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Regression Tree for Stability Margin Prediction
Using Synchrophasor Measurements
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Abstract—A regression tree-based approach to predicting the
power system stability margin and detecting impending system
event is proposed. The input features of the regression tree (RT)
include the synchronized voltage and current phasors. Modal
analysis and continuation power flow are the tools used to build
the knowledge base for offline RT training. Corresponding met-
rics include the damping ratio of the critical oscillation mode and
MW-distance to the voltage collapse point. The robustness of the
proposed predictor to measurement errors and system topology
variation is analyzed. The optimal placement for the phasor mea-
surement units (PMUs) based on the importance of RT variables
is suggested.

Index Terms—Decision trees, phasor measurement units, power
system stability, regression analysis.

I. INTRODUCTION

ONVENTIONAL time domain simulation based on

system modeling has been used as the primary tool to
analyze power system stability. This method is straightforward
and accurate as long as adequate system model and measure-
ments are used. However, two challenges have prevented the
simulation method from being used for real-time applications:
1) it is computationally intensive; 2) it raises concerns over
approximate analysis results when a simplified model is used.
As the importance of real-time stability monitoring and early
detection of system events has been increasingly emphasized
recently, an alternate approach based on the decision tree (DT)
[1] was applied by previous authors and encouraging results
have been reported [2]-[11].

The DT method was first introduced to the field of power
system by Wehenkel et al. [2]. It was used to conduct the online
transient stability assessment in [2]—[4]. Later the DT approach
was applied to the problem of real-time security assessment
[5]-[9]. In [10], Diao et al. used DT for N — k contingency
analysis and security boundary identification. Teeuwsen et al.
deployed the genetic algorithm to search for the best DT input
features for oscillatory stability region prediction [11].

Manuscript received April 29, 2012; revised August 12, 2012; accepted
September 23, 2012. Date of publication October 15, 2012; date of current
version April 18, 2013. This work was supported in part by the Power System
Engineering Research Center (PSerc) under the project S-44 titled “Data
Mining to Characterize Signatures of Impending System Events or Perfor-
mance Using PMU Measurements” and in part by Texas A&M University.
Paper no. TPWRS-00434-2012.

The authors are with the Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX 77843-3128 USA (e-mail:
zhengce@neo.tamu.edu; vmalbasa@tamu.edu; kezunov@ece.tamu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2012.2220988

The concept of decision tree comprises the classification tree
and regression tree. While in previous works classification trees
have been extensively studied to group an operating point (OP)
into one of several pre-defined stability categories, the use of
regression trees (RT) to predict the stability margin, i.e., how
far the system is away from a possible instability event, has not
yet been fully studied. With respect to its online use, the areas
that remain unexplored include how fast the RT can process
PMU measurements, how well the RT can deal with measure-
ment errors, and how robust the RT is to the system topology
changes.

A review of literature reveals that several other data mining
tools such as multi-linear regression, neural networks, and sup-
port vector machine have been used to evaluate the system sta-
bility status [12]-[14]. In [15] and [16], Kamwa et al. showed
that there is a trade-off between data mining model accuracy and
transparency. Compared with some “black-box” tools, the RT
piece-wise structure provides system operators with a clearer
cause-effect relationship of how the system variables lead to the
onset of an instability event. Using RTs it is possible to identify
the critical variables and thresholds that need to be analyzed to
gain insight into the stability margin of a system.

The objective of this paper is to examine the performance of
RT in predicting power system voltage and oscillatory stability
margins. It starts with the theoretical background of stability
margin and instability event detection. After that the RT-based
stability evaluation scheme is proposed. The robustness of the
RT model to PMU measurement errors as well as the system
topology variations is studied. In the end, a combined bus
ranking methodology is proposed and the optimal placement
for PMU installation is derived based on the importance of RT
variables.

II. PROBLEM FORMULATION

Two important aspects of system operational performance,
namely oscillatory stability and voltage stability, are targeted
for monitoring. First the definition of an instability event is re-
visited:

* Oscillatory stability is related to Hopf bifurcation. An in-
stability event occurs whenever, following a small distur-
bance, the damping torques are insufficient to bring the
system to a steady-state operating condition which is iden-
tical or close to the pre-disturbance condition.

* Voltage stability is related to saddle-node bifurcation.
Voltage instability occurs when the load attempts to step
beyond the capability of the combined transmission and
generation system [17].
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Fig. 1. Use of damping ratio as oscillatory stability margin.

A. Oscillatory Stability Margin (OSM)

The oscillatory stability is usually evaluated through analysis
of the system nonlinear differential algebraic equations (DAE):

T = f(‘/L.a Y, u)
{O:g(:L',y,u) (1)
where 1z is the state vector, ¥ is the output vector, and « is the
control vector. The DAEs in (1) are formulated by detailed mod-
eling of each network component.
A linearization of (1) will result in

Az = AAx + BAu @)
Ay =CAx + DAu "’

From the theory of modal analysis, each pair of complex con-
jugate eigenvalues of matrix A stands for an oscillation mode.
Further decomposing the A matrix will get

A= QAT 3)

where A represents the diagonal eigenvalue matrix, ® and ¥ are
the left and right eigenvector matrices. For the ith oscillation
mode with the following conjugate pair:

Aj = 03 £ jwi. 4

The mode damping ratio (DR) is calculated as

[
2 7"
Vot wj

The oscillation modes that carry significant amount of en-
ergy but with insufficient DR are critical among all modes and
need to be closely monitored. Occurrence of an instability event
is possible when a poorly damped mode is excited by a small
or large disturbance. In this work the DR of critical oscillation
mode is used as the OSM indicator. As shown in Fig. 1, the
OSM becomes progressively more stringent as the value of crit-
ical mode DR decreases.

The damping ratio is not an index from the parameter space,
so strictly speaking it may not be proper to term it as “margin”.
In this work DR is selected as the OSM indicator in the sense
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Fig. 2. Voltage stability margin.

that it provides smooth movement trajectory, clear partition be-
tween stable/unstable states, and an explicit distance from un-
stable point.

In this work regression trees are trained to emulate system
behavior and predict the DR values.

B. Voltage Stability Margin (VSM)

The variation of load bus voltage magnitude with different
load demand is plotted as the P-V curve shown in Fig. 2. The
MW-distance from the current operating point to the voltage
collapse point (“Knee” point), where the load demand equals
the maximum deliverable power, provides a reasonable mea-
sure of system voltage stability margin. The VSM referred here
corresponds to system long-term voltage stability [18], which
cannot be used to capture the short-term voltage stability.

The focus is to find the voltage collapse point. In this work
the idea of continuation power flow (CPF) proposed in [19] is
explored. Assuming a constant load power factor, slowly in-
creasing load demand will push the operating point from the
base case towards the collapse point along the P-V curve. The
voltage collapse point is achieved when the load flow Jacobian
becomes singular. System voltage stability margin is hereby ex-
pressed as [13]

Pdistancc = Pmax - Pcurrcnt (6)
where Pyistance represents the MW-distance between current
OP and the collapse point, P, is the maximum deliverable
power, and P, rent 1S the current load active power demand.
The proposed procedure for voltage stability margin prediction
is as follows:

1) Generate » different OPs.

2) For each OP, determine the maximum deliverable power
by means of the CPF technique.
3) Calculate the voltage stability margin for the :th OP using
the following index:
VS orgin = M x 100%. (7

max

4) Train the RT offline using selected features from the n» OPs
and their corresponding VSyargin.
5) Use the trained RT to predict VSM in real time.
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Fig. 3. Example of RT model structure.

IITI. PREDICTING STABILITY MARGINS USING RT

A. Regression Tree Method

Compared with the traditional time domain simulation ap-
proach that requires full model computation each time a new
OP has emerged, the advantage of RT method lies in its simpli-
fied model structure and fast OP analysis facilitated by fewer re-
quired inputs. The method is particularly appealing because the
RT uses a model which makes the results easy to interpret and
replicate. Fig. 3 provides a simple example of RT structure. The
unfolding OP is related to its stability margin through a unique
top-down path. The splitting rule at each node that belongs to
a given path represents an operational threshold. Based on the
combination of splitting rules along the path, preventive and
corrective control strategies could be formulated and initiated.

In regression analysis, a case consists of instance (2, ) where
x is the vector of attributes and y is the target. The relation-
ship between z: and y is usually described by a regression func-
tion, through which it is possible to estimate how the target y
changes when z is varied. In our proposed approach, the re-
gression function is replaced by a binary tree structure, where
x is the synchrophasor measurements and y is the system sta-
bility margin, i.e., the damping ratio or MW-distance. The com-
mercial software CART [20] is used to develop OSM-RT and
VSM-RT used for evaluating oscillatory and voltage stability
margins, respectively.

The approach to build a RT entails three steps: 1) tree
growing using learning dataset; 2) tree pruning using test
dataset or cross-validation; 3) selection of the best pruned tree.
Experimental tests show that there is a trade-off between the
tree complexity and its accuracy: a small-sized tree cannot
capture enough system behavior, and a large-sized tree usually
leads to imprecise prediction due to its over-fitting model.
In this work the rule of minimum cost regardless of size to
search for the best pruned RT commensurate with accuracy is
adopted. The complexity cost parameter in CART has been set
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Fig. 4. Proposed framework of the RT-based stability margin prediction and
event detection.

to equal to zero. The RT growing, node splitting, tree pruning
and optimal tree selection algorithms are detailed in [1].

B. Proposed Approach

The proposed framework for RT-based stability margin
prediction and event detection is shown in Fig. 4. PMU
measurements from different substations are collected and
time-aligned by the phasor data concentrator (PDC). The syn-
chrophasor measurements are then delivered to the wide area
measurement system (WAMS) server located at the central
control facility. At the control center operator room, the RTs for
monitoring OSM (OSM-RT) and VSM (VSM-RT) are trained
and updated periodically. The PMU data of an upcoming OP
is dropped down the respective tree until it reaches a terminal
node. Then the predicted stability margin is the average value of
the learning set samples falling into that terminal node. Any OP
with insufficient stability margin will be detected immediately
by checking corresponding thresholds. Operators are alerted
with the possible event and preventive control strategies can be
initiated in a timely manner.

IV. PERFORMANCE EXAMINATION

The performance of the RT-based predictor is evaluated using
the IEEE 9-bus [21] and 39-bus (New England) [22] test sys-
tems. These two systems are known for their realistic configu-
rations and efficacy in testing stability-related applications.

A. Knowledge Base Generation

The offline training of a RT using empirical data from a
knowledge base is the first and most important step. The
knowledge database is composed of known system OPs and
corresponding system stability margins.

Both the voltage and oscillatory stability are closely related
to the load/generation composition of a power system, and their
increase/decrease trend at a certain system snapshot [23]. If the
load/generation composition varies, different OPs are formed.
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The change in the load demand and generation output can be
described as

Pe=Pl+AP: Qg=
Pr =P} + APy

&+ AQg
Qr=0Q% + AP, x Q2 /P (8)

where Py and Q¢ are active/reactive power outputs of all the
generators except the slack bus generator, Py, and (), are vec-
tors of active/reactive power delivered to the loads. Superscript
0 represents base case OP. The vectors A Pg, AQ¢, AP, and
AQy, stand for the variations in power.

In this work, the commercial software PSS/E is used for it-
eratively solving load flows, and deriving characteristic matrix
A at different OPs through numerical perturbation. Python and
MATLAB programs are developed to automate the PSS/E simu-
lations, perform modal analysis, conduct the CPF-based voltage
stability analysis, compute stability margins, and establish the
knowledge base. The pseudo-code for knowledge base creation
is illustrated below.

Pseudo-code for Knowledge Base Generation

1. Initialize PSS/E in Python. Import system model
parameters:

Number of Generation Buses = i,
Number of Load Buses = j

Number of buses with shunt capacitor = k

2. Let u(u € N) be the iteration index with a step change
of CG/L/S%

Suppose G is slack bus. Repeat:
for A = 0 — us do

Scale the output of G to: Pgs =
Pg2(1 + A2 X ng%)

for A; =0 — u; do

Scale the output of G; to: Pg; =
Pgi(l + A; X CGi%)

for A'1+1 =0 — Ui41 do

Scale load 1 to: P = PLol(l + Agigp1) X Cr1%)

for Aj;; = 0 — ujy; do
Scale load j to: Pr,; = P{(1 4+ A(ipjy x Cr;%)
for Ai+j+1 =0— Ui4j+1 do

Scale shunt 1 to: Qg1 = Q% (1 + Agiqjt1) X
Cs1%)

for Ai+j+k =0 DSERERR do

Scale shunt k to: Qgp, = Q% (1 4+ Ayj1s) X
Cls1,%)

1981

Solve the load flow at:
{Paz,.-, Pai, Pri, ..., Prj, Qsi, - -

If this OP is unsolvable: eliminate

7Q5k}

Oscillatory Stability Analysis:

Import system model dynamic data. Derive the
A matrix.

Voltage Stability Analysis:

Derive the voltage collapse point via
continuation-based method

Export computed features of current OP
End Loops
3. Repeat: fori = 0 — number of OPs do
Modal analysis of A matrix using (3)—(5): DR(¢;)

Compute voltage stability index using (6)—(7):
VS, rei
margin

Export computed stability margins

End Loop

The power supply at generation buses, demand at load buses,
and the output of shunt capacitors were systematically varied.
A total of 1071 OPs with corresponding OSMs, and 1153 OPs
with corresponding VSMs have been produced for the 9-bus
system. The number of records generated for the 39-bus system
knowledge base is 4276 and 3664, respectively.

In addition, in this work the generator active/reactive power
limits have been taken into account to reflect the practical sta-
bility margin. This has significant impact on the computation of
VSM: when the load demand increases, a feasible load flow so-
lution may not exist due to the limited generation capacity, even
before the maximum loadability of the transmission system is
reached. Therefore the derived P, may be somewhere on the
top half of the PV curve before the “Knee” point shown in Fig. 2.

In order to build a sufficiently large knowledge base, in this
work two stopping criteria are followed:

a) Each generator/load/shunt should be varied at least 4 times
{(u > 4) and the total variation should be at least 30% of
the base value (u x Cg 1,5 > 30). The goal is to capture
the most system behavior from the problem space.

b) The RT training and testing accuracy converges. The R?
is used to measure the prediction accuracy and will be
detailed in next section.

The trajectory of the 39-bus system stability margin is shown
in Fig. 5. Corresponding stability thresholds are shown as the
flat planes dividing each margin space into two halves: an in-
stability event will be immediately identified in the top half.
For this power system the voltage stability threshold is put at
VSmargin = 30%. This value can be further adjusted according
to the real-time operational needs.

As it can be observed from Fig. 5, a high imbalance in size
between the stable and unstable cases exists. This is a very prac-
tical issue in power system operation since most of the time the
system is in its stable state. From the classification point of view,
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Fig. 5. Trajectory of voltage and oscillatory stability margins of the IEEE
39-bus (New England) test system.

compared with some other data mining tools that do not perform
well when dealing with unbalanced data, the decision tree im-
plemented in the CART software has the property of assuring
that every class is treated equally regardless of its size. This is
achieved by specifying the Prior of each class. From the regres-
sion point of view, there is no need to set Priors because each
case will be treated as an equal point on the continuous stability
margin space. Because of the least squares loss function for re-
gression, as implemented in CART, large mistakes are penalized
more than smaller ones, thus large errors at any OP are empha-
sized be they on the stable or unstable part of the stability margin
space. Once the relationship between input and output is iden-
tified, the regression model defines a mapping of an OP to its
stability margins regardless of the state/class to which the OP
belongs.

B. Features Available to RT for Prediction

With respect to the inputs of a decision tree, different feature
combinations may result in different data mining accuracies. In
order to accelerate the prediction process, it is desirable to use
the least features as RT inputs and meanwhile keep an accept-
able level of overall prediction accuracy. This requires the se-
lected features to capture as much system behavior as possible.

The objective of this work is to explore a way that directly
makes use of synchrophasor measurements for stability anal-
ysis. Therefore only the basic measurements from a PMU are
considered. Assuming all buses are installed with PMUs, the
involved input features are as follows:

* VM iand VA _i: positive sequence voltage magnitude and

phase angle at Bus i;
 IM i j and IA i j: positive sequence current magnitude
and phase angle from Bus i to Bus j.
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C. Offline Training and New Case Testing

Each knowledge base is split into two independent data
sets: 80% of the records are randomly selected for training of
OSM-RT and VSM-RT; the remaining 20% of the records will
serve the purpose of RT testing. The 10-fold cross validation
method is adopted to grow the RT in CART. In experiments
because of the random nature of the splitting process, slight
differences may occur between the performances of each
derived RT. Therefore in this work, the process of knowledge
base splitting, tree training and testing has been replicated 10
times until the mean and standard deviation of RT accuracy
become stable.

In contrast with a classification tree for which the accuracy
could be directly derived from the misclassification rate, the per-
formance of a regression tree is measured through a statistical
index, termed Residuals Squared Error (R?) [24]. We report the
accuracy of a RT model as follows:

_ Z(:L‘i,yz)ETS [yr - d(‘Lz)]Q
ZTS (yi - y_root)2

where T'S is the set of training samples, z; is input, y; is the ac-
tual stability margin, d(z;) is the RT predicted value, and g0t
is the mean of y; in the tree root node.

In general the closer the value of R? is to 1, the better the pre-
diction is. However in practice, how good an R? is depends on
the particular application and the way it is measured [25]. Ex-
perimental results from this work show that a quite acceptable
value of 22 > 0.90 can be achieved.

Sometimes the 122 alone may not be sufficient, especially in
the case when the typical difference between values predicted by
RT and the actual stability margins is desired. Therefore another
measure, the root-mean-square (RMS), is utilized:

RMS:%ZZMZWMMQ

where n is the number of test cases. The numerator stands for
the sum of squared deviations of the actual stability margins
around the RT predictions. The value of RMS error depends on
the base magnitude of the target stability margin to be predicted.
In the proposed scheme, a typical value of OSM is in the range
of —0.01 to 0.1, and the VSM is usually ranging from 0.05 to
1.0. Hence the RMS errors of VSM-RT are usually several times
larger than that of the OSM-RTs.

Once the training is complete, the derived RTs were evaluated
using the unseen test cases. Much more emphasis must be put
on the accuracy of new case testing because, for real-time appli-
cations, a predictive model which cannot fit the unseen system
behavior well is unacceptable, even if high accuracy is obtained
during the offline training, as it lacks generalization power. The
corresponding training and new case testing accuracy is sum-
marized in Table 1. In addition, the results of new case testing
were reported separately in terms of Security Test and Reliability
Test. While the security test examines how well the stable OPs
are predicted, the reliability test checks if all unstable OPs are
correctly identified.

The prediction for 300 new OPs of the 39-bus system is
shown in Fig. 6. The RT-based approach has exhibited encour-
aging capability for system stability margin prediction.

R*=1 )

(10)
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TABLE I
PERFORMANCE OF THE REGRESSION TREES
Oscillatory Stability Margin (OSM-RT)
) Unseen OPs Reliability and Security
System Trazln Overall Accuracy Test (RMS)
R R RMS | Reliability | Security
9-bus 0.9984 0.9858 0.0023 0.00083 0.00235
39-bus | 0.9617 0.9519 0.0034 0.00386 0.00328
Voltage Stability Margin (VSM-RT)
) Unseen OPs Reliability and Security
System Tra2m Overall Accuracy Test (RMS)
R R RMS | Reliability | Security
9-bus 0.9928 0.9791 0.0184 0.03357 0.01480
39-bus 0.9941 0.9694 0.0211 0.02736 0.01965
0.4
0.08 1
2 0.06 | 0.8
2
°
2004 0.6
2
& 0.02 0.4
[
0 ™ 0.2 '©
Detected < Detected
0.02/ Unstable OPs 0 (Z)=<— Unstable OPs

0 0.05 0;1 0 0.2 04 06 038 1
Actual OSM (Damping Ratios) Actual VSM (MW-Distance)

Fig. 6. RT predicted margins versus the actual stability margins of the IEEE
39-bus system. Left: OSM-RT performance; Right: VSM-RT performance.

V. APPLICATION TO A LARGER SYSTEM

The RT-based predictive model has been applied to the
Western Electric Coordinating Council (WECC) equivalent
system shown in Fig. 7 [26]. This network consists of 179
buses, 29 generators, 42 shunts, and 104 loads.

The same methodology of creating the knowledge base for
the 9-bus and 39-bus systems is adopted. In addition, two prac-
tical issues have been considered: 1) the real/reactive power
output limit of each generator is more stringent in this larger
system and should be complied with strictly; 2) it is computa-
tionally too expensive to generate the database by varying only
one component each time. For instance, if the iteration index
u is set to be 4, a total of 417> OPs will need to be analyzed.
It may be more practical to group the loads and generators ac-
cording to their geographical locations. Seven areas are formed
and it is assumed that the loads/generators within each area will
increase/decrease at the same rate.

A total of 12572 records have been generated for the
OSM-RT and 15303 records for the VSM-RT. The impact of
the size of training set on the performance of resulted RT is
examined: 100%, 50%, 20%, 10%, 5%, and 2% of the training
cases are used to derive RT for each task. All experiments have
been replicated 10 times and the Mean of new case prediction
accuracy is summarized in Fig. 8. It clearly shows that the
prediction accuracy increased when more cases were used to
train the RTs.
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Fig. 8. New case prediction accuracy of RTs trained with differently sized data
sets (Left: OSM-RT; Right: VSM-RT).

In order to embed the RT model into an actual online process,
three aspects need to be examined and corresponding require-
ments must be satisfied: 1) eligibility for high speed analysis; 2)
robustness to measurement error; 3) capability to accommodate
topology change.

A. Data Processing Speed

Traditionally the data used for the stability analysis in elec-
trical utilities are obtained from the Supervisory Control and
Data Acquisition (SCADA) system or state estimation func-
tions, which are refreshed on a time scale from several seconds
to several minutes. These slowly updated data can only provide
limited decision making support under the new situation where
fast variations are present at both demand side and supply side.
The capability to take advantage of the fast updated PMU data
is critical in real-time applications.
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TABLE 11
COMPUTATIONAL SPEED OF REGRESSION TREES

Type of IEEE 39-bus System WECC 179-bus System
Regression Off-line New Case Off-line New Case
Models Training Prediction Training Prediction
36.01s about 3 s 164.97 s aboutSs
OSM-RT (3421 cases) (855 cases) (10058 cases) (2514 cases)
31.38s about 2 s 19545s about 7 s
VSM-RT (2931 cases) (733 cases) (12242 cases) (3061 cases)

In practice, the PMU measurements are updated very fast,
most likely at least 30 times per second. In order to evaluate the
system stability status at each snapshot, the processing of PMU
data must be less than 1/30 = 0.033 second.

The data processing speed of RTs is summarized in Table II.
The computational time is estimated using the built-in clock of
CART executed on an Intel Pentium IV 3.00-GHz CPU with
2 GB of RAM. It can be seen that the derived OSM-RT or
VSM-RT can assess 1000 new OPs in less than 4 s for the
39-bus system, and 3000 new OPs in less than 8 s for the WECC
179-bus system. According to the results, the RTs satisfy the
speed requirement of real-time applications.

B. Impact of Measurement Errors

The phasor estimation process may introduce errors. PMUs
manufactured by multiple vendors can also yield inaccurate
readings. In real-time application, the PMU measurement errors
of the zth OP can be expressed as

VMP® = VM + Aevar; VAP = VAT + Aeva;
1y ;neas — Il\/ﬁ'eal + Agﬂ\’li IAirleas — IA}i'eal + AEIAi
Q)
where the superscript real means actual values of the phasor,
and meas stands for measured values.

According to the IEEE C37.118 “Standard for Synchropha-
sors for Power Systems” [27], PMUs that are Level 1 compliant
with the standard should provide a total vector error (TVE) less
than 1%. This implies that the following constraints must be
satisfied:

VM;neas évA;neas _ Vl\/{[;“ealé\/AEeal
VMgealévA;jeal

IM?lcas ZIAfnoai _ IN[foaIZIAfoal
IM?CEIZIA;C&]

1% >

1% >

(12)

Considering (11) and (12), random noise Ae has been added
to the original phasor magnitudes and angles of the WECC
179-bus system knowledge base. In Table III two scenarios
were tested. While in both scenarios errors were added to the
test cases, it is shown that the RTs trained with measurement
error had much better performance than the ones without the
error taken into account in the training data set.

C. Impact of Topology Variation

In this paper the robustness of RT to certain system topology
changes was examined. The scenarios that were evaluated and
RT performances are summarized in Table IV.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013

TABLE III
PERFORMANCE OF THE 179-BUS REGRESSION TREES
CONSIDERING PMU MEASUREMENT ERROR

Type of Add Noise Only to the Test Cases
Regression Security Test Reliability Test
Models > >
R RMS R RMS
OSM-RT 0.7906 0.00106 0.7403 0.00121
VSM-RT 0.8091 0.02785 0.7629 0.03010
Add Noise to Both Training and Test Cases
Type of
Regression Security Test Reliability Test
Models > >
R RMS R RMS
OSM-RT 0.9170 0.00068 0.8994 0.00071
VSM-RT 0.9266 0.01789 0.9045 0.01940
TABLE IV

REGRESSION TREE PERFORMANCE UNDER SYSTEM TOPOLOGICAL VARIATIONS

Scenarios of Type RMS Error of RMS Error of
Topology Change OSM-RT VSM-RT
Line 8-9 taken out 9]\1?_[1,15 0.00880
G10 out of service 39N1??S 0.00417 0.04089

G10 atggeilgi t26-28 39N‘?;JS 0.00726
Line (}fosﬁ 2\22332 out 17?\11»31US 0.00337 0.03046
Line 1) stei(\)/;cl 36 out 17?\IﬁUS 0.00421 0.02654
Line ;f(;fe; ?\2-0968 out 17?\5‘1US 0.00385 0.03198
Line 8sle rlv zlgé)eout of 17iI ﬁUS 0.00552

It can be seen that OSM-RTs were able to provide somewhat
acceptable predictions with low RMS errors, even under situ-
ations the network topology had changed. On the other hand,
VSM-RTs appear to be less robust and the performance varied
case by case: the N — 1 test in the 9-bus system had a signif-
icant impact on the VSM prediction due to the small size of
the system; acceptable predictions were achieved for the case of
generator outage in the 39-bus system; the /N — 2 scenario in the
39-bus system was too severe for the VSM-RT to handle. More
case studies were conducted on the 179-bus system VSM-RT:
low RMS errors were observed in experiments where slight
topology changes are made, such as one of the double-circuit
transmission lines out of service.

D. Discussion

1) Ability of RTs to Handle Evolving System Conditions: The
problem of how to sustain the prediction accuracy of RT under
the evolving system operating conditions is critical for its online
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implementation. In fact this is also a problem in all data mining
tools. In general, the change of system operating conditions can
be categorized into two types:

+ the variation of system load/generation patterns;

+ the variation of system topology due to contingencies,

scheduled maintenance, and system dispatch.

The work reported in Section IV and part of Section V
tackles the first type of variation. As illustrated in the knowl-
edge base creation process, the generator/load/shunt has been
widely varied in a systematical way to capture the most system
behavior from the problem space.

The change in system topology is a major reason that
causes a data mining tool to fail in real-time applications. The
results shown in Table IV indicate that the RT sensitivity to
topology changes becomes less distinct in large sized network
and under mild changes in topology. This obviously helps in
making RTs useful even under topology changes. It is also
observed that RTs are not able to accommodate certain severe
contingencies, e.g., the line 81-180 out of service. In the field
of data mining and machine learning, the so-called “concept
change” describes methodology for dealing with such type of
topology variation. A literature search reveals that there is not
a generally effective way for the data mining tool to cope
with the concept change incrementally, although some work
has shown results [28]. Most of the time a re-train using the
updated knowledge base is necessary to reflect new topology
condition.

2) When and How to Update the RTs: To re-train an RT
model whenever it is obsolete is time-consuming and may
not satisfy the requirement of seamless on-line monitoring.
An effective solution may be to prepare a knowledge base
for each of the credible contingencies beforehand, and train
a series of candidate RTs accordingly. Fig. 9 shows the pro-
posed scheme. The list of credible contingencies is usually
readily available at utility companies. If in online application
an unseen contingency occurs and RT fails to provide accurate
predictions, a new RT will be trained and deployed. The new
contingency scenario and RTs will be added to the historical
database. With the increase of contingency scenarios accu-
mulated in database, fewer unseen topology conditions will
be encountered. The obsolete models can be quickly replaced
by the candidate RTs corresponding to the post-contingency
condition.
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Fig. 10. OSM-RT topology and node splitters of the 9-bus system.

VI. OPTIMAL LOCATION OF PMUS

In previous sections, the RTs were fed with voltage and cur-
rent phasors measured at all buses. An underlying assumption
is that almost every substation is equipped with a PMU. In
practice, this is not economically feasible since the installation
of PMUs and corresponding telecommunication path is very
costly. A reasonable approach may be to install only a limited
number of PMUs at the most critical substations. The problem
of finding the optimal PMU location is equivalent to selecting
the best reduced set of RT input features without a significant
degradation in RT performance.

A. Combined Bus Ranking

Ideally, the optimal solution could be obtained through an ex-
haustive trial and comparison of all possible feature combina-
tions. However it is computationally too involved to do so. In
this work we are proposing a different approach and the idea
comes from a unique property of the RT model structure. The
topology of the OSM-RT derived in Section IV-C is shown in
Fig. 10. It is interesting to track the actions of the tree. Each node
has been split by an input variable, and the variable is selected
as the splitter because it is the most powerful variable among
all candidate features that can best split the node. The variables
gain credit towards their importance by serving as primary split-
ters that actually split a node, or as back-up splitters (surrogates)
to be used when the primary splitter is missing. By summarizing
the variables’ contribution to the overall tree when all nodes are
examined, the variable importance (VI) can be obtained.

To calculate the VI, search all splits s € S on variable x,,, at
each tree node ¢ € T, and find the split s}, that gives the largest
decrease in regression R [1], [15]:

AR(s),,t) =

m

max AR(s,t).
sES

(13)

Suppose s* is the best of s, and &, is the split on variable
2y, that has the best agreement with ™ in terms of partitioning
cases, the measure of importance of variable ., is defined as

= ARG 1)

teT

(14)

Fig. 11 shows the computed V7 for the OSM-RT and VSM-RT
of the 9-bus system derived in Section IV-C. The actual mea-
sures of importance have been normalized so that the most im-
portant variable has a V7 of 100.
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TABLE V
COMBINED BUS RANKING OF THE 179-BUS SYSTEM
Top Ranked Buses Lowest Ranked Buses
Rank Location CBR Rank Location CBR
#1 Bus 90 100.82 #170 Bus 162 0.31
#2 Bus 100 100.23 #171 Bus 163 0.28
#3 Bus 95 38.27 #172 Bus 172 0.24
#4 Bus 96 18.47 #173 Bus 168 0.12
#5 Bus 97 13.99 #174 Bus 85 0.11
#6 Bus 67 12.73 #175 Bus 50 0.02
#7 Bus 12 12.52 #176 Bus 92 0.02
#8 Bus 11 8.48 #177 Bus 94 0.01
#9 Bus 9 8.44 #178 Bus 165 0.01
#10 Bus 20 8.24 #179 Bus 171 0.00

The idea of combined bus ranking (CBR) is as follows: The
overall contribution of each bus to the oscillatory and voltage
stability evaluation can be quantified by combining the impor-
tance of variables measured at this bus.

Mathematically the CBR of Bus i can be expressed as

CBR,; = Z Viosv-rr(z) + Z VIvsm—rr(z)
Pty T€1

(15)

where X is the vector of RT input variables, « is the individual
variable belong to X, and VI(z) is its importance. By spec-
ifying * € 1, only the variables measured at Bus ¢ will be
counted.

B. Optimal PMU Locations

A ranking list of the bus contributions can be obtained by
sorting the CBR values from high to low. The optimal PMU
locations will be suggested by selecting the top ranked buses
from the list. In this work the CBR of top ranked buses were
computed by considering only the primary splitters, because the
surrogate variables that appear to be important but rarely split
nodes are almost certainly highly correlated with the primary
splitters and contain similar information. Once the top ranked
buses were selected, the standard V7 considering both primary
and surrogate splitters were used to rank the remaining buses. In
Table V, the CBR for the WECC 179-bus system was calculated
and top 10 buses are listed. Also shown in the table are the 10
buses with the lowest CBR.
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Fig. 12. RT performance considering different PMU placements in the 179-bus
system.

Suppose that a number of 4 to 20 PMUs will be installed in
the WECC system. By placing them at the top ranked buses of
Table V, the resulted RT prediction accuracy for unseen OPs
are summarized in Fig. 12. The RT performance using the mea-
surements from the lowest ranked buses is also presented for the
purpose of comparison.

As shown in Fig. 12, in contrast with the RTs fed with
measurements from the lowest ranked buses, those constructed
using the measurements from top ranked buses have exhibited
better performances. Another conclusion could be made by
comparing the R* of Fig. 10 with Fig. 8: almost identical
RT prediction R? was achieved by using the reduced set of
measurements from the PMU locations suggested by CBR.
Last but not least, there is a huge decrease of the complexity in
RT training since much fewer features are used. The training
time of the 179-bus RTs has been reduced from about 3 min to
less than 30 s.

VII. CONCLUSION

In this paper the approach of using regression tree to predict
power system stability margins is explored and the following
conclusions have been reached:

» Synchronized voltage and current phasors have been used
as RT input feature. With a sufficiently large knowledge
base, the RT model can predict the system oscillatory and
voltage stability behavior with high accuracy.

* According to the test results, the RT model is fast enough
to process PMU measurements, and it is robust to handle
measurement errors that are within 1% TVE.
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* The RT sensitivity to system topology variation becomes
less distinct in large sized network and under mild changes
in topology.

* The combined bus ranking derived from RT variable im-
portance is used to suggest optimal PMU locations. Test
results show that the measurements from reduced locations
can still lead to satisfactory RT prediction accuracy.
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