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ABSTRACT

The topic of this paper is the design of a Neural Network (NN) for power system fault
detection and classification. The basic task of the NN is to classify new "unseen” fault
patterns based on the fault examples provided during the training session. The source of
the training and the testing data was EMTP simulation. The power system model used was
a three source model with line couplings. Possible application of the proposed Neural
Network Classifier would be as a part of an automated fault analysis solution. It is to be
used as an aid to TJIE-S}fSth operators for fast characterization of the Digital Fault
Recorder event files. The NN-based solution has been compared to an existing solution
obtained using digital signal processing and expert system. It has been demonstrated that
the NN-based solution is at least as selective as the one based on the expert system. Some
major advantages in using NN-based solution where observed when system condition

changes require further "tuning" of the automated analysis.

INTRODUCTION

Power system fault detection and classification are inherent parts of a fault analysis. The
fault analysis is an im]:;onant monitoring function since it provides both operators and

protection engineers with information needed to assess consequences of a fault
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occurrence. Operators need to confirm faulted sections before a restoration is attempted.
Protection engineers need to analyze operation of relays, circuit breakers and

communication equipment in order o assess equipment performance,

Automated fault detection and classification for fault analysis purposes can be
implemented in a number of different ways, Most common approaches in the past were to
use signal processing techniques [1]. Some of the most recent approaches suggest the use

of a solution combining both signal processing and expert system techniques [2].

This paper introduces a new approach to the automated fault detection and classification
implementation using neural network. A similar neural network algorithm was wsed in
different applications [3, 4, 5]. This approach provides some potential computational
advantages over the existing approaches. The NN-based solution described in this paper is
compared with a solution combining expert system and signal processing technigues

introduced by the authors earlier [6, 7).

The first part of the paper is related to the WN algorithm description. Test results
generated using  Electromagnetic Transient Program (EMTP) are presented next
Comparison between solutions based on NN and the one based on a combination of signal

processing and expert system techniques is given at the end.
TYPICAL NEURAL NETWORK APPLICATIONS

A genceral, yet rigorous. definition of an neural network can be stated as follows [8]:
"A neural metwork is a parallel, distributed information processing structure
consisting of processing elements (which can possess a local memory and carry out

localized information processing operations) interconnected together with



unidirectional signal channels called connections. Each processing clement has a
single output connection which branches ("fans out") into as many collateral
connections as desired (each camrying the same signal - the processing element
output signal). The processing clement output signal can be of any mathematical
type desired. All of the processing that goes on within each processing element
must be completely local; i.e., it must depend only upon the current values of the
input signal arriving at the processing element via impinging connections and upon
values stored in the processing element'’s local memory.”
The key elements of most NN descriptions are distributed representation, the local
operations, and nonlinear processing. Neural networks are primarily used in situations
where only a few decisions are required from a massive amount of data and situations
where a complex nonlinear mapping must be learned. Main applications of the present day
neural network computing include:
* functional approximation
o clustering
= data cnmprcs.siu.n
*  optimization

* topological mapping

Functional Approximation

Feedforward nevral network can be looked upon as a functional mapping between two
spaces, i.e. representation space (NN inputs) and interpretation space (NN output).
Evaluation of the given mapping is done by propagating the activations from input layer
toward the output layer. The class of functions that can be approximated by a network is
determined by the network topology and activation functions. A large number of
interesting application-oriented tasks in functional approximation theory belong to

categones of classification and control.



Currently, many neural network applications can be characterized as classification tasks.
Most feedforward network models, using supervised leaming technigues, have been
developed explicitly for classification as a goal application.

The control task can be defined as follows: For a given device, a controller is to be
designed to stabilize it or to keep it on a certain trajectory. There exists several NN
applications in this field, but still the focus of research is on looking for new, more

efficient leaming paradigms.

Clustering

The clustering task can be formulated in the following way: A given set of objects,
characterized by a fixed length vector of features, is to be partitioned into a certain number
of clusters such that the variability of objects within each cluster is low, while variability
between clusters is high. In other words the task is to find such a distribution of objects
that will provide acceptable trade-off between maximization of intercluster variances and
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partitions of n objects into ¢ non-empty clusters [9]. Clustering is realized through
feedforward/recurrent networks using unsupervised learning techniques, or combination of

supervised and unsupervised leaming.

Data Compression

Data compression is typically an unsupervised leaming task. Data compression is a gencral
form of clustering, where for a given set of data patterns., compact representation is
sought. Each pattern is compressed to a pattern whose dimension is much lower than that

of the original pattern, or groups of patterns are represented by corresponding prototypes.



Optimization

As in the case of functional approximation, optimization is a very general task. Neural
networks had been used in solving some difficult combinatorial optimization problems
(such as the traveling salesman problem). Propagation procedure for feedback networks
can be viewed as a minimization of a certain global function of activations of all neurons
of the network, and hence can be used for solving minimization {or generally optimization)

problems.

Topological Mapping
This is another interesting application where neural networks are able to find a mapping of
a continuous input space to the quantized output space so that topological propertics such

as neighborhood in the input space are preserved in the output space.

NEURAL NETWORK ALGORITHM DESCRIPTION

The neural network application presented in this paper belongs to the group of the
clustering tasks. The Méﬁﬁlhm proposed in this paper implements a supervised "follow the
leader” approach and controls the clustering process by a threshold called the vigilance
parameter p, and by the Euclidean metric function. This algorithm is presented
schematically in Fig. 1 and Fig. 2, and it consists of an unsupervised clustering part and a
supervised extraction part. In the unsupervised clustering, all training pablerns are
clustered using the fixed value of vigilance parameter p. Cluster geometries depend on the

adopted self-organization model.

In this paper, cluster is defined as a hypersphere and p is the radius. After stable cluster
formation occurs, the supervised part is executed. and all homogenous clusters (i.e.,

clusters containing only patterns for a parnticular type of fault) are stored in the memory.



These are removed from the waining set for further processing. After that, the vigilance
parameter is decreased and the procedure is reiterated for that reduced p. The training is
completed when there are no fault patterns left or the vigilance parameter has reached very
small value e. As a result of the training procedure, input training set is mapped into a
smaller number of clusters with different p, which is schematically illustrated in Fig. 3.
Every cluster is defined as a hypersphere with center b and radius p. Mathematical
description of the unsupervised clustering part is given in Appendix A In Fig. 2, N
denotes the number of input features, P the number of patterns in the training set, K the
number of clusters, X' the ith feature of the input pattern p  ( i=1,...N; p=1....P ). by
the center of the cluster k ( i=1,...N; k=1....,.K ), p the vigilance parameter and ny the
number of patterns that belong to the cluster k.
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Figure 1. Block diagram of the supervised clustering algorithm
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Figure 2. An illustration of a “follow the leader” unsupervised clustering algorithm



Figure 3. Schematic illustration of the outcome of the training process

EMTP SIMULATION

Fault patterns are generated using Electromagnetic Transient Program (EMTP) simulation
[10]. A one line diagram of the modeled power system is given in Fig. 4. It represents part
of an actual 161 kV power system with short transmission lines. The transmission line
considered for simulatipn of fault events is the one berween buses 2 and 3. It is fully
transposed and 13.35 miles long. Data for the EMTP model of power system are given in

the Appendix B.



L kT |

O i< ®

Figure 4. One line diagram of the model of the 161 kV power system

A number of EMTP simulations of various fault events were performed for generaring
fault patterns to be used for training and testing of the neural network. The maximum time
of simulation was 50 ms, while the data sampling time step used was (.5 ms (sampling
frequency f;= 2 kHz).

All 11 possible faults are simulated (a-g. b-g, c-g, a-b, a-c, b-c, a-b-g, a-c-g, b-c-g. a-b-c

and a-b-c-g faults) and the following three parameters are varicd within cach simulation:

= fault location (0.0, 0.14, 0.80 and 1.0, where 1.0 corresponds to the whaole length

of the transmission ling)



« fault resistance (0 £2, 3 £2, 652 and 50 03)

« incidence angle of the fault occurrence (0°, 45°, and 90)

A total number of 619 fault patterns were generated in this way. Also 1 pattern labeled as
normal state was generated using EMTP to represent the stzady state (no fault state) of

the power system.

FAULT CLASSIFICATION USING NEURAL NETWORK

Several different input data sets into the NN were considered during design and testing.
These input data sets are summarized in Table [. Input data sets 1, 2 and 3 consist of both
prefault and postfault samples, while input data sets 4, 5 and 6 contain only postfault
samples. Since the proposed neural network algorithm contains no hidden layers (flat net)
the network structure depends on the type of the input data set. The number of neurons in
the input layer is determined with the length of the input vector (e.g.. for the input data set

1, the number of neurons is 600, while for the input data set 5 that number is 99).

Table 1. Neural network input data sets

Input data set | Input data set 2 Input data set 3

Length of fault patterns is 3 | Length of fault patterns is 3 | Length of fault patterns is 3

cycles (50 ms) cycles (50 ms) cycles (50 ms)

Fault pattern contains both | Fault pattern contains only | Fault pattern contains only

voltage and current samples | current samples voltage samples

Number of samples in every | Number of samples in every | Number of samples in every

fault pattern is 600 fault partern is 300 fault pattern is 300




Tahle 1. Neural network input data sets (cont’d)

Input data set 4

Input data set 5

Input data sct &

Length of fault patterns is 1

cycle (16.67 ms)

Length of fault patterns is 1
cycle (16.67 ms)

Length of fault pattems is 1

cycle (16.67 ms)

Fault pattern contains both

voltage and current samples

Fault pattern contains only

current samples

Fault pattern contains only

valtage samples

Number of samples in every

fault pattern is 198

MNumber of samples in every

fault pattern is 99

Number of samples in every

fault pattern is 99

Examples of the wave forms used as an input data set for the neural network are given in
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Fig. 5 and Fig. 6.
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Figure 5a. Input data set 1
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the total number of fault patterns used for training was 324. In addition to that, one steady
state pattern was provided during the training. Distribution of the patterns according to

the fault type is given below in Table I1.

Table 11, Distribution of Training Fault Patterns

Fault Type Fault Location Fault resistance No. of patterns
Locl | Remoic Low High

a-g i 18 16 b 24
b-g 12 24 24 12 36
c-g 12 24 24 12 36
a-b 12 13 20 10 30
a-c 12 21 2 11 33
b-c 12 21 22 11 33
a-b-g 10 20 24 6 30
a-c-g 10 20 24 (3] 30
b-c-g 10 20 24 (i} 30
a-b-c 8 14 14 8 2
i-b-c-g 8 12 18 2 20

Total 112 212 232 92 i

Results of training (clustering) for every input data set are given in Table III. The neural
network algorithm is implemented in C programming language on the IBM RISC 6000
platform. Total time needed for neural network training in the most complex case (for
input data set 1) was approximately 15 min. A little over 8 min. was needed to train neural
network for input data set 5 or 6.

Class membership of each cluster 15 determined during the supervised part of training. A

cluster is considered homogenous if it contains fault patterns of a particular type (a - g, b -



€-g a-b-c et) The following additional labels are given according to the cluster

contents:

if the cluster contains fault patterns only for fault locations 0.0 or 0.14 (where 1.0
denotes full length of the transmission line), the cluster is labeled with the word local

{meaning that cluster represents faults that happened near the local bus)

if the cluster contains patterns for other fault locations (i.e., 0.80 or 1.0, the cluster is

labeled with the word remore.

if the cluster contains only patterns representing faults with fault resistance equal 0 £,

3 0 or 6 £, they are labeled with the word low (meaning low fault resistance).

if the cluster contains only patterns representing faults with fault resistance of 50 £2,

they are labeled with the word high (meaning high fault resistance).

Hence, two valid cluster labels are:

a-b meaning the cluster contains fault patterns of the type a - b fault with mixed
high and low fault resistance patterns as well as a - b fault pattems with different fault
locations.

b-c-g-remote - low meaning the cluster contains fault patterns of the fault type

b - ¢ - g; fault resistance for this class is low resistance (0 £2, 3 £ or 6 £2) and fault

location is remote,



Tahle M. Training Results

Input data set | # of input patterns | Number of clusters
/ 325 131
2 325 132
3 325 105
4 325 128
5 325 128
i 325 118

During the testing, NN was presented with 295 new fault patterns. Neural network never
"saw" these patterns and the task was to classify new patterns based solely on the previous

experience (i.e., using the information "leamed” during the training).
Classification was based on the following logic:

* if new pattern "bcluhgs" to the nearest cluster (i.e., Euclidean distance between pattern
and cluster centroid was smaller than radius of that cluster), pattern inherited class
membership of that cluster

+ if new pattern "does not belong" to the nearest cluster (i.e., Euclidean distance
between pattern and cluster centroid was greater than radius of that cluster), then

pattern was assigned label according to the class membership of the nearest three

clusters (3 nearest neighbors).

The results are summarized according to the NN input data sets in Table IV. Considering

pairs of input data sets 1 and 2, and 4 and 5 it can be noticed that NN performance is not



deteriorating if only samples of phase currents are taken as pattern features, On the other
hand, computational effort and tme are greatly reduced if the woltape samples are

disregarded.

Table IV, Neural Network Classification Results

Input Data Set Correct Classilication Incorrect Classification | Correct [%]
inside the oulside Lol inside the cmtsicle Eovbal
chuster | the cluster cluster | the cluster
I 214 68 | 22| 7 6 13 95.59
2 218 65 |283] 7 5 12 95.93
3 195 | 86 | 281 1 13 14 95.25
4 200 | 67 |26 ] 1 8 19 93.56
5 207 71 |21 u 8 19 93,56
6 199 80 | 279 1 15 16 94,58

All incorrectly classified cases are listed in tables in the Appendix C.

EVALUATION OF THE NEURAL NETWORK BASED APPROACH VS.
EXPERT SYSTEM BASED APPROACH

Expert systems and neural systems are two complementary technologies in the field of
Artificial Intelligence (Al). An expert system is constructed by the contribution of one or
more human experts. Human experts supply their own tested methods and knowledge to

- give the computer the basis for appropriate answers for a specific problem. When new
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expertise stops coming . the domain knowledge and methods for handling this knowledge
stop growing. On the other hand, a NN system leams directly by interacting with the
application. Given enough time and experience or training, the NN system will ideally
learn everything about the application. It will be able to leam what is presently not known

by any of the experts.

Below are presented some of the beneficial characteristics of NN systems compared to
the conventional Expert Systems [11]:

« Generalization

+  Graceful degradation

*  Adaptivity and leaming

« Pamllelism

Generalization

Inferences of any logic based system are performed on syntactically completely defined
strings of symbols, and there is no concept of similarity between the symbols. That means,
an arbitrary small change in input leads to completely different inferences. Since no two
real-world situations are exactly the same, some type of continuous representation and
inference system is required, with similarity a metrics such that for similar inputs or
situations, outputs or inferences are similar, too. This is an inherent property of neural

networks.

Graceful Degradation

In the case of inaccurate or incomplete data, a logic based inference system, because it
lacks similarity concept. may lead to results that differ drastically from those
corresponding to exact data. This is typical behavior of the rule-based expert systems.

Their encoded knowledge in the form of the rules is specified during the design period. If
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some of the inputs are inaccurate or missing, the expert sysiem reaction may be
completely incorrect because the inference chain cannot be used in the same way as with
exact data.

This is not the case for neural networks, If a small proportion of the input data is missing
or distorted, performance deteriorates only slightly, Performance deterioration is

proportional to the extent of data inaccuracy or incompleteness.

Adaptivity and Learning

The main property of logic based methods is their rigidness. The theory of logic is
concerned with the task of drawing sound inferences from a given set of logical statements
rather than with a question of how this set is generated. Acquisition of general statements
from individual cases in real-world context is an unsolved problem. The maintenance of
expert systems is yet another problem. If the environment changes slightly, there are no
easy methods of incremental adaptation to such a modified environment. This is an
important handicap since few tasks are invariant in time.

On the contrary, in the neural network systems, leaming by example is the only way of
encoding knowledge into them. Also, adaptation is straightforward, because there is no
strict difference between learning as an initial knowledge acquisition, and adaptation as a

process of maintenance of acquired knowledge in changing environment conditions.

Farallelism

In the existing logic based systems, inference procedures are mostly sequential. Sequential
processing of features separately can lead to lengthy procedures or to erroneous dead ends
from which recovery can not be readily achieved. This contrasts with the inherent
parallelism of virtually all neural networks algorithms. In most cases, all NN units can be

updated simultaneously.
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NEURAL NETWORK V8. EXPERT SYSTEM COMPARISON

Results of fault classification using neural network are given in the previous paragraph,
and they show the behavior of the NN in absolute terms. The existing rule-based Expert
System (ES) [2, 6, 7] has been chosen to make relative comparison between two different
approaches for solving the same problem (i.e. detection and classification of faults in

power systems). A functional outline of the ES is given in Fig. 7.

Fanlt type
EMTP MATLAB CLIPS Event -
Formar Conversion Signal Analysis Classification

Figure 7. Expert System block diagram

Input fault events were the same as those used for testing of the NN. Signal processing
technigues (using MATLAB built-in functions [12]) are used to process voltage and
current wave forms in order to determine signal parameters. These parameters are then
used to classify a given event. An expert sysiem is implemented using CLIPS for this
purpase [13]. Table V shows the parameters used for determining the type of the fault
This table consists of voltage and current pattems that describe fault type. In the case that

given relations are not satisfied, the event is not a fault.
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Table V. Behavioral Patterns of the Basic Parameters

Event 0 Seq. Faulted | Unfaulted | 0 Seq. Faulted | Unfaulted Line
E_IE Current | Current | Current Vol Volta Vi Volt_a;g
T T, V. oV 6V,
{ I v BV oV [T
I, =—1 I <= V. 2| V<L |y, e—X
a-b <300 | “>1%% | "0 T RO T 10
1,>101, v, <t
10
T i Vv BV GV B,
Iy >=L : == Vet |Vec—2|V> v, c—%
a-b-g|0¥qg |L>14 10 ' 0 10 100 10
1,>101I, L
10
3 v 8V A
a-b-¢ fu":ﬁ f;]‘"}f’ .I":;{ﬁ ‘f"}'\:lu VU{-]F
Al V. 8V 1A
a-b-c-g fn‘:ﬁ II}"]'I’ W< 100 1"} < 10 V< 0

The task of the Expert System was to classify a set of 295 fault events. The fault events
were generated using EMTP simulation and are the same as those used for NN input in
data set 1, The expert system requires both prefault and postfault samples in order to
calculate network parameters, so input data sets 4, 5 and 6 which can be used by the
neural net classifier are in the expert system case inappropriate.
The result of the classification was:

« for 288 fault types classification was comrect

+ for 7 fault types classification was incorrect,

In other words the expert system was correct in 97.64% cases. Fault patterns that are

classified incorrectly are listed in Table VI.
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Tahle V1. Patterns Incorrectly Classified by Expert System

Simulated Fault Type

ES Classification

a - b fault, fault location 1.0, Ry =500
a - ¢ fault, fault location 1.0, Ry=50 02
a - ¢ fault, fault location 1.0, Ry= 50 Q
b - ¢ fault, fanlt location 1.0, Ry= 50 Q
a - g fault, fault location 0.8, Ry =50 0
b - g fault, fault location 1.0, Ry = 50 02
c - g fault, fault location 1.0, Ry = 50 0

none

none

e

nong

none

none

noneg

The main reason for expert system erroneous classification of these events was unexpected
current wave forms for remote high fault resistance fault patterns. Expert system rules are
based on a general assumption that in the case of a fault, faulted phase currents are larger
than respective prefault currents, which was not the case for fault patterns below. Fig. 8

gives one of those events as an example. This is a phase a to phase b fault, where phase b

current dropped after the fault.
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Figure B. Phase a to phase b high impedance remote fault

CONCLUSIONS

This paper shows that the proposed neural network is successful in power system fault
detection and classification. Compared to the existing expert system based solution for the
same task, neural network proved to be as selective and at the same time computationally
less demanding. The obtined results indicate that supervised clustering technology can be
used for accurate pattern classification. The proposed NN algorithm is easy to implement

and contains no hidden layers (flat network). One advantage of using flat network is that



both supervised and unsupervised learning can be carried out with the same network

structure.
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Appendix A

PROBLEM:
Given a set of P (p=1, 2, ..., P) patterns Jm

lm L [Ilt.n] !x?j‘ e xn:;r] ]T
Find a family of (hyper)spherical clusters C, (k=1, 2, ..., K) so that

C, = Sef|x®(x” -b,) (x* - b,) < PI}

Sphere radius P is given, and is assumed to be the same for all clusters.
Each cluster is defined with its center b, and radius p
C.=C [bhp]
s0 what remains o be found is a set of vectors (centroids) by fork =12, ., K and K.
Following algorithm implements unsupervised leamning technigque which is a neural-net

implementation of the ISODATA clustering algorithm.

INITIALIZATION RUN

Reorder patterns in the data set.

STEP .
s Find a center b of the entire data set
1 ()
b=—%x"
Pya
o Find distances berween cach pattern x" and the center b and rank them

in an increasing order,

STEFP 1.
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Form cluster 1

by(1)= x"
Meaning cluster C, with centroid b, contains | pattern.
STEP 2.
If
(x* -b) (2 -b,) <p*
adapt B, as
By(2)=b,(1)+ %{f" ~b,(1)
If

(x®-b,) (x* - b,)>p*

form cluster 2 as

by(1) ="

In doing so after presenting q < P patterns the situation is as follows:
m - clusters exists, their centroids B, are known and we know how many patterns

belong to each cluster 1.

¢, bin)
G b :{":}
C. bin)
Clearly,
n =g

So, when we present next patiern g+1 we first allocate the closest cluster T, by
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min{(l““] = !—?J ]T{E['H] " EJ )} g r'z

i

3 z

and then compare r. and p

If ri<p’

then adapt cluster as

b(n +1)=b.(n)+

[xl:wn = Q: [n’r })

n+1"
If e
then form new cluster as

b..(1)= l‘ﬁ']

This procedure is repeated until the entire set of patterns is processed once.

STABILIZATION RUN

We present every pattern, x'P_again. Let say presently pattern p belongs to cluster Cy.

First, we find the shortest distance between X' and all existing centroids b;

min{(x” — b, (2? —b,)} =

J
Second
1. ¥ t=k ad 5p
then no learning occurs; check next pattem p + 1.
. F ek asdirIsp
then adapt b, and b, as
bi(n +1)=b.(n )+

(x* ~b.(n,))

A +1

T
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bi(n,~1)=by(n,) - '1(;"-‘—@*%*)} for n, >1

n, —
Cluster  b,(n,—1) is discarded for n =1

. 2 2
= If rL>p
form new cluster Cpy

b.(1)=x"

and adapt “previous” centroid b, as

L(5['“] = Ek[”ﬁ]} Jor m.>1

n -1

ék{n* T ]} = ék{n* :I_

Cluster b,(n,—1) is discarded for n =1

NOTES:

1. Initialization run goes only once.

2, Stbilization run can repeat several times. The end is when no patterns change

their clusters in two successive stabilization runs.

3. To run this algorithm one has to keep accounts of:
o where each patern X'*' belongs.
+  how many patterns are in each cluster

«  centroid of each cluster

Ll



The main difficulty is to have a good estimate of radius p. This is unsupervised
leaming so "we don't know" what the patterns say: In other words we don’t know
their class membership before hand. Once learning is done we have to attach some
meaning to each cluster. This may require running the leaming process several

times for different p until we are satisfied with clustering cutcome.

In consulting (testing) we simply take new pattern X and find
. T a
min{(x~b,) (x~b,)} =,

if r; Ep'!

we will attach the class membership of the cluster Cg to the pattern X

g Esp

we may still do the same thing but with greater risk or reject to classify X.

Hints:
«  Nomalize the data set so that each feature of X, namely X, is scaled

between -1 and +1, or
»  Mormalize every pattern so that ||£ml =1
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Appendix B.

Table B - 1. Source Impedances

Bus Name Per-Unit Value Actual Yalue [£2]
| —————— — —— —

| Zo 0.58 + j 6.32 1.503 +j 16.382

Z ~ 058 +j11.41 1.503 +j 29.576
R = 0.07 +j 1.07 0.181 +j 2.774

7 0.04 +j0.73 1.1044 + j 1.892

3 . 0.75+j 407 1.944 + 5§ 10.550
Z 0.31+j3.04 0.804 + j 7.880

Table B - IL System Equivalents

Bus Name Per-Unit Value Actual Value [£2]
1-3 A 119.69 +j 188.93 310248 + ) 489,725
Z 1.80 +j 11.44 4,666 +j 29.654
BT = % =
Z 12.58 + 3 74.00 32609 + 19I.81_5
A Zo | 3979 +j 100.63 103.140 + j 260.843
7 275 +j 18.32 7.128 + 47.487




Table B - IT1. Self Impedances of Transmission Lines

Bus Name Per-Unit Value Actual Value (€]
==g
y 3 Za 8.94 +j28.34 23.1734 + j 73.4001
7 1.52 +9.00 3.9400 + j 23.4844
o Zo 8.52+29.23 22.0847 +75.7071
% 1.38 + j 8.80 3.5771 +76.1300
Ss Zo 8,40+ 29.37 21.7730 +j 76.1300
Z, 1.34 4 j8.73 3.4734 +j 22.6200
y Zo 8.42 + 26.74 21,8255 + | 69.3128
z, 1.50 + j 8.47 3.8882 +j 21.9551
”. 3 Za 3.67+)12.38 9.5130 + j 32.0002
Zi 0.67+)3.92 1.7367 + 10.1610




Appendix C.

Table 1. Incorrectly classified cases for input data set 1.

Mo.

Actual simulated fault

Meural net classification

a - b - ¢ fault. fault location 1.0, Rg=0

a-¢- g fault, remote, low impedance

a -b -¢ -g fault.fault location 0.14,R¢ =0

a- b - ¢ fault, local, low impedance

a - b - g fault, fault location (0.0, Ry =50

a - b fault, local, low impedance

a - b - g fault, fault location 1.0, Ry =3

a - b fault, remote, low impedance

a - b - g fault, fault location 0.79, Ry =3

a - b fault, remote, low impedance

a - b - g fault,fault location 0.79.Ry =50

a - b fault, remote, low impedance

a-b - g fault, fault location 0.81, Ry =3

a - b fault, remote, low impedance

a - b - g fault fault location 0.8 1,R¢ =50

a - b fault, remote, low impedance

b - ¢ fault, fault location 1.0, Rg=0

b - c- g fault, remote, low impedance

10.

b - ¢ - g fault, fault location 0.0, Ry =50

b - ¢ fault, local, low impedance

a-b - g fault, fault location 0.79, Ry =6

a - b fault, remote, low impedance

12,

a-b - g fault, fault location (.81, Ry =6

a - b fault, remote, low impedance

13.

b - ¢ fault, fault location 1.0, Ry =6

a - b fault, remote, low impedance
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Table 2. Incorrectly classified cases for input data set 2.

No. Actual simulated fault Neural net classification

1. | a-b-c-g fault fault location 0.14,R¢ =0 | a- b - ¢ fault, local, low impedance
2. | a-b - g fault, fault location 0.0, R¢ =50 La - b fault, local, low impedance

3. | a-b - gfault, fault location 1.0, Rg=3 | a- b fault, remote, low impedance

| 4. [a-b- g fault, fault location 0.79, Rg=3 | a - b fault. remote, low impedance

5. | a-b- g fault.fault location (0.79,Rg=50 | a - b fault, remote, low impedance
6. | a-b- g fauly, fault location (.81, Ry =3 | a - b fault, remote, low impedance
7. | a-b- g faultfault location 0.81,R¢=50 | a- b fault, remote, low impedance
8. | b -c fault, fault location 1.0, Rg=10 b - ¢ - g fault. remote, low impedance
9. | b-¢- g fault, fault location 0.0, Rg=50 | b - ¢ fault, local, low impedance

10. | a-b - g fault, fault location 0.79, Ry =6 | a - b fault, remote, low impedance
11. | a-b- g fault, fault location 0.81, Rg=6 | a- b fault, remote, low impedance
12. | b - g faule, fault location 1.0, Ry =6 a - b fault, remote, low impedance
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Table 3. Incorrectly classified cases for input data set 3.

No.

Actual simulated fault

Newural net classification

a - b fault, fault location 1.0, R¢ = 50

b - g fault, remote, high impedance

a - b - g fault, fault location 0.0, B¢ =50

a - b fault, local, low impedance

a- b - g faultfault location (.79, B¢ =5{)

a - b fault, remote, low impedance

a - b - g fault fault location 0.81 Ry =50

a - b fault, remote, low impedance

a - ¢ - g fault, fault location 0.0, Rg =50

a - ¢ fault, local, low impedance

a - ¢ - g fault,fault location 0.79,R¢ =50

a - ¢ Fault, remote, low impedance

a - ¢ - g fanltfault location 0.81,Rg =50

a - ¢ fault, remote, low impedance

b - ¢ - g fault, fault location (L0, Ry =50

b - ¢ fault, local, low impedance

b - ¢ - g fault, fault location 1.0, Ry=13

b - ¢ fault, remote, low impedance

10,

b - ¢ - g fault,fault location 0.79,R¢ =50

b - ¢ fault, remote, low impedance

11.

b - ¢ - g fault, fault location 0.1, Ry =3

b - ¢ fault, remote, low impedance

5

b - g fault, fault location 1.0, R =50

nommal - state (no fault state)

13.

¢ - ¢ fault, fault location 1.0, Rg =50

normal - state (no fault state)

a - ¢ - g fault, fault location (L0, Ry =6

a - ¢ fault, local, low impedance

n




Table 4. Incorrectly classified cases for input data set 4.

Nao.

Actual simulated fault

Meural net classification

a - b - g fault, fault location 0.0, R =3

a - b fault, local, low impedance

a - b - g fault, fault location 0.0, R =50

a - b fault, local, low impedance

a - b - g fault, fault location 1.0, Rg=3

a - b fault, remote, low impedance

B v |

a - b - g fault, fault location 0.14, Ry =3

a - b fault, local, low impedance

n

a - b - g fault fault location .79,Ry =3

a - b fault, remote, low impedance

=

a - b - g fault.fault location 0.79,R.¢ =50

a - b fault, remote, low impedance

a - b - g fault.fault location 0.81 Rg=3

a - b fault, remote, low impedance

a - b - g fault.fault location (L8 1 Ry =50

a - b fault. remote, low impedance

v |o |

b - ¢ fault, fault location 1.0, Rg=0

b - ¢ - g fault, remote, low impedance

b - ¢ - g fault, fault location (.0, Ry =50

b - ¢ fault, local, low impedance

b - ¢ - g fault, fault location (.14, Ry =3

b - ¢ fault, local, low impedance

a - b fault, fault location (L14, Rf=6

a - b - g fault, remote, high impedance

a - b - g fault.fault location 0.0, Rg=6

a - b Fault, local, low impedance

a-b - g fault,fault location (.79, Rf =6

a - b fault, remote, low impedance

a - b - g fault, fault location (L8] Ry=6

a - b fault, remote, low impedance

a - ¢ - g fault, fault location 0.0, Ry =6

a - ¢ fault, local, low impedance

b - ¢ fault, fault location 0.14, Ry =6

b - ¢ - g fault, remote, high impedance

b - ¢ fault, fault location 0.14, Rg=6

b - ¢ - g fault, remote, high impedance

b - ¢ - g fault, fault location 0.0, Rg= 6

b - ¢ fault, local, low impedance
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Table 5. Incorrectly classified cases for input data set 5.

Mo, Actual simulated fault Meural net classification

1. | a-b-gfault, fault location 0.0, Rg=3 [ a- b fault, local, low impedance

2. | a-b- g fault, fault location 0.0, Re =50 | a - b favlt, local, low impedance

3. | a-b-gfault, fault location 1.0, Rg=3 | a - b fault, remote, low impedance

4. | a-b-gfault, fault location .14, Ry =3 | a - b fault. local, low impedance

5. | a-b - g fault, fault location 0.79, Ri=3 | a - b faolt, remote, low impedance

6. | a-b-gfault, fault location 0.79,Re=50 | a - b fault, remote, low impedance

7. | a-b-gfault, fault location L8], Rg=3 | a - b fault, remote, low impedance

8. |a-b-gfault, fault location (LE1,R=50 [ a - b fault, remote, low impedance

9. | b - ¢ fault, fault location 1.0, Rg=0 b - ¢ - g fault, remote, low impedance
10. | b - ¢ - g fault, fault location 0.0, B¢ =50 | b - ¢ fault, local, low impedance

11. | b-c-gfault, fault location 0.14, Rg=3 | b - ¢ fault, local, low impedance

12. | a- b fault, fault location (.14, Rg=6 a - b - g fault, remote, high impedance
13. | a-b - g fault fault location 0.0, Rg=6 [ a - b fault, local, low impedance

14. | a-b - g fault fault location 0.79.Rf=6 | a - b fault, remote, low impedance

15. | a-b - g fault.fault location 0.81,R¢g=6 | a - b fault. remote, low impedance

16. | a-c¢- g fault, fault location 0.0, Rg=6 | a - ¢ fault. local, low impedance

17. | a-c- g fault, fault location 0.0, Rg=6 | a - ¢ fault, local, low impedance

18. | b - ¢ fault, fault location 0.14, Rf= 6 b - ¢ - g fault, remote, high impedance
19. | b - c- g fault, fault location 0.0, Rf=6 | b - ¢ fault, local, low impedance
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Table 6. Incorrectly classified cases for input data set 6.

No.

Actual simulated fault

Meural net classification

a - b fault, fault location 1.0, R = 50

a- g fault, remote, high impedance

a - b fault, fault location 0.805, Ry = 50

a - ¢ fault, remote, high impedance

a - b - g fault, fault location 0.0, Ry =50

a - b fault, local, low impedance

a-b - g fault, fault location 1.0, Rg=3

a - b fault, remote, low impedance

a - b - p fault.fault location (.79, Ry =50

a - b fault, remote, low impedance

A N O S

a - b - g favlt.fault location 0.81, Ry =50

a - b fault, remote, low impedance

a - ¢ - g fault, fault location 0.0, R¢ =50

a - ¢ fault, local, low impedance

a - ¢ - g fault.fault location 0.79,R¢ =50

a - ¢ fault, remote, low impedance

a - ¢ - g fault fault location (1.81,R¢ =50

4 - ¢ fault, remote, low impedance

b - ¢ - g fault, fault location (L0, Re =50

b - ¢ fault, local, low impedance

11.

b - ¢ - g fault, fault location 1.0, Rf=3

b - ¢ fault, remote, low impedance

13

b - ¢ - g fault fault location 0.79, B¢ =50

b - ¢ fault, remote, low impedance

b - ¢ - g fault fault location 0.81,R¢ =50

b - ¢ fault, remote, low impedance

14.

b - g fault, fault location 1.0, R =50

nommal - state (no fault state)

15.

c - g fault, fault location 1.0, R¢ =50

normal - state (no fault state)

16.

a - c - g fault, fault location 0.0, Ry =6

a - ¢ fault. local, low impedance




