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In the following we will show that the positioning strategy
proposed by condition (10) (see also (11)) has very interesting
consequences. First in Fig. 2 we present a simple second-order
structure, which “structurally” forces the fulfilment of condition
(10), and at the same time is canonic considering the number of
delay elements and the number of nontrivial multiplications.
Using this structure the resonator poles will be always on the unit
circle, coefficient quantization will affect only the “angle” of
these poles. It is important to note that this second-order section
implements

G, (z) =w,H,(z) +wrH¥(z)
where asterisk denotes a complex conjugate.

As a next step let us investigate the behavior of the common

feedback loop. The transfer function from the input to point P
(see Fig. 1) has the following form:

N-1
Z H,(2)

(12)

Hp(z) = (13)

1+ Z H (z)
It is very easy to show that the magmtude of this transfer

function is less or equal to the unity (i.e., it is “passive” in this
sense), if

N\’-‘

Re Z H(z)> (14)

Condition (14) can be fulfxlled at every frequency if condition
(10) holds, and
Z Re[ gm]

The proof is straightforward, and will be omitted here. Equality
condition in (15) is easily achieved if we have one more resonator
pole than filter pole. This is due to the fact that the coefficient of
z7V in the denominator polynomial of H(z) will be zero if in
(15) equality holds. In this case Hp(z) implements an all-pass
filter, and if so, we know even its zeros, since they are in mirror
image relationship with the poles of H(z).

At this point of our development we can determine those
resonator pole positions which will provide the above properties.
These positions coincide with the zeros of 1— Hp(z), since the
input of the resonators (see point C in Fig. 1) is the difference of
the filter input and the output at point P. We will have two sets
of resonator poles, since the filter poles do not specify the sign of
Hp(z).

If the number of resonator poles equals the number of the
filter poles, Hp(z) cannot be an all-pass transfer function, be-
cause it is forced to have at least one zero at the origin, otherwise
the loop would be delay free. The resonator pole positions,

r,<1.

(15)
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however, can be determined rather similarly by finding the zeros
of 1—- H,(z), where H,(z) is an all-pass function having the
same poles as the filter has. These resonator poles will meet
condition (10), and one of the two resonator pole sets will insure
also the fulfillment of condition (15).

In the case of the recursive Fourier transformation r,, =1/N
(m=0,1,---, N—-1), thus condition (15) is fulfilled, and H,(z)
=z~ ", that not surprisingly will provide as resonator poles the
Nth roots of the unity. The companion set consists of the Nth
roots of —1, and generates a “companion” recursive Fourier
transformation that can play some role, if the zero frequency
component of the signal should be suppressed.

IV. CONCLUSIONS

In this paper the sensitivity properties of a recently introduced
resonator-based structure has been presented. This structure,
from some respects of the filter design, is closely related to
the frequency-sampling structure, however, due to a common
feedback, has low sensitivity to the coefficients. The common
feedback provided perfect pole~zero cancellation, thus the appli-
cation of ideal resonators does not cause implementational prob-
lems. It is also shown that the resonator poles can be arbitrarily
located on the unit circle, however, there exists a strategy which
results in a canonic solution, and insures the “passivity” of the
common feedback loop.
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Bilinear Form Approach to Synthesis of a Class
of Electric Circuit Digital Signal
Processing Algorithms
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Abstract —A number of different digital signal processing algorithms for
Electric Power System data acquisition, control and protection were intro-
duced in the past. Each of the algorithms was defined based on the specific
application utilizing either some heuristic approaches or known systems
identification and parameter estimation techniques. A generalized method-
ology for algorithm synthesis which may be used in a number of different
applications is proposed in this paper based on the Bilinear Form ap-
proach.
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I. INTRODUCTION

The main topic of this paper is a class of digital signal
processing algorithms used for calculation of electric circuit
parameters and signal quantities. Of particular interest are al-
gorithms used to calculate Electric Power System active and
reactive power, frequency and transmission line parameters. It
should be recognized that this class of algorithms has a wide
range of application in various control and monitoring func-
tions [1].

The previous research activities in the field have been con-
centrating on definition of the specific digital signal processing
algorithms to be applied to a particular problem. Besides being
application oriented, the early algorithms were defined mostly
using some heuristic approaches. As the application prospects
broadened, some classical parameter estimation and system iden-
tification techniques were applied to this field. These techniques
were used to estimate values of v and i. Then, some classical
electric circuit relations were used to calculate circuit parameters
or quantities such as active power, reactive power, rms values,
system frequency. Therefore, a different signal processing tech-
nique may be selected for the same application constraints.
However, there is no clear methodology and/or criterion avail-
able as a guideline for selecting the appropriate technique. Fur-
thermore, there is no common mathematical tool available for
different algorithm comparison and evaluation. This paper pro-
vides a definition of a generalized mathematical representation of
the mentioned algorithms using Bilinear Form of signal samples.
The basic steps of the algorithm synthesis methodology are also
outlined.

II. BILINEAR FORM OF HARMONIC SIGNAL SAMPLES

The bilinear form of two sequences of samples x, and y,
calculated in the discrete time n and denoted as BF, is given by
the following expression [2]:

N N
BFn = Z Z hkmxn~kynfm’
k=0m=0

¢y

The coefficient h,,, is a weight attached to the product of two
delayed samples x,_, and y,_,,. The quadratic matrix H defin-
ing the bilinear form:

Hé {hkm}

will be denoted the weight matrix. Its dimension is (N +1)X
(N +1) for a window having the width equal N-At.

Let us assume that the samples of two harmonic signals are
defined as:

x, = Xcos(ny +¢)

¥, =Ycosny (2)
where
X,Y signal magnitudes,
o) phase between two signals,
¥ =27, /w, electrical angle between two samples,
wy system fundamental frequency,
w, sampling frequency.

In this case it can be shown that the value of the bilinear form
may be expressed as a sum of a constant term BF and a variable

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 1988

term BE;:
BF, = BF +BE]. ©)
These two terms depend on two functions defined on the

weight matrix. The first function determines the constant part
and is denoted as H(p):

+ N
H(p)= X hp (4)
r=-N
where
h:=zzhkn1’ OsksN
k m
k—-m=r, 0<m<N. (5)

The other function determines the time dependent variable
part and is denoted as H"( p):

2N
H'(p)= X h-p (6)
r=0
where
h=3 Y hm O<k<N
k m
k+m=r, O<sm<N. (7

Using these functions the constant and the variable term can
be expressed, respectively,

BF"=¥|H"(6’J‘L)l'cos[¢+éH"(€7’w)] ®)

Xy
BF; = — |H*(e /%) |-cos[2nd + ¢ +2H (e 7). (9)

In this manner the design of the weight matrix H for a
particular value of y reduces to the choice of suitable functions
H'(p) and H(p).

III. SPECIFIC VALUES OF BILINEAR FORMS

If (9) is analyzed it can be seen that the variable term has an
average equal to zero and a period equal to the one half of the
fundamental frequency harmonic. This term will vanish if the
following condition is fulfilled:

H'(e %) =0. (10)
This is the case when e~/ is a zero of the polinominal H"( p).

The variable term will vanish for any y if H"(p) is indenticaly
equal to zero. This is the case when:

h;‘=0, r=0,1,---,2N. (11)

Geometrically, the condition (11) means that the sums of
matrix elements in anti-diagonal and all the sub-anti-diagonals
have to be zero. Such matrices will be named constant-valued [2].
The Bilinear Form defined by a constant-valued weight matrix
will have a constant value regardless of the system and sampling
frequency. The constant term BF‘ depends on product of two
phasors’ magnitudes and their mutual phase shift. If the signal
x(t) is the voltage and y(¢) is the current of the same circuit,
then the constant term may be used to calculate active and
reactive power.

IV. DIGITAL SIGNAL PROCESSING ALGORITHMS FOR
POWER AND LINE PARAMETER CALCULATIONS

The active power is obtained if

He(e /¥y =1. (12)
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The reactive power is obtained if
He(e ) =~ . (13)

If the two signals are equal x, = y,, the form will be quadratic,
and the constant term value will be

X2
QF = — Re H'( e Yy, (14)
The square of rms value will be obtained if
ReH¢(e™ V) =1. (15)

Obviously, the weight matrices suitable for active power calcu-
lation may be also used for rms calculation. Furthermore, let us
show how the weight matrices suitable for active and reactive
power calculation may be used for the line parameter calculation.

The resistance and reactance of a line may be expressed in
terms of P, Q and I%/2 as follows:

VI
v 70084) P
=—Ccos¢p = = 16
1% g (RMST)? (16)
2
1288 o
— Sin
. 2 Q
L=—sin¢= = 17
(2 I ¢ [-2 (RMSI)Z ( )
2

In this manner the calculation of line parameters reduces to the
calculation of active power, reactive power and square of magni-
tude [3).

V. SELECTION OF THE SUITABLE WEIGHT MATRICES

It will be shown how properly scaled skew-symmetric and
symmetric matrices may be used to construct the suitable weight
matrices [2].

Let us consider first skew-symmetric matrices defined by

B"=-B (18)

It can be shown that for such matrices the following holds:

ReB(e¥)=0 WY (19)
and
B (e¥)=0 vy (20)
Now, if the following condition is also satisfied:
ImB (e ) %0, y=y, (21)

then a weight matrix for reactive power calculation can be
constructed as

o -
Let us consider now symmetric matrices defined as
A=A". (23)
It can be shown that
ImA(e¥)=0, Vy (24)

These matrices appear as candidates for active power calcula-
tion. However, they are not necessarily constant-valued as the
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skew-symmetric matrices. One way to construct a constant-val-
ued symmetric matrix 4 is to choose its elements to satisfy the
following conditions:

a
Zzakm=—%’

k m

r=0,1,2,---N

0<k<N,0<m<gN,

Zzakm=07
k m

k>m, k+m=2r

r=0,1,2,---N—1

0<k<N,0<m<gN, k>m, k+m=2r+1 (25)
If the following condition is also satisfied:
ReA‘(e /o) #0 (26)

then a weight matrix for real power calculation can be constricted
as

1

Hy=———— A 27
P Red(e /W) (27

An example of a pair of so obtained weight matrices is given

below:
1 [ 0 0 —1]
Hy=—— 0 2 0
4sin” -1 0 0

1 [0 0 —1]
H,= 0 0 0]
Q .
251]]2\!/ 1 0 0

VI. WEIGHT MATRICES PROVIDING A LOW SENSITIVITY
TO SYSTEM FREQUENCY CHANGES

(28)

Here we will describe a case where the given approach can be
used for synthesis of a digital algorithm for power calculation
under certain sensitivity constraints.

The system frequency v, is constant under the normal operat-
ing conditions. However, there are some situations where this
frequency will vary. As a rule, these changes are not big. Using
the expression given in (3), one could derive the conditions for
making the influence of the frequency change as small as possi-
ble. The value of the bilinear form will be only slightly changed
for small deviations of y—y, if the following conditions are
satisfied:

d )

S =0 =y, (29)
L ety =0, y=y (30)
ay ’ 0

If matrix H is constant-valued then the condition (30) is
always satisfied. Also if H is symmetric or skew-symmetric then
the condition (29) reduces to

d
—-ReH(e ) =0, Y=y,

25 (31)

for active power calculation and to the following condition:

;% ImH (e %) =0, Y=y,

for reactive power calculation,

(32)
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An example of the matrices for power calculation with low
sensitivity to fundamental frequency changes are given below:

cos2¥, +cos? ¥

0 0 a b a= 2
no|0 -2¢ -b 0 4si Yo
P a -—b 0 of
b o ool o cow
4sin* ¥,
cos2¥,
0 —-a -b T 2siny,
Hy=|a 0 0|, (33)
b 0 0 cos ¥,

- 4sin’
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VII. CONCLUSIONS

It has been shown that a bilinear form of signal samples may
be used to define different algorithms for electric circuit signal
and parameter calculation. A generalized form of the algorithm is
defined using the weight matrix representation. Some specific
algorithms are derived by selecting an appropriate weight matrix.
This approach provides mathematically consistent methodology
for algorithm synthesis.

REFERENCES

{1] M. Kezunovic and B. Perunicic, “Prospects for integrated control and
protection system application in energy management system implementa-
tions,” in Proc. NSF Conf. on Digital Computer Relaying, Blacksburg,
VA, Oct. 1987.

[2] F. R. Gantmakher, Application of the Theory of Matrices.
Wiley-Interscience, 1959.

[3] T. Lobos, “Simplified methods for calculating the impedance of transmis-
sion lines,” Computer Elec. Eng., vol. 9, pp. 19-31, 1982.

New York:




