
978-1-5386-3596-4/18/$31.00 ©2018 IEEE  PMAPS 2018 

Probabilistic Assessment of Electric Vehicle 
Charging Demand Impact on Residential Distribution 

Transformer Aging 

Carolina M. Affonso 
Faculty of Electrical Engineering 

Federal University of Para 
Belem, Brazil 

carolina@ufpa.br 

Mladen Kezunovic 
Department of Electrical and Computer Engineering 

Texas A&M University 
College Station, U.S.A. 

kezunovic@ece.tamu.edu
 

Abstract—This paper proposes a probabilistic approach to 
quantify the impacts imposed on transformer hottest-spot 
temperature and loss-of-life by plug-in electric vehicles (PEV) 
charging demand. A residential complex with 8 households 
connected to a 20kVA distribution transformer is considered. 
Monte Carlo simulation method is applied to take into account the 
stochastic behavior of PEVs, residential demand, photovoltaic 
generation and ambient temperature. Based on historical data, 
different aspects such as the impact of different PEV penetration 
levels, PEV charging power, and the potential benefits the 
connection of photovoltaic generation in the area can bring are 
considered. The obtained results provide a better understanding 
of the effects produced by PEV demand on transformer aging, and 
can be used to decide under what scenarios there may be risk of 
accelerated transformer loss-of-life.   

Keywords—plug-in electric vehicles, Monte Carlo, photovoltaic 
generation, probabilistic analysis, transformer loss-of-life. 

I.  INTRODUCTION 

Plug-in Electric vehicles (PEV) have emerged as a 
promising solution to help environment conservation by 
avoiding the consumption of fossil fuel and hence reducing 
emissions of greenhouse gases and other pollutants in 
the atmosphere. The expectation is that PEVs global fleet will 
continue to grow in the near future with government incentives 
schemes, more affordable prices and the expansion of public 
charging facilities. However, the increasing number of PEVs 
also brings challenges to power system, since it also increases 
demand for electricity. 

The increasing demand of residential PEV charging may 
cause several technical problems in the distribution system, 
such as under-voltage conditions, power quality issues, 
increased system losses, and transformer aging [1,2,3]. When 
operating in overloaded condition, the transformer can 
experience accelerated aging and loss-of-life (LOL) due to 
insulation degradation, requiring early replacement. This 
problem becomes more critical in cities with hot weather, where 
transformers can be exposed to high ambient temperatures 
varying up to 35-45oC. Some studies proposed to investigate 
this problem as discussed next.  

Reference [4] presents a case study analyzing the impact of 
electric vehicle demand on distribution transformer overloading 
in a residential neighborhood of Toronto, Canada. The results 
shows that transformer overloading is expected under certain 
scenarios due to EV charging. In [5], the impact of plug-in 
hybrid electric vehicles on distribution transformers is 
investigated considering a typical residential system. Reference 
[6] proposes a model to optimize PEVs charging/discharging 
and investigates its effect on transformer loss-of-life. An 
analysis of the impact of the connection of photovoltaic 
generation and electric vehicles on transformer operating 
conditions in a district with commercial and residential 
consumers is studied in [7]. In [8], the impact of electric 
vehicles charging on distribution transformer loss-of-life is 
evaluated based on probabilistic analysis, considering the 
presence of photovoltaic generation.  

This paper proposes not only to analyze but also quantify 
the possible effects that electric vehicles charging can produce 
on transformer loss-of-life, considering a residential complex 
with 8 households served by a 20kVA transformer. A detailed 
analysis is developed, quantifying the impact of different PEV 
penetration levels, PEV charging power, and the potential 
benefits that can be introduced by the connection of 
photovoltaic generation (PV) in the residential area under 
different power factors for summer and winter seasons. The 
Monte Carlo simulation method is applied to probabilistically 
estimate distribution transformer hottest-spot temperature and 
LOL, considering uncertainties due to residential and PEVs 
demand, ambient temperature, and photovoltaic generation. In 
order to get more realistic results, simulations were based on 
historical data available in different websites. Our findings 
show that the PEV penetration level, PEV charging power and 
availability of PV power have to be optimized to reduce the 
LOL impact on transformers.  

The remainder of this paper is organized as follows. Section 
II shows how the uncertainties in system parameters were 
considered. Section III presents transformer aging model. In 
Section IV, Monte Carlo simulation methodology is illustrated. 
Section V discusses simulation results and Section VI address 
the main conclusions achieved.  

This publication was made possible by NPRP 8-241-2-095 from the Qatar 
National Research Fund (a member of Qatar Foundation). The statements made
herein are solely the responsibility of the authors. 



 

II. STOCHASTIC SYSTEM MODELING 

The system under study is a residential complex consisting 
of 8 houses connected to the grid through a 20kVA distribution 
transformer as shown in Fig. 1. It is assumed that each 
household has 2 vehicles, which can be conventional gasoline 
or PEV, and each household may have a rooftop PV 
installation. Simulations are performed using historical data of 
demand, solar irradiance and ambient temperature considering 
a location in Texas, USA.  

 
 
 

 

 

 

 

Fig. 1. Schematic diagram of the system under study. 

In order to access transformer loss-of-life, its demand 
should be evaluated as shown in (1) taking into account: the 
aggregated residential demand Pres, the charging  power 
consumed by all plug-in electrical vehicles PPEV, and the power 
generated by all rooftop PV systems in the residential area PPV 
at time t. ்ܲ௥௔௡௦௙(ݐ) = ௥ܲ௘௦(ݐ) + ௉ܲா௏(ݐ) − ௉ܲ௏(ݐ),ݐ = 1. . . ܰ	 (1) 

PEVs demand highly depends on travel patterns and drivers 
behavior, which varies from day to day. Also, PV generation 
varies with weather conditions, and the residential demand is 
constantly changing due to variations caused by customer 
behavior. Because of that, it is important to address all these 
uncertainties estimating transformer load and loss-of-life with 
probabilistically models, which is described next. 

A. Residential Load 

The residential load is the electric power consumed by the 
households with lighting, air conditioning, cooking appliances, 
refrigerator and others, excluding PEV demand. The houses are 
occupied by families that work during typical weekday hours. 
The load profiles adopted in this study were obtained 
from ERCOT website considering a residential customer in 
South Central Texas, and the corresponding power factor is 
assumed to be 0.95  [9]. Fig. 2 shows the aggregated load profile 
adopted for the residential complex during summer and winter, 
with a 30 minutes sample interval. 

Based on the load profile, a Gaussian distribution is used to 
incorporate the corresponding uncertainties, performing 
random sampling to each day interval. This distribution is the 
most commonly used technique for electricity load modeling, 
with mean µL and standard deviation σL as shown in (2) [10]. 

( )2),( 2
LLGaussLoad σμ=  

B. Ambient Tempertature 

The ambient temperature profiles used in this study were 
obtained from Weather Underground website for a typical 
summer and winter day in Austin, Texas [11]. Fig. 3 shows the 

ambient temperature profile adopted for summer (July, 2017) 
and winter (January, 2018) with a 30 minutes sample interval. 
The ambient temperature at any given day and time can also be 
described by a Gaussian distribution from the available 
historical or forecasted data, with mean µTa and standard 
deviation σTa as shows (3). 
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Fig. 2. Residential load profile for summer and winter in Texas. 

 
Fig. 3. Ambient temperature profile during summer and winter in Texas. 

C. PV Generation 

Photovoltaic generation is an intermittent energy source 
and depends on solar irradiance availability. Since solar 
irradiance is time and weather dependent, different day hours 
will have different probability distribution function. In order to 
represent this behavior, historical irradiance data was collected 
for Austin, Texas, using PVWatts calculator developed by 
the National Renewable Energy Laboratory (NREL) [12]. The 
mean and standard deviation values were calculated to each 
half-hour of the day, and a Beta probability density function is 
generated for each time interval. As a result, the PV output 
power can be obtained for a 24 hour period with 30 minutes 
sampling. The Beta probability density function (β-pdf) can be 
expressed as shown in (4) [13]. 
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where Γ is the gamma function, s is the random variable of solar 
irradiance in kW/m2, fβ(s) is the Beta probability density 
function of s, α and β are the parameters of Beta distribution 
function. The values of α and β depends on the mean μ and 
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standard deviation σ of s, as shows (5). 
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Fig. 4 shows the histogram obtained for the expected PV 
output for different day hours. At the beginning of the day, at 
8:00 a.m., there is a high probability of having low power 
production due to low irradiance levels. However, at 11:00 
a.m., high irradiance levels increases the chance of having high 
power production. 

 
Fig. 4. Histogram of expected PV output for different hours during a day. 

D. Plug-in Electric Vehicles Demand 

During charging periods, PEVs represent an extra demand 
to the system. The PEV load profile can be estimated based on 
the start charging time, charging duration and other important 
variables as shown the flowchart in Fig. 5. 

 

 

 

 

 

 

 

 

Fig. 5. Flowchart of PEV demand estimation process. 

According to [14,15,16], most people drive a distance in the 
range of 20–25 miles per day, and 55% of people drive less than 
30 miles/day. The daily miles driven may be represented by a 
log-normal distribution as in (6), with mean μd = 3.37 and 
standard deviation σd = 0.5, which is presented in Fig. 6.  

( )6),( 2
ddLnd σμ=  

Based on the driving distance, PEV state-of-charge when 
arriving home (SOCini) can be obtained as shows (7) [17].  
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where Cb is PEV battery capacity in kWh, Econs is electricity 
consumption in kWh/miles, and d is daily miles driven.  

The energy needed to charge the PEV until it reaches the 
state-of-charge required by the user SOCreq (assumed to be 
95%) can be evaluated with (8), where η is charging efficiency 
assumed in this case to be 0.95. 

( ) )8()100/(%% ××−= ηb
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Considering that PEVs are charged with a constant power P 
at unity power factor, the required time to charge the vehicle 
Chtime is obtained by (9). The PEV model considered in this 
study is Nissan Leaf, a purely electricity popular car with 
24kWh battery capacity and 0.34kWh/miles consumption. 

)9(/ PECh reqtime =  

Another important variable in PEV demand estimation 
process is the starting charging time. Most PEVs owner leave 
their houses for work in the early morning and arrive home in 
the evening. We assume that they start charging their vehicles 
when they return home, at the end of the day, considering a 
delay of 30 minutes between arriving and charging. According 
to [18], during weekdays most people arrive home between 
16:00 and 21:00 after their work hours. Then, PEV home arrival 
time ta follows a normal distribution with mean µta = 17:00 and 
standard deviation σta = 2.28 as shows (10). The arrival time 
distribution is presented on Fig. 7. 
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Fig. 6. Driving distance distribution. 

 
Fig. 7. Arrival time distribution. 
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III. TRANSFORMER AGING MODEL 

Transformer aging and insulation degradation is mainly 
affected by its internal temperature. Since the temperature 
distribution is irregular, the aging effect is evaluated considering 
the hottest-spot temperature, which is the point where the 
greatest degradation occurs. According to IEEE standard C57.91 
[19], the accelerated aging factor FAA at a given hottest-spot 
temperature is evaluated using (11) at each time of the day, and 
the equivalent aging FEQA is obtained by (12), averaging FAA 
over the time N the transformer is under analysis. Assuming that 
normal aging occurs at 110oC, for transformer operation above 
the reference hottest-spot temperature, FAA will be bigger than 
one indicating an accelerated aging. On the contrary, FAA will 
be lower than one. As an example, for a load cycle of 24 hours, 
FEQA=1.084 is equivalent to aging of 1.084 days per one day, or 
26 hours of accelerated aging in 24 hours. ܨ஺஺(ݐ) = ݌ݔ݁ ቀ ଵହ଴଴଴ଵଵ଴ାଶ଻ଷ − ଵହ଴଴଴ఏಹ(௧)ାଶ଻ଷቁ       (11) ܨாொ஺ = ∑ ிಲಲ(௧)×∆௧೟ಿసభ∑ ∆௧೟ಿసభ         (12) 

Based on equivalent aging, the transformer loss-of-life can 
be obtained as shows (13), where t is the time period under 
analysis in hours. Considering normal insulation life as 180,000 
hours (20.5 years) and that transformer operates under reference 
temperature, the normal daily LOL will be 0.1333%. ܮܱܮ(%) = ிಶೂಲ×௧×ଵ଴଴ே௢௥௠௔௟	ூ௡௦௨௟௔௧௜௢௡	௅௜௙௘  (13) 

The hottest-spot temperature θH can be evaluated by (14): ߠு = ௔ߠ + ௧௢ߠ∆ +  ௛  (14)ߠ∆

where θa is the ambient temperature, Δθto is the top-oil 
temperature rise over the ambient, and Δθh is the winding 
hottest-spot temperature rise over the top-oil, all in degree 
Celsius. 

The changes in temperature Δθh and Δθto are calculated as: ∆ߠ௛ = ൫∆ߠ௛,௨ − ௛,௜൯ߠ∆ ൬1 − ݁ି ೟ഓೢ൰ + ௛,௜ߠ∆ ௧௢ߠ∆ (15)          = ൫∆ߠ௧௢,௨ − ௧௢,௜൯ߠ∆ ൬1 − ݁ି ೟ഓ೟೚൰ + ௧௢,௜ߠ∆       (16) 

where Δθto,i is the initial top-oil rise temperature over the 
ambient, Δθh,i is the initial winding hottest-spot temperature rise 
over the top-oil, Δθto,u is the ultimate top-oil rise temperature 
over the ambient, Δθh,u is the ultimate winding hottest-spot 
temperature rise over the top-oil, τto and τw are the oil and 
winding time constant respectively, and t is the sampling period 
in hours. 

The ultimate change in temperature Δθh,u and Δθto,u are:  ∆ߠ௛,௨ = ௧௢,௨ߠ∆				,௨ଶ௠ܭ௛,௥ߠ∆ = ௧௢,௥ߠ∆ ቂ௄ೠோାଵோାଵ ቃ௡	     (17) 

where Δθh,r is the winding hottest-spot temperature rise over 
top-oil at rated load, Δθto,r is the top-oil temperature rise over the 
ambient at rated load, Ku is the ratio of ultimate load to rated 
load, R is the ratio between loss at rated load and no load loss, 
m and n are associated with the cooling mode. 

IV. PROBABILISTIC SIMULATION METHODOLOGY 

Monte Carlo simulation is a widely used method to perform 
probabilistic analysis [20]. It repeatedly generates random 
sampling of system inputs according to its probability 
distribution, in order to obtain a large dataset of the desired 
system output. After that, a statistical analysis can be performed 
on the model output, estimating its behavior and probability of 
occurrence. 

In this paper, the statistical variables considered in Monte 
Carlo simulations are the residential and PEV demand, PV 
generation profile, and ambient temperature. Considering the 
24-hour transformer load cycle, the hottest-spot temperature 
and loss-of-life can be evaluated. A large number of Monte 
Carlo simulations were considered to obtain an accurate 
estimation model (MCmax=3000). The following steps defines 
methodology adopted in this study. 

• Step 1: Generate random variables sampling of residential 
and PEV demand, photovoltaic generation, and ambient 
temperature for summer and winter scenarios; 

• Step 2: Evaluate transformer load to each interval of the day; 
• Step 3: Compute transformer hottest-spot temperature and 

loss-of-life for each half-hour of a day; 
• Step 4: Save simulation results and repeat steps 1, 2 and 3 

until the total number of simulations is reached; 
• Step 5: Perform statistical analysis. 

V. SIMULATION RESULTS 

This paper analyzes the impact of PEVs demand on 
distribution transformer aging in the residential complex 
presented in Fig. 1. The impact of different factors such as PEV 
penetration level, PEV charging power and PV generation 
availability in the residential complex are analyzed.  

A. PEV Penetration Level Impact 

The PEV penetration level (PLPEV) is defined as the 
percentage ratio of the PEVs number to the total number of 
vehicles in the residential complex, considering two vehicles 
per household and a total of 8 households in the studied area. 
The penetration levels considered in this study varies from 25% 
(scenario with low penetration level) to 100% (scenario with 
high penetration level), and vehicle charging power is assumed 
to be 1.44 kW (Level 1). In these simulations we assume that 
all houses do not have photovoltaic generation. 

Table I shows the probability of having an equivalent aging 
factor greater than one according to different PEV penetration 
levels, considering a typical summer and winter weekday. 
During summer, transformer aging increases as PEVs 
penetration level increases. For a penetration level of 50%, the 
probability of transformer aging is 57.42%, which is a 
significant percentage. This probability increases considerably 
when the penetration level is 56%, indicating that transformer 
life will likely be deteriorated. However, during the winter, the 
probability of transformer aging is 0% for most penetration 
levels. This is due to the fact that for the location analyzed, the 
load consumed in winter is usually lower than that in summer. 
Also, ambient temperature is much lower in winter. Fig. 8 
shows the histogram of transformer LOL for 50% PEV 
penetration level. 



 

As an example, Fig. 9 shows transformer load and hottest-
spot temperature for one of the possible scenarios in summer 
with a penetration level of 43.7%. The results show that the 
transformer operates above its rated capacity between the hours 
of 16:00 and 21:00 due to PEV charging. As a consequence, its 
hottest-spot temperature becomes higher than the reference 
temperature of 110oC, and the equivalent aging factor is 1.1045 
for this day, indicating accelerated aging of 26.5 hours in 24 
hours. 

TABLE I. PEVS PENETRATION LEVEL IMPACT ON PROBABILITY OF AGING 

Number of 
PEVs PLPEV 

Prob (FEQA >  1) 
in Summer 

Prob (FEQA >  1) 
in Winter 

4 25.0 % 0 % 0 % 
5 31.2 % 0 % 0 % 
6 37.5 % 0.03 % 0 % 
7 43.7 % 15.31 % 0 % 
8 50.0 % 57.42 % 0 % 
9 56.25 % 83.90 % 0 % 

10 62.5 % 95.56 % 0 % 
11 68.7 % 98.90 % 0 % 
12 75.0 % 99.63 % 0 % 
13 81.2 % 99.83 % 0 % 
14 87.5 % 99.93 % 0 % 
15 93.7 % 99.96 % 0 % 
16 100.0 % 100.0 % 0.066 % 

 
Fig. 8. Histogram of transformer loss-of-life in summer and 50% of PEV. 

 
Fig. 9. Transformer demand and hottest-spot temperature for a scenario during 

summer with PEV penetration level of 43.7%. 

B. PEV Charging Power Impact 

In this section, the impact of the PEV charging power on 
transformer aging is analyzed. Two different charging levels 
were considered for both summer and winter season: Level 1 
(1.44kW) and Level 2 (3.3kW). In these simulations we assume 
that all houses do not have photovoltaic generation. Table II 

shows the probability of having an equivalent aging factor 
greater than one for different charging power and PEV 
penetration levels. As the charging power increases, the 
probability of transformer being subject to accelerated aging 
also increases. During the summer, up to a penetration level of 
31.2%, there is no probability of transformer aging when 
vehicles charge at Level 1. However, when vehicles charge at 
Level 2, the probability of aging is quite significant, around 
85.4%. During the winter, the probability of transformer aging 
is 0% for all penetration levels when vehicles charge at Level 
1. However, when vehicles are charged under Level 2, the 
addition of 10 vehicles’ demand is enough to cause transformer 
more likely to suffer accelerated aging. 

Level 2 requires more power to charge the vehicle during a 
shorter duration time than Level 1. It means the impact on 
demand is more significant in Level 2, leading to higher peaks 
in the load curve as shown the example in Fig. 10. It is 
interesting to note that although transformer operates above its 
rated capacity during 4 hours when charging at Level 1, the 
exceeded demand (maximum of 15.13%) is not enough to affect 
the hottest-spot temperature, which remains under the 110oC 
reference and does not affect transformer life. 

TABLE II. PROBABILITY OF AGING FOR DIFFERENT PEVS PENETRATION 
LEVEL AND CHARGING POWER 

Number 
of PEVs PLPEV 

Prob (FEQA >  1) 
(Level 1) 

Prob (FEQA >  1) 
(Level 2) 

Summer 
3 18.75 % 0 % 0 % 
4 25.0 % 0 % 34.23 % 
5 31.2 % 0 % 85.40 % 
6 37.5 % 0.03 % 98.13 % 
7 43.7 % 15.31 % 99.80 % 
8 50.0 % 57.42 % 99.96 % 

Winter 
7 43.7 % 0 % 0 % 
8 50.0 % 0 % 2.33% 
9 56.25 % 0 % 38.06% 

10 62.5 % 0 % 84.10% 
11 68.7 % 0 % 97.30% 
12 75.0 % 0 % 99.83% 
13 81.2 % 0 % 99.9% 
14 87.5 % 0 % 99.93% 
15 93.7 % 0 % 99.96% 
16 100.0 % 0 % 100% 

 
Fig. 10. Transformer demand and hottest-spot temperature for a scenario during 

summer with PEV penetration level of 25%. 



 

C. PV Generation Impact 

Another analysis performed in this paper is how the 
connection of PV generation in the residential complex can help 
mitigate the effects of PEVs on transformer life. In this case, 
charging Level 1 and summer season are considered, and two 
different PEV penetration levels are analyzed: 43.7% and 50%. 
Different scenarios are adopted according to the number of 
houses with photovoltaic generation in the residential complex, 
ranging from the case where no house has solar PV (0%), until 
the case where every house has solar PV (100%). The results 
are presented on Fig. 11. If half of the households install solar 
generation, the probability of transformer aging will reduce 
from 15.31% to 5.23% under a PEV penetration level of 43.7%. 
However, with a bigger PEV penetration level (50%), even if 
all households install solar generation, the probability of 
transformer aging will still be high, of 33.2%. 

Presently, PV inverters do not inject reactive power into the 
grid. However, new grid codes may allow them to inject or 
absorb reactive power to support the grid. Simulations were 
performed assuming that PV generation can provide or absorb 
reactive power with 0.9 power factor in summer. The results on 
Table III show that when PV operates absorbing MVar, it 
requires more reactive power from the main grid, increasing 
transformer apparent power and as a consequence, its hottest-
spot temperature. This negative impact is more evident under 
high PV penetration level. 

 
Fig. 11. PV generation impact on transformer aging at Level 1 during summer 

TABLE III. POWER FACTOR IMPACT ON PROBAB. OF AGING (PLPEV = 50%). 

Prob (FEQA >  1) 
% houses 
with PV 

PV injects MVar 
(pf = 0.9) 

MVar=0 
(pf = 1) 

PV consumes MVar  
(pf = 0.9) 

25% 51.03% 51.76% 52.50% 
50% 44.43% 46.20% 48.50% 

100% 29.30% 33.20% 37.53% 

VI. CONCLUSIONS 

This paper analyzes the effect of PEV demand on 
distribution transformer lifetime serving a residential complex 
with 8 houses. The Monte Carlo simulation method is used to 
consider all uncertainties related with residential and PEV 
demand, ambient temperature and PV generation. Summer and 
winter season are considered, and different aspects are 
analyzed. The results show that: 
• The inclusion of 9 PEVs, a little bit more than one PEV per 

household, will considerably increase transformer aging 
factor, reducing its expected lifetime; 

• When the vehicles are charging at Level 2, the inclusion of 
5 PEVs in the residential area will likely deteriorate 
transformer life (probability of 85.4%); 

• During the winter, transformer is not exposed to accelerated 
aging when charging at Level 1, regardless PEV penetration 
level. However, when Level 2 is adopted, even during the 
winter, transformer may experience aging depending on 
PEV penetration level; 

• The connection of rooftop PV can avoid transformer 
overloading and help to prevent its life deterioration, 
depending on the number of PEV and operating mode. 
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