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Detect and Classify Faults
Using Neural Nets

Miaden Kezunovic™ and Igor Rikalo’

A neural network trained to recognize patterns
of transmission line faults is incorporated in a
PC-based system that analyzes data files from
substation digital fault recorders

case it is connected directly to the
DFR via a high speed parallel link,
or it can be installed at a central
station, in which case it can be
configured to automatically ana-
lyze events coming from all DFRs.

The substation installation of
this software requires a stand-
alone PC connected to a DFR. As
soon as the DFR records a distur-
bance, data is automatically trans-
ferred to the PC and the fault
analysis software determines if a
fault has occurred and, if so, the
type of fault. This conclusion is
used to check if the relay opera-
tion is correct or not.

If installed at a central location,
master station communication
software is used to retrieve events
from DFRs over a modem connec-
tion. Once the new event is
retrieved, it is analyzed and, if
appropriate, archived where it can
be accessed by protection engi-
neers for future examination.

Existing Fault
Analysis Technigues

he analysis of transmission line faults is essential

to the proper performance of the power system. It is

required if protective relays are to take the
appropriate action and in monitoring the performance of
relays, circuit breakers, and other protective and
control elements. The detection and classification of
transmission line faults is a fundamental component of
such fault analysis.

Another application of fault analysis is in software
packages for automated analysis of digital fault recorder
(DFR) files. Recently, such a package, called DFR Assis-
tant, was developed for substation applications. This
program can be installed locally in a substation, in which
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One of the most common tech-
niques utilized for fault analysis is one based on the sym-
metrical components theory. This technique has been
used for over 50 years in various protective relay appli-
cations. This technique requires computation of sym-
metrical component phasors, resulting in positive,
negative, and zero sequence phasors. The computation
of phasors requires appropriate processing considera-
tions when used in digital relays and other computer-
based applications.

The most important considerations in computing
power system phasors are the sampling rate, antialiasing
filters, and data window. The sampling rate is deter-
mined by the method used for phasor computation,
such as Fourier transform. The antialiasing filters are
used to band limit the frequency spectrum of the input
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Figure 1. EMTP models used for simulations

current and voltage to meet the sampling theorem which
states that the sampling frequency should be at least
twice the highest frequency in the spectrum. The data
window consideration relates to the number of samples
required to compute a phasor. The most common data
window is one cycle (16.67 ms for 60 Hz signal). Howev-
er, some half-cycle techniques are also used.

Once symmetrical component phasors are calculated,
a known theory of fault analysis is applied to determine
fault occurrence and fault type.

New Approaches

Another approach that can be used for fault detection
and classification is to utilize samples of currents and
voltages directly without computation of phasors and
related symmetrical components. There is no need to
perform extensive filtering to obtain phasors. Instead,
transient waveform data can be utilized directly to per-
form the required processing. In addition, the data win-
dow can be quite short and does not need to satisfy
particular rules present for the phasor calculation. This
new approach is based on the use of neural networks.

A neural network is a parallel, distributed, information
processing structure consisting of processing elements
(which can possess a local memory and carry out local-
ized information processing operations) interconnected
together with unidirectional signal channels called
connections. Each processing element has a single out-
put connection that branches (“fans out”) into as many
collateral connections as desired (each carrying the
same signal, the processing element output signal). The

processing element output signal can be of any mathe-
matical type desired. All of the processing that goes on
within each processing element must be completely
local; i.e., it must depend only upon the current values of
the input signal arriving at the processing element via
impinging connections and upon values stored in the
processing element’s local memory. The key elements of
most neural-net descriptions are distributed representa-
tion, the local operations, and nonlinear processing.
Neural networks are primarily used in situations in
which only a few decisions are required from a massive
amount of data and situations in which a complex non-
linear mapping must be learned. Main applications of
present-day neural-network computing include:
Functional approximation

Clustering

Data compression

Optimization

Topological mapping.

Neural-Net Structure
For a clear understanding of potential benefits achieved
with the new neural network approach, it is important
to emphasize specific properties and characteristics
of both the power system application and the
neural-net implementation.

The transmission line fault analysis application
embodies several data processing properties. Data
acquisition is aimed at collecting samples of analog
quantities (voltages and currents) from secondaries of
instrument transformers, and status information (con-
tacts) from circuit breakers, switches, and protection
relays. Samples of the analog quantities must be
processed simultaneously for all the voltages and cur-
rents on a transmission line. This facilitates timely deter-
mination and comparison of the signal parameters and
time sequences of contact changes.

The process of comparing requires an easy interfac-
ing between the signal and logic processing. The final
outcome of the fault analysis can be obtained with high
selectivity and speed, since all decisions are based on
instantaneous changes of the signal parameters and the
corresponding sequence of events.

The fault analysis application, as defined in the con-
text of this article, requires that fault detection and clas-
sification are determined in the following manner:

e The outcome of the processing must be presented
in a symbolic form (class names), since the detec-
tion and classification results of the neural-net
computation may be further utilized in a rule-based
expert system.

® Neural-net training must be quite efficient and
straightforward, since the fault analysis application
requires a fast and simple procedure for adapting
to the changing power network conditions.

Fault detection and classification is defined as a
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multiclass problem. The eleven types
of faults (a-g, b-g, c-g, a-b, bc, c-a, ab-g,
be-g, ca-g, abc, abc-g) and the no-
fault situation produce a twelve-class
classification problem.

A literature search indicates that most
of the neural-net implementations for fault
detection and classification are based on
multilayer, feed-forward nets. In this case,
the application is considered to be a map-
ping problem. Supervised learning can be
used where sets of associated input/out-
put pairs are presented to a neural net
that then learns a model of that process.
However, the training process of multilay-
er networks is computationally demanding, and, in some
instances, tens of thousands of iterations are needed to
achieve convergence. Such performance may not be suit-
able for fast fault detection and classification. Since our
problem is a classification problem, where only discrete
labeling of classes is needed, the use of feed-forward net-
works may not be fully justified under stringent process-
ing time requirements.

Another possible approach for the neural-net applica-
tion to our problem is to exploit data self-organization
obtained through the use of unsupervised learning. After
the learning (cognition phase), the user defines or labels
clusters according to some criterion. The neural net is
then ready for the classification task (recognition
phase). Therefore, the concept of data self-organization
through the use of unsupervised learning is valuable for
discovering how an ensemble of patterns is distributed
in the pattern space.

To overcome the mentioned limitations of the multi-
layer, feed-forward networks, and to take advantage of
the suitability of self-organizing networks to perform a
classification through the clustering process, a new neur-
alnetwork approach has been developed and applied in
our study. It incorporates advantages of both supervised
and unsupervised training procedures and yet meets the
requirements presented earlier. The proposed method
utilizes the concept of supervised clustering, which
demonstrates the following important properties:

® The number of iterations in the learning process is

greatly reduced using unsupervised learning with a
supervised class membership inheritance process.

@ The training is far less complex than in standard

supervised learning.

# Combining symbolic and numeric data is readily

available.

Neural Network Implementation
The following steps are needed in order to use any exist-
ing neural net structure:
# Select the neural net algorithm most suitable for a
given application
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Figure 2. Sliding data window input to the neural net

# Define a detailed training data set that represents

cases the neural net needs to learn

@ Train the neural net

& Test the neural net using a test data set until satis-

fied with its performance.

The neural-net algorithm used for this application
embodies the ISODATA clustering algorithm, which is
well-known in classical pattern recognition. This type of
neural net assumes no teaching and performs unsuper-
vised learning. The process performs comparison of a
given input with previously encountered patterns. If the
input is similar to any of the patterns, it will be placed in
the same category. If the input is not similar to any of the
previously presented patterns, a new category will be
assigned. Category proliferation is controlled by the con-
fidence measure, called vigilance. It calibrates how well
an exemplar needs to match the prototype that it selects
in order for the corresponding category to be chosen. If
vigilance is low, even poor matches are accepted. Many
different exemplars can then be incorporated into one
category, so compression and generalization by that cate-
gory are high. If vigilance is high, then even good matches
may be rejected, and hypothesis testing may be initiated
to select a new category. In this case, few exemplars acti-
vate the same category, so compression and generaliza-
tion are low. A very high vigilance can select a unique
category for a rare event that predicts an outcome differ-
ent from that on any of the similar exemplars that sur-
round it. In this case, the prototype of the category learns
the unique exemplar that the category represents.

The training data set is generated with extensive
EMTP simulation using models of actual power systems.
The selected models of power systems contained both
short and long transmission lines and mutually coupled
lines. The one-line diagrams of the selected EMTP mod-
els are shown in Figure 1.

Thousands of cases were run by changing fault type,
inception angle, fault resistance, and fault location.
Phase currents and voltages were recorded for each
case. All of the different cases were then divided into two
sets, one to be used for neural-net training and the other



Figure 3. Neural net training procedure (clustering)

Figure 4. Outcome of neural net training

Figure 5. Hybrid system utilizing neural net and expert

system

for testing. The input data set for the neural net is orga-
nized in the form of a sliding data window with a fixed
window length of 1 cycle of the fundamental waveform
(16.67 ms of data). The sampling frequency was 2 kHz.
This corresponds to the 33 samples per cycle. The neur-
al net was fed with three different signals (three phase
currents) which gives total of 99 input neurons. The cur-
rent samples are arranged in the input vector according
to the following:

[]al IbI]cl ]a2[b2 Ic2 ]aB’2 Ib32 1c32 1033 Ib33 1c33]

An example of the sliding data window technique is
shown in Figure 2, where the arrow points to the sliding
direction. Sliding motion is obtained by putting every
new sample at the front of the window and removing the
first sample from the end of the window.

The neural net configuration is presented in Figure 3.
It generates clusters by itself, if such clusters can be
identified in the input data. Essentially the network
follows the leader after it associates the first cluster with
the first input vector received.

The algorithm works as follows.

e First, an input vector (training pattern) becomes,
by default, a member of the first cluster defined by
the neural net.

m Second, the training pattern is matched against the
existing cluster. If the Euclidean distance between
the input vector and the center of the cluster is less
than a threshold (vigilance test), the matching test
is passed, the pattern is added to the cluster, and
the cluster center adjusted accordingly. If the
Euclidean distance is greater than a threshold, the
matching test fails, and a new cluster is created
with one member (second training pattern).

® This procedure is reiterated until all training pat-
terns are processed and a stable family of clusters
is generated.

The central part of the network computes the match-
ing score (Euclidean distance) reflecting the degree of
similarity between the present input and the previously
encoded clusters. The MINNET is used to identify the
cluster most similar (the minimal Euclidean distance) to
the present input vector. The MINNET calculates the
Euclidean distance between the present input vector and
all existing clusters, and then identifies the cluster with
the minimal distance. The similarity between this cluster
and input pattern is then measured.

Since the proposed neural-net algorithm contains no
hidden layers (flat net), the network structure depends
on the type of the input data set. The number of
neurons in the input layer is determined by the length
of the input vector.

This network configuration can easily be modified to
include voltage signals in addition to current signals.

Figure 4 graphically presents the outcome of the neur-
al-net training. It shows a family of homogeneous
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Figure 7. Example of analysis report

clusters, each labeled according to the type of fault
pattern it contains.

Once the network is trained, it can be used as a gener-
al and very fast fault classifier. Every cluster generated in
the clustering process is assigned a label according to
type of fault pattern of its cluster members. A new fault
pattern that needs to be classified is processed accord-
ing to the following logic.
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m Euclidean distances between a pattern and all
of the clusters are calculated.

m The cluster with the minimal Euclidean
distance is identified (if N nearest neighbors
classification scheme is used, then N clusters
with minimal Euclidean distance are selected).

m A new pattern is assigned class membership
according to the closest cluster (or voting
system is introduced in the case of N
nearest neighbors).

Preliminary tests of the neuralnet fault classifier
were conducted using two different power system
segment models. The neural-net performance was
excellent, and average correct classification rates
were above 90 percent. The results shown in Table
1 were obtained after neural net was trained using
1,200 different fault patterns.

During the testing, the neural net was presented
with 295 new fault patterns. The neural network
never saw these patterns, and its task was to
classify new patterns based solely on the previous
experience (i.e., using the information learned
during the training).

Classification was based on the following logic:

® If a new pattern belongs to the nearest cluster
(i.e., Euclidean distance between the pattern
and the cluster center was smaller than the
radius of that cluster), then the pattern inher-
ited class membership of that cluster.

& If a new pattern does not belong to the nearest
cluster (i.e., Euclidean distance between the
pattern and the cluster center was greater
than the radius of that cluster), then the pat-
tern was assigned a label according to the
class membership of the nearest three clus-
ters (three nearest neighbors).

The results are summarized in Table 1.

Table 1. Neural network classification results

Application in Automated Fault Analysis
The neural network is designed to be incorporated
in a PC-based system for automated transmission
line fault analysis, called DFR Assistant. This system ana-
lyzes data files coming from the digital fault recorders
(DFRs) located in substations. DFRs are monitoring
selected currents, voltages, and contacts (e.g., relay trip
status, circuit breaker status, etc.) and taking a snapshot
of these signals when some abnormal conditions (faults)
happen. This snapshot is recorded in a binary file that is
transferred to a central location so that protection engi-



neers can analyze it. Since any given utility company can
have numerous DFRs, and, due to the “ripple effect”,
depending on the severity of a system disturbance, large
numbers of DFR records may be generated. This places a
burden on the protection engineers to manually examine
all DFR records, identify records that are most important
for a given case, and then analyze them. The new
software facilitates the analysis of DFR recordings by
automatically classifying all records into groups based
on selected criteria. The records are filtered according
to following criteria:

@ Fault detected and identified, protection system

operated within clearing time

m Fault detected and identified, protection system

operation exceeds allowed clearing time

m Fault detected and identified, protection system

did not operate at all

m No fault detected.

Based on these filters, records are archived in differ-
ent folders (e.g., high priority folder, medium priority
folder, and low priority folder) for further analysis by the
protection engineers. Once configured at the central
location, the software will monitor all DFRs and detect
the arrival of the new recordings. Once the complete
recording is being transferred, the analysis is started.

Figure 5 shows a hybrid system consisting of a
supervised clustering neural net and a rule-based expert
system. The neural net operates only on analog
quantities of a DFR event file. It detects the faulted line
and assigns the appropriate class membership to the
fault (e.g., phase A to ground fault). The rule-based
expert system uses contacts data to extract the timings
of the operating sequence of the relays and breakers,
and then processes these timings to verify the correct-
ness of the overall operation of the protection equip-
ment for a given event. At the end, a textual report is
generated. The advantage of using neural networks is a
reduction of the rule base (no rules are needed for
dealing with the analog quantities), hence reduction in
the number of thresholds that have to be prespecified.
Also, an increase in processing speed is significant, since
the neural network processing is parallel.

The role of the neural net in this solution is to process
current signals and identify the one with the largest dis-
turbance. Furthermore, it will try to classify disturbance
according to the fault type.

Figure 6 shows the basic objects (i.e., DFRs and moni-
tored bus voltages and transmission line currents) that
are configured. The user must define the number and
type of analog and digital channels that are monitored
by a given DFR system. Usually, the practice of U.S.
power utility companies is to record bus voltages (all
three phases plus zero sequence) and at least two phase
currents for each transmission line. In addition, relay trip
signals, breaker contacts, and some communication
channels are usually recorded. Once the configuration is

A neural network is a parallel,
distributed, information processing
structure consisting of processing
elements interconnected together
with unidirectional signal
channels called connections

finished, the incoming data files can be analyzed. The
analysis is done automatically, and results are stored in
different folders, depending on the type of event.

Figure 7 shows an example of an analysis report that
was generated automatically by the program. The list
box in the upper left corner lists all events that are
processed and stored in the high-priority folder. The digi-
tal fault recorder information group box gives basic sys-
tem parameters about the recorder that made the
recording. The general event information group box con-
tains data about a given event (its location in the
archive, date/time stamp, and size in cycles). The event
classification group box shows fault type, the transmis-
sion line involved, and the fault location. Finally, in the
additional event description box, the user can see rms val-
ues for currents and voltages on the faulted transmission
line during the time of the disturbance. This box also
contains information on the operation of the protection
relays and circuit breakers, if applicable to a given fault.
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