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Abstract—Power system frequency is a critical parameter of
voltage and current measurements for many applications, such as
power quality, monitoring, and protection. This paper presents a
hybrid approach for frequency estimation based on Taylor series
expansion and Fourier algorithm. The method is derived using
a dynamic signal model with varying parameters. The changing
envelope of a power signal within an observation data window
is approximated with a second-order Taylor series. A Fourier
algorithm-based method is proposed to compute the parameters
of such signal model. The algorithm using the linear model ap-
proach aimed at alleviating the computational complexity is also
presented. The comparison of the performance under various con-
ditions between the two approaches is conducted. Inheriting from
the use of Fourier algorithm, this hybrid algorithm is immune to
power system harmonics. It achieves excellent performance for
signals with dynamic variations. The performance is investigated
and compared with other techniques through simulations for
various scenarios observed in real power systems. Experimental
studies demonstrate the advantages of the proposed algorithm.

Index Terms—Fourier algorithm, frequency estimation, power
system frequency, Taylor series.

I. INTRODUCTION

P OWER SYSTEM frequency as a key property of the volt-
ages and currents is used by many applications for the pur-

pose of monitoring, protection and control. The simplest way to
estimate the frequency for a given signal is to measure the time
of zero crossings. However, in reality the measured signals are
usually distorted and noisy, which introduces large error to the
estimate. Fourier algorithm, which has been widely used as fre-
quency estimator due to its low computation requirement, is de-
rived based on stationary sinusoidal signal [1]. Thus, it has dif-
ficulty in handling slowly changing signals under dynamic con-
ditions. Besides, the implicit data window in Fourier approach
causes errors when frequency deviates from its nominal value
[2].
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Over the years, many techniques have been developed to es-
timate the power system frequency more accurately. Iterative
approach, Kalman filter, least mean square method, improved
Fourier algorithm, orthogonal filtering, Taylor series expansion
approach, and wavelet method are some of well known devel-
oped techniques [2]–[18]. The method using three consecutive
samples of the instantaneous input signal is discussed in [18].
Among those techniques, some require dedicated filters for re-
moval of harmonic components contained in measured signals
before applying the algorithm, thus the method accuracy mainly
relies on the performance of filtering. Some methods are de-
rived based on stationary signal model, thus they hardly meet
the accuracy requirement when exposed to dynamic varying sig-
nals. Some techniques use balanced three phase signals for re-
solving zero-crossing issues, thus they cannot deal with unbal-
anced conditions. And some approaches derived based on in-
stantaneous samples require extra effort to resolve zero-crossing
issues. Intelligent techniques-based approaches (e.g., genetic al-
gorithm [19] and neural network [20]) are employed in this area
as well. Although better performance may be achieved by such
optimization techniques, the implementations are more complex
and computationally intensive.

This paper develops a frequency estimation method based
on a dynamic signal model. Taylor series expansion is used
to approximate the dynamic signal spanning observation win-
dows using a quadratic polynomial. The parameters are com-
puted using the method derived based on discrete Fourier algo-
rithm. The computing method for linear approximation is de-
rived as well to alleviate the computational complexity. Their
performance under dynamic conditions is compared as well.
One signal cycle plus two samples and one signal cycle plus
one sample are needed for the quadratic model and linear model
respectively. Comparing with the traditional Fourier algorithm,
this method introduces more computational load. Nevertheless,
the computation is still less complex and intensive than other
techniques. This method is immune to harmonic distortions and
features outstanding noise rejection. Moreover, it achieves very
high accuracy for signals with dynamic variations. Various con-
ditions observed in real power system, such as noise and har-
monic contaminations, frequency drift, fault and power oscil-
lation are simulated to study the method performance under
those conditions. The comparison with other techniques is con-
ducted as well to demonstrate the advantages of the proposed
algorithm.

The paper is organized as follows. The frequency estimation
method using Taylor series and Fourier algorithm is elaborated
in Section II. The computing approach using simplified model
is described in Section III. Section IV studies the performance
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through simulations as well as the comparison with other tech-
niques. Section V outlines the conclusions.

II. IMPROVED FOURIER ALGORITHM

The traditional Fourier algorithm and some other techniques
usually assume a pure sinusoidal signal model with constant am-
plitude and phase angle over the observation window expressed
as

(1)

where is amplitude, is initial phase angle, and is signal
frequency. Over one cycle signal period , the amplitude and
angle at the center of the observation window where can
be estimated using the Fourier algorithm as follows:

(2)

(3)

where is the nominal frequency (60 Hz in this paper). Then
the frequency can be estimated by the changing rate of phase
angle (i.e., ).

The assumption of constant parameters is not adequate for
the signals measured during power system dynamic conditions.
For better describing dynamic signals, a model with changing
amplitude and phase angle is employed

(4)

The amplitude and phase angle are functions of time,
whose variation patterns are determined by power system states.
Designate as . It should be pointed out that the
changing angle implicitly involves the frequency variation
because the frequency is equal to rate of change of phase angle.
As a result the signal frequency can be obtained by

(5)

Rewrite (4) according to trigonometric function

(6)

where , . One
can see that the coefficient functions and describe
the envelope of the slowly changing sinusoid. Letting us expand
coefficient functions with the second-order Taylor series at the
center of the data window , we have

(7)

where , ,
, , and

.
From (6) and (7), we have the following expression at :

(8)

We obtain the amplitude and phase angle at the center of the
data window as follows:

(9)

Taking the first derivative on both sides of (7), at 0, we
have

(10a)

(10b)

Substituting (8) into (10a) and (10b), and eliminating , we
obtain

(11)

Suppose that the coefficients of the above quadratics are known.
From (5) and (11), we derive the formula for computing the
frequency

(12)

The amplitude and phase angle over the observation window
can be calculated as well using (9). Next, we will discuss how
to estimate those coefficients using the Fourier algorithm.

Let assume the sampling frequency is , is a
positive integer, then the sampling interval is . Apply
the discrete Fourier transform to signal ( is an integer)
over one cycle period from to ( is even), or
from to ( is odd). For simplicity, let
us neglect the multiple and , and denoting the real part
and imaginary part as and , we have

(13)

Substitute with (6) in discrete form, and with
. The left-hand side can be written

as

(14)

Arranging the real part and imaginary part, we have

(15a)

(15b)

The expressions for coefficients , , , , , , , ,
and are given in the Appendix.
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Fig. 1. Block diagram of the frequency estimation algorithm.

One can see from (15a) and (15b) that there are six unknown
variables with two equations. To solve the variables, let us obtain
four more equations by applying DFT to over the window

and ( is even), respec-
tively. Letting us mark the three DFTs with superscripts 1, 2,
and 3, and rewriting them in matrix form, we have

(16)

Denoting as the coefficient matrix,
and

, we
have . In (16), the coefficient matrix can be
calculated in advance. We utilize the matrix computation
technique to decompose into and the matrix for the
demand of fast computing. To obtain the DFT vector ,

samples of input signal are required. The overall
computation load for solving the variables is approximately

multiplications and summations, which is
far less compared to other methods. The computing burden can
be reduced further by using the recursive Fourier technique
[21], [22]. Performing the matrix operation, the estimated
frequency can be computed using (12). The block diagram of
the algorithm is given in Fig. 1.

III. SIMPLIFIED APPROACH

For some conditions, for example, the low frequency oscil-
lation, the amplitude, and phase angle within an observation
window are varying slowly. In this case, the signal envelope can
be represented linearly. Rewrite (6) as

(17)

One can see that the number of variables is reduced to four.
Thus, samples of the input signal are used for
two times of DFT over window and

, respectively. The corresponding matrix is
given as

(18)

The linear coefficients can be obtained by solving matrix (18).
Similarly, the frequency can be estimated by (12). For the linear
model, the computation burden can be significantly reduced.
The comparison between the linear model and quadratic model
will be studied next. Simulation studies show that the linear ap-
proximation under the slowly changing condition is adequate.

IV. SIMULATION STUDIES

Numerous simulation experiments using various types of sig-
nals that can be observed from the real power system are pre-
sented in this section. The test signals represent different op-
erating conditions of a power system including noise and har-
monic contaminations, frequency drift, and power oscillation.
The proposed hybrid technique for frequency estimation using
the quadratic model and linear model, denoted as HB2 and HB1,
respectively, is tested using simulation. A comparison of the re-
sults with a newly developed sample-based technique (denoted
as SBT) in [18] is presented to demonstrate the merit of the pro-
posed method.

For implementing the algorithm SBT, HB1 and HB2, the test
signals are sampled at 960 Hz , which is the sampling
frequency mainly used by most intelligent electronic devices
(IEDs) in substations. As required by the SBT algorithm, an
FIR band-pass filter with order 32 is applied to input signals
when handling the signals in the presence of white noise and
harmonics. The frequency response of the BP filter is shown in
Fig. 2.

A. In the Presence of Harmonics

Let us use the power signals contaminated with different or-
ders of harmonics, which is expressed as follows:

(19)

where , , and are the amplitude, frequency, and initial
angle of the nominal frequency signal while , , and are
the parameters for harmonic components.

Consider the order of harmonics up to eight (2nd 3rd…8th)
and set their magnitudes to 50%, 33%, 25%, 20%, 16%, 14%,
and 12%, respectively. Fig. 3 shows the distorted input signal
containing the third-order harmonic. The corresponding fre-
quency estimates computed by the three algorithms are given
in Fig. 4. The estimation errors are calculated by taking the
mean over 0.1 s period of input signals. The results by three
algorithms for each harmonic contamination case are summa-
rized in Table I. As expected, the proposed method is immune
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Fig. 2. Frequency response of the FIR band-pass filter.

Fig. 3. Input signal containing the third-order harmonic.

Fig. 4. Output frequency estimates by three algorithms.

to harmonic contamination. Using a well-designed BP filter
may help improve the accuracy of the SBT algorithm.

B. Noise Rejection Test

The capability of the noise rejection of the frequency estima-
tion techniques is investigated using the sinusoidal signal de-
scribed in (1) superimposed with zero-mean Gaussian noise.
The white noise with various signal-to-noise ratios (SNRs) (e.g.,
40, 50, 70, and 80 dB) are added to the test signals. Since the
noise signals are generated randomly, the algorithms are per-
formed 100 times and the mean value of the estimated frequency
error (in hertz) is computed for each noise level. The results for
algorithm HB1 and HB 2 are given in Fig. 5 with comparison
to the SBT algorithm. The estimation errors are summarized in
Table II. As expected, the instantaneous sample-based method is

TABLE I
ESTIMATION ERRORS IN THE PRESENCE OF HARMONICS

Fig. 5. Estimated frequency errors in the presence of noise.

TABLE II
ESTIMATION ERRORS IN THE PRESENCE OF NOISE

sensitive to noise. HB1 exhibits better noise rejection than HB2.
This may result from the reduced computational complexity.

C. Frequency Ramp

In this section, the performance of the proposed algorithms
exposed to signals with a linear variation of frequency is inves-
tigated. Consider the rate of change of frequency 1 Hz.
The signal frequency varies from its nominal value for 2 s, that
is, increasing from 60 to 62 Hz for the positive rate of change
and decreasing from 60 to 58 Hz for the negative rate of change.
The responses of the proposed methods HB1 and HB2 are also
compared to the response of SBT. Figs. 6 and 7 show their re-
sponses at the beginning of the ramp (around 0.2 s) and at the
end (around 2 s) for the positive and negative rate of change, re-
spectively. As we can observe, the frequency outputs estimated
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Fig. 6. Responses for �� � 1 Hz. (a) At the beginning of the frequency ramp.
(b) At the end of the frequency ramp.

by the HB2 method follow the inputs very close. From Figs. 6(a)
and (7a), we can observe that HB1 achieves better accuracy than
SBT. As the frequency deviates from its nominal value, HB1
has fairly large errors, as shown in Figs. 6(b) and 7(b). This is
caused by the linear approximation.

D. Modulated Frequency

In power system modulations, amplitude and phase angle
occur when the balance of power generation and consumption
gets violated due to system disturbances, such as a fault or loss
of load. This phenomenon involves electromechanical tran-
sients, which may cause frequency fluctuations, particularly the
phase modulation. Considering that the frequency varies as a
sinusoid, we use the following model to generate input signals:

(20)

where is the modulation frequency. and are the am-
plitude and initial phase angle. Then, the real frequency can be
expressed as

(21)

Let 0.2 p.u., and vary from 0.1 to 5 Hz. The
accuracy of HB1 and HB2 is compared with SBT. The average
frequency estimation errors over one cycle period corre-
sponding to modulation frequency are calculated and shown in
Table III. Simulation results indicate that the frequency esti-
mates by the three algorithms follow the inputs very close under
slowly changing conditions. Fig. 8 gives the responses of the

Fig. 7. Responses for �� � �1 Hz. (a) At the beginning of the frequency ramp.
(b) At the end of the frequency ramp.

Fig. 8. Frequency responses of three algorithms under � � 5 Hz.

TABLE III
ESTIMATION ERRORS FOR MODULATED FREQUENCY

three algorithms exposed to the signals modulated with 5 Hz.
The results demonstrate that the linear model is adequate for
slowly changing signals while the quadratic model is capable
of tracking fast changing signals.
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Fig. 9. Dynamic responses of three algorithms for amplitude steps.

Fig. 10. Dynamic responses of three algorithms for phase-angle steps.

E. Steps in Amplitude, Phase, and Frequency

Faults and switching operations in power systems may cause
abrupt changes in the amplitude and phase angle of the voltage
and current waveforms. Some other disturbances, such as gener-
ation tripping, may result in frequency jumps. In this section, we
study the dynamic behavior of the hybrid algorithms HB1 and
HB2 using step signals as specified in IEEE standard C37.118
[23]. Their responses are also compared with SBT. A test signal
with 10% step in amplitude at 0.1 s followed by reversing the
amplitude back to the starting value at 0.2 s is fed to the algo-
rithms. Their responses are shown in Fig. 9.

As expected, the frequency estimators suffer a transition
during the amplitude step. The response time depends on the
length of the data window that the estimators use for compu-
tation. One can see that SBT has the shortest response period.
However, it has difficulty in handling the harmonics and noise.
Although the proposed methods require a longer settling period,
they achieve good accuracy over distorted signals. It has to be
pointed out that the half cycle plus one or two samples can be
used for HB1 and HB2 to gain faster response for dynamic
signals, whereas the accuracy will be affected by the signals
containing even-order harmonics. Similar to the amplitude
step, a test signal with phase angle step at 0.1 and 0.2 s,
respectively, is fed to the frequency estimators. Fig. 10 shows
their behavior which is similar to the result of the amplitude
step.

For the frequency jump, signals with 1 Hz variation steps
from the nominal value 60 Hz are used to observe the dynamic
behavior of the methods. Figs. 11 and 12 show their responses
for the positive and negative steps, respectively. All of the

Fig. 11. Dynamic responses of three algorithms for�1 Hz frequency step.

Fig. 12. Dynamic responses of three algorithms for�1 Hz frequency step.

Fig. 13. Voltage waveforms for the first case.

methods under test exhibit smooth transitions during steps. As
expected, SBT responses are fast because of the shortest data
window.

F. Transient Signals

The voltage signals generated from the time domain program
ATP/EMTP are used to evaluate the performance of the new
frequency estimation algorithm under transient conditions. The
power system model is a 230 kV power network created by a
Working Group within the IEEE Power and Energy Society’s
Power System Relaying Committee (PSRC) [24]. The record-
ings of voltage and current waveforms are imported and fed to
the frequency estimation algorithms. Two scenarios are consid-
ered: one is a transmission line fault followed by tripping of a
faulted line that caused power swing; another is an out of step
due to a loss of load. Fig. 13 shows the secondary voltage of
the faulted phase for the first case. The frequency estimates ob-
tained by the three algorithms under this condition are given
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Fig. 14. Frequency responses of three algorithms for the first case.

Fig. 15. Current waveforms for the second case.

Fig. 16. Frequency responses of three algorithms for the second case.

in Fig. 14. One can observe that the methods suffer transitions
during abrupt changes as expected. The accuracy of SBT is af-
fected by the oscillation. The proposed methods HB1 and HB2
follow the frequency variation very close. For the second case,
we estimate the frequency using current signals, which is shown
in Fig. 15. The magnitude envelope is increasing due to the
out of step. The frequency oscillates because the varying phase
angle after occurrence of the out of step. Fig. 16 shows the fre-
quency responses of the estimators. One can see that the oscil-
lation severely affects the accuracy of SBT, whereas HB1 and
HB2 are capable of following the frequency variation during
power oscillations.

G. Laboratory Experiments

In this section, we use signals collected from a digital fault
recorder (DFR) to evaluate the performance of the proposed al-
gorithm. The DFR is a part of the laboratory setup developed

Fig. 17. Diagram of the laboratory setup for protective relay testing.

Fig. 18. Diagram of the laboratory setup for protective relay testing.

for protective relay testing [25]. Fig. 17 shows the diagram for
the relay test system. It includes a PC-based controller to run
associated software, a digital simulator, and a set of amplifiers
used to generate voltage and current signals at nominal level, a
protective relay under test, and a DFR used to record the distur-
bance waveforms.

The voltage and current signals retrieved from the DFR
contain errors brought by the digital-to-analog converter, am-
plifier, and instrument transformer. Those errors may include
white noise, signal distortion, and high frequency components.
The sampling frequency for this DFR is 10 kHz. We retrieved
voltage waveforms under an event triggered by a three-phase
fault and fed them to the frequency estimators. A segment of
one phase voltage containing fault data is shown in Fig. 18.
The performance of the three methods is shown in Fig. 19. One
can see that the performance of SBT is affected by the dynamic
signal itself and the contaminating components while the HB1
and HB2 exhibit the same accuracy for the slowly changing
inputs.

V. CONCLUSIONS

A hybrid method for real-time frequency estimation based on
Taylor series and a discrete Fourier algorithm is proposed in
this paper. Two approaches using the quadratic model and linear
model are presented to achieve better accuracy and less compu-
tational complexity, respectively. The performance of the pro-
posed methods is compared to an instantaneous sample-based
technique. The conclusions are as follows.

• The new techniques achieve high harmonics and noise
rejection.

• The approach using the quadratic model achieves high ac-
curacy under dynamic conditions.
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Fig. 19. Diagram of the laboratory setup for protective relay testing.

• The simplified method using linear approximation is ade-
quate for slowly changing signals. It features better noise
rejection compared to the quadratic model approach.

• Frequency estimates computed over the data window
containing abrupt changes in amplitude, phase angle, and
frequency may be invalid. Such measurements need to be
marked as bad measurements for the frequency-critical
applications.

• The sampling frequency required by the proposed algo-
rithm is in a prevailing range, and the computation burden
is low. This method can be used for real-time power system
frequency tracking.

APPENDIX

The coefficients in (15a) and (15b) are

(22)
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