the
proposed method: Schweitzer Engineering Laboratories (SEL)
substation computer SEL-3355 and NI CompactRIO (cRIO)-
9082. The platforms are considered since they are the typical
equipment available for such uses in the field and research
laboratories. A summary of the two platforms is given in
Table I.

Although cRIO-9082 chassis is equipped with field-
programmable gate array, the proposed method is implemented
on the “host computer” in cRIO-9082 chassis which is running
windows’ runtime system. To save computation time, data
parallelism is employed in LabVIEW.

TABLE I

HARDWARE PLATFORM FOR WAVEFORM
CLASSIFICATION IMPLEMENTATION

TABLE II

OVERVIEW OF TEST PLANS FOR PROPOSED METHODS

Performance of proposed methods is tested with waveforms
generated from two different sources: waveforms from sig-
nal generator and simulated samples from Simscape Power
Systems. Details of the test setups are shown in Table II.
Practically, parameters for the proposed methods, such as
threshold values, are selected after extensive trials so that the
combination achieves adequate accuracy and efficiency.

B. Algorithm Testing Using Sampled Standardized Waveforms

In this test setup, sampled playback waveforms conforming
to the IEEE standard [5] are used as test waveforms. The
standardized waveforms are generated by PMU Calibration
System at Texas A&M University. The analog signals are
sampled by a separate data acquisition device, and the samples
are saved in text files for later use.

1) Simulation Analysis of Frequency Trajectory Extraction:
Fig. 9 shows the PW analysis on pure 55-Hz sinusoidal
waveform input. It can be seen that frequencies at the integer
fractions of 55 Hz can be identified. The abrupt change in
FOR signifies relatively simple and stable frequency profile,
in this case, steady-state waveform input. The peaks of FOR
spectrum correspond to zero-band frequencies.

Moreover, Figs. 10 and 11 illustrate the feature extraction
cases using FOR and TOR under frequency modulation and
frequency ramp waveforms, respectively. As can be seen,
the FORs have much flatter shapes than in Fig. 9, which means
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Fig. 9. PW analysis on 55-Hz playback waveform. Highlighted frequency
bands are identified using FOR and are within the vicinities of (a) 11 and
13.75 Hz, (b) 18.33 Hz, and (c) 27.5 Hz.

Fig. 10. PW analysis on frequency modulation playback waveform. Fre-
quency extrema are identified by TOR, and frequency range is indicated
by FOR.

Fig. 11. PW analysis on frequency ramp (R f = 1 Hz/s) playback waveform.
Frequency extrema are identified by TOR, and frequency range is shown
by FOR.

the frequencies spread out within a range, which is typical
for dynamic waveforms with frequency variations. Frequency
dynamic patterns can clearly be observed from the extracted
frequency features.

2) Simulation Analysis of Envelope Extraction: Simulations
on waveforms with various amplitude modulation frequencies
are conducted. � matrix elements associated with 55- and
60-Hz PW frequencies are extracted, and the envelopes are
calculated using Hilbert transform. The envelope trajectories
are depicted in Fig. 12. It can be observed that the envelopes
are oscillating, implying amplitude oscillations.

Fig. 12. Results of envelope extraction using Hilbert transform at various
modulation frequencies. The 55-Hz PW components are shown in solid curves,
and 60-Hz PW components are shown in dotted curves. Blue: fAM = 2 Hz,
orange: fAM = 3 Hz, red: fAM = 4 Hz, and green: fAM = 5 Hz.

TABLE III

ACCURACY OF SYNCHROPHASOR ESTIMATION∗

3) Synchrophasor Estimation Paradigm Demonstration: i th
identified input waveform type, the paradigm in Section IV-C
can be applied. The results are shown in Table III. It can
be observed that all the results are within 1/4 of the IEEE
standard [5] requirements for both P- and M-class PMU.

To summarize, identifying waveform type in advance can
notably improve synchrophasor estimation accuracy. Detailed
discussions on this paradigm can be found in [8] and [17].
In practice, however, as implied in Fig. 1, the selection of
synchrophasor algorithm is up to the developers.

C. Simulink Simscape Power Systems Simulation Waveforms

In this section, Simulink Simscape Power Systems sim-
ulation data are generated as test waveforms, as they are
considered close to what can be actually observed in the
power grid. Disturbances are introduced to a steady-state
power grid to induce dynamics in Simulink Simscape Power
Systems package. Inarguably, the simulated waveforms, as
well as real power grid waveforms, are always a combination
of modulations, frequency drift, harmonics and noise, even
though some of the patterns may appear to be predominant.

1) Amplitude Modulated Waveform: The classic Kundur’s
interarea system [41] is used as the test case. A phase
C-ground fault in the middle of Line 1 is added and is cleared
in 5 cycles, triggering an interarea oscillation. The oscillation
is primarily an amplitude modulation. Fig. 13 shows the phase
A voltage on Line 2 near Area2.

The spectra of input waveform in two windows are ana-
lyzed, shown in Fig. 14. It can be clearly seen that after 12.5 s,
a new mode is induced at around 56 Hz.

2) Amplitude and Frequency Modulation Waveform: The
29-bus system [42] is used as the test system. A phase B–C
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Fig. 13. Simulink simulation results on Kundur’s interarea system. Only
phase A waveform is shown.

Fig. 14. Spectra of simulated interarea oscillation waveform. (a) Spectrum
of the waveform between 2.5 and 8.5 s. (b) Spectrum of the waveform
between 12.5 and 16.5 s.

Fig. 15. Simulink simulation results of generator B_7 MAN 5000 MVA
in 29-bus system during a phase B–C fault. (a) Phase A waveform. (b) Positive
sequence terminal voltage. (c) Rotor speed.

fault in North-West Network at the primary winding of the
2200-MVA transformer (near LG3) is added and cleared in
10 cycles. The terminal voltages and frequency of generator
B_7 MAN 5000 MVA are observed, as shown in Fig. 15.

Both amplitude and frequency fluctuations can be observed,
and the spectrum of waveform between 4.5 and 12.5 s is ana-
lyzed and shown in Fig. 16. It can be observed that the system
is operating at off-nominal frequency while experiencing both
amplitude and frequency modulation.

3) Frequency Ramp Waveform: The 29-bus system [42] is
used as the test system. The MTL load (15 500 MW) on Bus

Fig. 16. Spectra of simulated combined amplitude- and frequency-modulated
waveform.

Fig. 17. Simulink simulation results of generator B_7 MAN 5000 MVA
in 29-bus system during a sudden load tripping. (a) Phase A waveform.
(b) Positive sequence terminal voltage. (c) Rotor speed.

Fig. 18. Spectrogram of simulated frequency ramp waveform using a window
of 5 s.

MTL7 is tripped off the system at 1 s, causing the system
frequency to ramp up. The terminal voltages and frequency
of generator B_7 MAN 5000 MVA are observed, as shown
in Fig. 17.

The waveform from 1 to 5 s is studied in the spectrogram
(STFT), shown in Fig. 18, and a roughly linear frequency chirp
can clearly be seen in the spectrogram.
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Fig. 19. Envelope extraction results on amplitude modulation waveform,
from both the PW method and the WT method.

D. Algorithm Evaluation and Comparison Using
Simulink-Simulated Data

The waveforms in Section V-B are used as test waveforms.
The emphasis of PW and waveform classification algorithm is
put on their performances with respect to dynamic waveforms.
Both the efficacy and efficiency are tested, illustrated, and/or
tabulated. Assuming the power system operates at around
nominal frequency before disturbances, only the zero band
around 30 Hz is analyzed at a resolution of 0.01 Hz.

Comparison is made with the WT-based feature extraction
method, where the “time–frequency analysis” block in Fig. 8 is
replaced with WT. Simulations reveal that the family of mother
wavelet does not dramatically change the performance of
WT-based methods, and thus Daubechies-2 (db2) wavelet [43]
is selected to demonstrate because of its simplicity.

Due to the large inertia of the power grid, a longer analyzing
window will inarguably yield more clear and convincing
classification results. The use of a slightly longer window is
justified in the discussion of the overall hierarchy in Fig. 1.
In this section, a window length of 12 cycles is used for
envelope extraction for amplitude modulation waveform, while
10-cycle windows are used for frequency trajectory extraction.
In order to improve efficiency while maintaining adequate
accuracy, the data in the data buffer are downsampled before
analysis. γi j = (20±8)×10−5 is used as the threshold values
to extract FOR and TOR.

The proposed algorithms are tested and timed in both
MATLAB (SEL-3355) and NI LabVIEW (NI cRIO) environ-
ments. The WT-based method is implemented in NI LabVIEW
(NI cRIO) to serve as a comparison. Data parallelism is
employed in NI LabVIEW programming.

1) Envelope Extraction Under Amplitude Modulation: The
data from buffer are further downsampled to 500 Hz for
envelope extraction. Fig. 19 shows the envelope extraction
comparison between the PW method and the WT method. The
55-Hz component is extracted, and 12 cycles are used as the
analyzing window in order to effectively reveal the fluctuation
in amplitude.

As can be seen, both PW and WT methods are able
to exhibit amplitude modulation dynamics. This is because
the amplitude dynamics manifest variations on correlation
coefficients calculated from either PW- or WT-based methods.
The computation times are listed in Table IV.

2) Frequency Trajectory Extraction Under Combined
Amplitude and Frequency Modulation: In this test, frequency
trajectory extraction is evaluated. The data in the buffer are

TABLE IV

SUMMARY OF COMPUTATION TIME FOR AMPLITUDE MODULATION TEST

Fig. 20. Frequency trajectory extraction on combined amplitude and
frequency modulation waveform. (a) Extracted trajectory using the FOR
method and the TOR method. (b) Original PW analysis result.

Fig. 21. Time–frequency analysis result on combined amplitude and
frequency modulation waveform using the WT (db2) method.

downsampled to 1 kHz. The results are shown in Fig. 20.
It can be clearly observed from Fig. 20(b) that the frequency
is undergoing modulation. Using the FOR and TOR methods
discussed in Section V, the frequency features can be extracted
and are shown in Fig. 20(a) as the blue dots. The blue dots
are, in fact, the outline of the dark area in Fig. 20(b). Through
smoothing and interpolation, the frequency trajectory can be
extracted, and shown as the orange curve in Fig. 20(a).

The time–frequency analysis using db2 mother wavelet is
also performed, and the result is shown in Fig. 21. Com-
putation time aside, the extracted frequency contours do not
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TABLE V

SUMMARY OF COMPUTATION TIME FOR AMPLITUDE
AND FREQUENCY MODULATION TEST

Fig. 22. Frequency trajectory extraction on frequency ramp waveform.
(a) Extracted trajectory using the FOR method and the TOR method. (b) Orig-
inal PW analysis result.

clearly show any sign of frequency fluctuations. A separate
band, however, on the higher scale can be observed, due
to the higher frequency components from the modulation.
Overall, WT results cannot be used to extract more fre-
quency dynamic behavior. The computation times are listed
in Table V.

3) Frequency Trajectory Extraction Under Frequency
Ramp: In this test, frequency trajectory extractions are evalu-
ated. The data from buffer are further downsampled to 1 kHz.
The results are shown in Fig. 22. From Fig. 22(b), it is obvious
that the frequency is ramping up. Similarly, the outline of
PW results is extracted using the FOR and TOR methods,
and is shown as the blue dots in Fig. 22(a). The frequency
trajectory can be extracted then by utilizing smoothing and
interpolation, and is shown as the orange curve, which is nearly
linear.

The time–frequency analysis using db2 mother wavelet is
also conducted, and shown in Fig. 23. Similarly, there is no
pattern showing a clear frequency variation, and thus cannot
be used further to study frequency trajectory. Also, a separate
band at higher scale can be observed, due to the higher

Fig. 23. Time–frequency analysis result on frequency ramp waveform using
the WT (db2) method.

TABLE VI

SUMMARY OF COMPUTATION TIME FOR FREQUENCY RAMP TEST

frequency components in frequency ramp waveform. Similar
to the previous scenario, WT results do not depict enough
information to identify frequency dynamics. The computation
times are shown in Table VI.

VI. CONCLUSION

A novel multiresolution time–frequency analysis method
was designed for power waveform classification, and is fur-
ther leveraged to implement accurate reference synchrophasor
estimation. The conclusions are as follows.

1) A new framework for synchrophasor estimation is pro-
posed, where the waveform type is identified first. With
the proposed framework, both the efficiency and accu-
racy of synchrophasor estimation will be improved.

2) A novel time–frequency multiresolution analysis method
based on PWs is proposed. The new PW method is capa-
ble of tracking the variations of frequency components
in the waveform.

3) A novel waveform classification method utilizing the
results of PW multiresolution analysis is introduced.
The waveform envelope and frequency trajectory are
extracted and leveraged to classify the type of input
waveforms.

4) The proposed PW method and waveform classifi-
cation method are implemented in practical hard-
ware platforms, i.e., SEL substation computer, and NI
CompactRIO.
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5) Extensive tests are conducted to evaluate the efficacy and
efficiency of proposed methods in both platforms. The
test results show that the proposed methods are capable
of efficiently extracting the amplitude and frequency
feature of input waveform and perform classification,
even with the presence of noise and harmonics.
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