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ABSTRACT FERC Order 2222 paves the way for aggregated distributed energy resources (DERs) 

participation in the wholesale electricity market. A particular DER assumed to be widely available in the 

future is the distributed prosumer (DP), also called virtual power plant (VPP), which may host PV generation, 

and stationary and mobile battery energy storage systems, in addition to the on-site passive load. DP 

aggregation and participation in the day-ahead market ancillary service products (ASPs) require managing 

uncertainties associated with load consumption and photovoltaic generation, electric vehicle (EV) scheduling, 

market-clearance prices, etc. Outages in the distribution grid may distort these energy-limited resources from 

their optimal operating point, potentially impacting their ability to deliver the committed ASPs in real-time. 

To address these challenges, first, we develop a machine learning algorithm to predict the risk of outages in 

distribution feeders. Next, we incorporate the distribution feeder State of Risk (SoR) predictions with the 

bidding model of the DP aggregator to provide an informed decision-making tool for optimal participation in 

the energy and ASP markets. The simulation results demonstrate the efficacy and scalability of the proposed 

model in improving the aggregator profitability and preventing penalties for the inability to deliver ASPs due 

to unexpected energy capacity limits of DP assets. 

INDEX TERMS Aggregator, Bidding strategy, Distributed prosumer, Outage prediction, Wholesale market. 

NOMENCLATURE 

PARAMETERS 

Λ𝑡
𝑒, Λ𝑡

𝑠𝑟  DAM energy and SR price forecasts. 

𝜆𝑗𝑡
𝑒  RTM energy price forecast for scenario 𝑗. 

𝛿𝑘𝑡 EV charging/discharging price according to 

EV contract with DPs. 

Π𝑗 Weight of scenario 𝑗. 

𝑈 Unavailability of DP 𝑎.  

𝐴 Availability of DP 𝑎 (𝐴 = 1 − 𝑈). 

𝜗𝑗𝑡 Expected portion of spinning reserve to be 

activated in real-time. 

𝜌𝑠𝑟 Penalty per unit of undelivered SR in real-

time. 

𝜌𝑒 Penalty per unit load loss in disconnected DPs. 

𝜏 Portion of SR activated in real-time. 

𝑃𝑉 PV generation. 

𝐿𝑛𝑐 Non-controllable electric load of DP. 

�̅�𝑏 Maximum BESS power limit. 

𝐸𝑏 , �̅�𝑏 Minimum and maximum BESS energy limits. 

𝜂𝑏 BESS efficiency. 

𝜃𝑎𝑚𝑏  Ambient temperature. 

𝛽𝑎 , 𝑅𝑎 Building’s thermal constant and resistance.  

𝐶𝑎 Air conditioner’s coefficient of performance. 

𝜗 Building’s heat gains and losses. 

𝜃𝑎, �̅�𝑎 Minimum and maximum building temperature. 

�̅�𝑎
𝑡ℎ Maximum thermal power. 

𝐿𝑑𝑓 Deferrable load. 

𝑑𝑐𝑎 Duty cycle of deferrable load. 

𝑃𝐿, 𝑄𝐿 Active and reactive load of the node. 

𝑟, 𝑥 Resistance and reactance of the line. 

𝛼 Confidence level. 

𝜔 CVaR weighing factor. 

VARIABLES 

𝐸𝑑𝑎, 𝐸𝑟𝑡  Traded energy in DAM and RTM. 

𝑆𝑅 Awarded spinning reserve in DAM. 

Φ𝑠𝑟 Penalty for not delivering the committed SR. 

Φ𝑒 Penalty for load loss of disconnected DPs. 
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𝑝 Power output. 

𝑠𝑟 SR capacity without outage. 

𝑠�̌� SR capacity after outage clearance. 

𝑝𝑠𝑟 Power under spinning reserve. 

𝑙𝑡ℎ, 𝑙𝑑𝑓 Thermal and deferrable loads. 

𝑝𝑢 
Stored energy used for power generation 

during outage. 

𝑝𝑢 Load loss during outage. 

𝑝𝑑 Extra PV generation stored during outage. 

𝑝𝑑 Spilled PV generation during outage. 

𝑥𝑏 
Binary variable for BESS operating mode 

(0: charging, 1: discharging). 

�̅�𝑡
𝑏 

Expected stored energy at BESS at the end 

of timestep 𝑡 (weighted by risk of outages). 

𝑒𝑏 
Stored energy at BESS at the end of 

timestep 𝑡, without an outage. 

�̃� 
Stored energy at BESS at the end of 

timestep 𝑡, in case of outage. 

𝜃 Building temperature.  

𝑝𝑛𝑚
𝑎 ,𝑞𝑛𝑚

𝑎  
Active and reactive powers injected by DPs 

to node m. 

𝑝𝑓, 𝑞𝑓 Active and reactive power in the line. 

𝑉𝑠𝑞 Variable denoting the square of node voltage. 

𝜙 Value-at-risk. 

𝛾𝑗 Excess of profit is scenario j over VaR. 

SETS 

𝑡 Set of time steps. 

𝑗 Set of real-time scenarios. 

𝑎 Set of DPs. 

𝑘 Set of EVs. 

𝐷𝑃𝑎 Set of EVs connected to DP 𝑎. 

𝑚, 𝑛 Set of nodes in distribution grid. 

SUPERSCRIPTS 

da, rt Day-ahead, real-time 

e, sr Energy, spinning reserve (SR) 

ch, dis Charging and discharging modes 

a Distributed prosumer 

ev Electric vehicle 

b Battery energy storage 

nc Non-controllable load 

th, df Thermal load (HVAC) and Deferrable load  

u, d Positive and negative net-load during outage 

 

I. INTRODUCTION 

A. PROBLEM STATEMENT 

Distributed prosumer (DP) is a unique type of distributed 

energy resource (DER) located in buildings potentially 

equipped with rooftop photovoltaic (PV) generation, 

battery energy storage system (BESS), and electric vehicle 

(EV) chargers [1], [2]. DP owners can profit by offering 

energy resources in different scenarios: a) distribution grid 

support services [3]–[5], b) participation in distribution 

markets with transactive energy exchanges through peer-

to-peer energy trading [6]–[9], and c) ancillary service 

product (ASP) procurement for the wholesale electricity 

market (WEM) through aggregation [10], [11]. The 

independent system operator (ISO) may benefit from 

additional energy resources acquired through ASPs to 

secure reliable grid management. The Federal Energy 

Regulatory Commission (FERC) order 2222 is a milestone 

development that mandates the USA ISOs in the Eastern 

and Western Interconnection to facilitate ASP procurement 

by DER aggregators with the intent of lowering energy 

costs through enhanced competition, improving grid 

resilience, flexibility, and reliability, and stimulating more 

innovation in DER technologies [12]. However, the DP 

resources are energy-limited and subject to uncertainty 

stemming from (i) the risk of outages in the distribution 

grid leading to the drain of their stored energy to supply 

their load, and (ii) unexpected utilization of energy 

resources such as load and PV generation, EV initial state 

of charge (SOC), arrival and departure times. These sources 

of uncertainty, if not captured precisely, may result in the 

inability of the DP aggregator to deliver the committed 

ASPs resulting in monetary losses and potential penalties. 

B. PRIOR RESEARCH 

Different research efforts have focused on improving the 

profitability of DPs through energy trading and ASP 

procurement in the WEM. In [13], a distributionally robust 

optimization via a scenario-wise ambiguity set model was 

proposed for a collaborative DP bidding strategy in the day-

ahead market (DAM). On this basis, a robust counterpart of 

the optimization problem by applying scenario-based affine 

recourse approximation was presented. In [14], the 

information gap decision algorithm was adopted to 

maximize the aggregator risk level per a preset level of the 

expected payoff. In [15], a tri-layer bidding framework for 

the aggregator bidding in the energy and regulation reserve 

market was developed. In this framework, bidding plans for 

the superordinate ISO and dynamic price curves for the 

subordinate DER owners were formulated. The authors in 

[16] used a regrouping algorithm with scenario trees to 

model the EV fleet market participation as a virtual battery. 

The participation of an EV aggregator in energy and 

different regulating reserve products was explored in [17]. 

In this model, the aggregator compensated the EV owners 

based on their battery degradation costs. In [18], a robust 

decision-making tool for an EV aggregator participating in 

the energy and regulation reserve markets was proposed. 

The aggregator participation in the demand response (DR) 

programs was assessed in [19]–[25]. A quantitative 

compensation mechanism to guarantee DP profitability in 

DR programs considering price volatility was presented in 

[19]. In [20], the regret-based approach in a bi-level 

optimization was proposed for proper contribution in a DR 

program, where the CVaR measure is employed for risk 

management. In [21] and [22], stochastic scenario-based 

provision of DR by the aggregator of DERs was discussed. 
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Uncertainty in renewable generation was addressed in [23] 

by implementing DR programs and EV aggregators via a 

coordinated stochastic decision-making model. In [24], the 

aggregator utilized the agents' load curtailment and load 

shifting abilities to participate in DR programs, and the 

agents were compensated based on pre-contracted 

incentive programs. In [25], a spatiotemporal transfer 

characteristic-based bidding strategy for participation in a 

DR program was developed. The Shapley value method 

was implemented to design proper incentive mechanisms 

based on which agents are rewarded. A bidding strategy 

model that considers the uncertainties of DP resources to 

optimally offer energy and secondary reserve in DAM and 

RTM was proposed in [26]. A two-stage stochastic 

optimization model was developed, in which the 

uncertainties of renewable generation, ambient 

temperature, load, and house occupancy were modeled 

through a set of scenarios. In [27], the authors developed 

the curves for price-quantity bidding of a thermal load 

aggregator in day-ahead and quantity-only bids in the real-

time. They leveraged the flexibility of the thermal load in 

real-time to address the load and weather-related 

uncertainties. The authors in [28] proposed a hierarchical 

model predictive control (MPC) to ensure the delivery of 

energy under the committed ASPs in real-time. The 

aggregator benefited from this MPC to control the 

heterogeneous flexible resources of the DPs in real-time. 

The provision of flexibility by DP aggregators was 

discussed in [29]–[31]. A scenario-based optimization was 

developed in [29] to exploit DP flexibility in energy and 

tertiary reserve markets. The impacts of such DP 

aggregators on the market operation were explored in [30]. 

In [31], the joint participation of an aggregator in the 

wholesale energy and local flexibility markets was studied, 

where a robust adjustable optimization was used to tackle 

the uncertainties.  

Research on the outage risk assessment offers various 

approaches. Authors in [32] used remote sensing data to 

enhance the performance of the outage prediction model. 

Random Forest is the core Machine Learning (ML) 

algorithm used in [33] to predict the number of customers 

losing power during hurricanes. Neural Network (NN) that 

exploits repair logs from a utility was trained to predict the 

duration of outages in [34]. The Long short-term memory 

(LSTM) cells captured temporal patterns in data to predict 

weather-related outages in [35]. Granular modeling of wind 

fields over a large area was demonstrated to improve 

prediction accuracy in [36]. 

C. OUR CONTRIBUTION 

The previous studies ignore the impacts of outages in the 

distribution grid on the aggregator's ASP delivery and 

energy trading. During outages, the DPs rely on their stored 

energy to supply their load. If the DP is suddenly 

disconnected due to an outage, the aggregator must sell the 

surplus energy, purchased in the DAM, back in the RTM, 

which is subject to high price fluctuations. More 

importantly, ASP delivery by the temporarily disconnected 

DPs after reconnection can be impeded since less reserve 

capacity may be available due to supplying their load 

during the outage.   

The main novelty of this study is proposing an optimal 

aggregator bidding strategy model that (i) considers the 

impacts of risk of outages in distribution feeders on DP 

aggregator market participation and (ii) captures the 

uncertain behavior of different DP assets, which requires 

adequate modeling of the risk and uncertainty. Fig.1 depicts 

the general concept that distinguishes our approach. With 

reference to Fig. 1, our contributions are as follows:  

• The weather-caused outages in the distribution feeder 

are predicted using a gradient boosting ML algorithm. 

The outage State of Risk (SoR) prediction algorithm 

output is incorporated into the aggregator bidding 

strategy model providing a decision-making tool for 

avoiding the ASP over-procurement, and excessive 

energy trading.  

• The aggregator bidding strategy model is formulated 

as a stochastic scenario-based optimization problem 

for participation in the day-ahead energy and spinning 

reserve (SR) markets. The uncertainties associated 

with the DP resources are captured via representative 

scenarios. The aggregator profit risk is managed via 

conditional value-at-risk (CVaR).  

• An optimal resource management algorithm for the 

disconnected DPs is proposed such that the comfort 

requirements of the building occupants are met, and 

the energy storage resources are minimally distorted 

from their optimal operating point soon after the DPS 

are reconnected.  

D. PAPER ORGANIZATION 

The coordination between the involved entities, i.e., 

aggregator, DP owner, ISO, and distribution utility, is 

described in Section II. The machine learning algorithm for 

 

 
FIGURE 1. The risk-based approach to Aggregator bidding strategy.  
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outage SoR prediction in the distribution feeders is 

presented in Section III. The proposed bidding strategy 

model is outlined in Section IV and the disconnected DP 

resource management strategy is discussed in Section V. 

The case studies are provided in Section VI, and 

conclusions are stated in Section VII. 

II. NEED FOR COORDINATION AMONG ENTITIES 

The FERC Order 2222 does not specify the coordination 

requirements between the ISO and the utilities involved in the 

ASP procurement by the DERs (in our case DPs) aggregators 

in the wholesale market. It only mandates that such 

procurements should be available through the ancillary service 

bidding provisions. 

We envisioned the proposed coordination shown in Fig. 2. 

The ISO clears the WEM at the transmission level, the 

distribution utility is responsible for maintaining the operating 

conditions of the distribution grid, and the aggregator aims to 

aggregate the DPs, which are the end-users of the grid services 

to trade energy and offer ASPs to the WEM. The distribution 

grid connection allows the physical means for the ASP 

delivery by the aggregator and is highly vulnerable to weather-

caused outages. Based on the machine learning algorithm 

described in Section III, we assume the distribution utility 

provides the DPs with the SoR predictions of weather-caused 

outages in the distribution feeders through the customer 

energy management system (CEMS). In our use case, we 

assume that the CEMS receives control signals from the 

aggregator and SoR data from the utility and sends energy 

resource status and SoR data to the aggregator. The 

aggregator, based on the DP resource status, SoR data, the 

forecast of uncertain parameters in DP resources, WEM 

prices, and distribution grid technical constraints, runs the 

bidding strategy model presented in Section IV. Next, it 

submits energy and SR bids to the market. The ISO clears the 

day-ahead market where all the traded energy and rewarded 

ASPs are binding. 

III. PREDICTION OF THE SoR OF WEATHER-CAUSED 
DISTRIBUTION FEEDER OUTAGEs  

This section describes the approach for predicting outages. 

The approach begins by collecting relevant data, including 

historical outage records from the utility company, 

geographical disposition of the distribution grid, weather 

information for the area of study, and any additional datasets 

that provide insight into conditions during grid operation (such 

as land cover, tree canopy, and leaf index) [37]-[39]. All input 

data is then preprocessed, cleansed, and transformed into a 

table-like form. The resulting datasets are subjected to a 

spatiotemporal correlation process, which matches the past 

outage occurrences to external environmental conditions. 

The ML algorithm is then trained on temporally separated 

data to predict the likelihood of outages in each part of the 

network. We use Catboost, a gradient boosting algorithm 

based on decision trees [36]. The algorithm was 

demonstrated to perform well on the task of outage 

prediction [36], [40]. To estimate the performance of the 

resulting prediction model, we use the testing dataset, which 

was not used during the training phase. The model is then 

finely tuned to achieve the best performance. The output of 

the model is the state-of-risk (SoR) of weather-caused outages 

in the distribution feeders.  

Using weather forecasts for the future, the utility can 

utilize the model to obtain the outage SoR predictions in the 

grid. In our case, since the aggregator aims to participate in the 

day-ahead market, we use the SoR predictions for the 24 hrs 

of the next day. The utility sends SoR prediction data to the 

DP CEMS. The DP shares the data with the aggregator and 

aggregator incorporates the data within its bidding strategy 

model. The process is depicted in Fig. 3.  

We define the outage SoR as: 

𝑆𝑜𝑅 =  𝐻𝑎𝑧𝑎𝑟𝑑 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 

ℙ(𝑖𝑛𝑐𝑙𝑒𝑚𝑚𝑒𝑛𝑡 𝑤𝑒𝑎𝑡ℎ𝑒𝑟) 

× ℙ(𝑜𝑢𝑡𝑎𝑔𝑒|𝑖𝑛𝑐𝑙𝑒𝑚𝑒𝑚𝑒𝑛𝑡 𝑤𝑒𝑎𝑡ℎ𝑒𝑟) (1) 

Here, hazard is the probability of inclement weather 

occurring, and vulnerability indicates the conditional 

probability of outage occurrence in the feeder if inclement 

weather occurs.  

 

 
 

FIGURE 2. Coordination among aggregator, DPs, utility, and ISO. 

 

FIGURE 3. Distribution grid outage SoR prediction algorithm as a part of 

the DP awareness that may affect DP aggregator bidding strategy. 
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IV. BIDDING STRATEGY 

We assume the aggregator participates in the DAM for energy 

and SR ASPs. The assumption is that the aggregator is able to 

directly manage the DP resources through CEMS. The ISOs 

in the US, such as California ISO and ERCOT, attempt to 

procure 100% of their SR capacity requirements in the DAM. 

To be eligible for SR procurement, the market participants 

must be connected to and synchronized with the grid and be 

able to activate the offered SR capacity in less than 10 min 

when required [40], [42]. Currently, only upward SR is 

procured in the U.S. markets. We assume that the aggregator 

attempts to trade all its energy needs and SR capacity in the 

DAM. The aggregator participates only in the energy market 

in the RTM and trades the required energy to meet its real-time 

demand. Note that during outages, the disconnected DPs are 

excluded from delivering the committed ASPs, and their 

constraints are enforced only when they are connected back to 

the grid. 

The aggregator's objective function is to maximize its profit 

from DAM and RTM participation: 

𝑂𝐹 = max {prof 𝑑𝑎 + 𝔼 (∑ prof𝑗
𝑟𝑡

𝑗 

)} 

= max {∑(𝐸𝑡
𝑑𝑎Λ𝑡

𝑒 + 𝑆𝑅𝑡Λ𝑡
𝑠𝑟)

𝑡

+ ∑ Π𝑗

𝑗

∑(𝐸𝑗𝑡
𝑟𝑡

𝑡

+ 𝑝𝑠𝑟
𝑗𝑡

) 𝜆𝑗𝑡
𝑒

  

−Φ𝑗𝑡
𝑠𝑟 − Φ𝑗𝑡

𝑒 + ∑(𝑝𝑗𝑘𝑡
𝑒𝑣,𝑐ℎ𝛿𝑘𝑡

𝑐ℎ − 𝑝𝑗𝑘𝑡
𝑒𝑣,𝑑𝑖𝑠𝛿𝑘𝑡

𝑑𝑖𝑠)

𝑘

)}      

(2) 

The aggregator’s total profit consists of (i) the day-ahead profit 

coming from energy trading and SR procurement in DAM, 

and (ii) expected profit in real-time, including extra energy 

trading in RTM minus penalty for the inability to deliver the 

committed SR, minus penalty for load loss of disconnected 

DPs, plus profit/cost associated with charging/discharging 

EVs. Note that the EV charging and discharging prices for 

residential DPs are assumed to be zero, and are non-zero for 

commercial DPs. The objective function (2) is subjected to the 

constraints given below. 

A. AGGREGATION CONSTRAINTS  

The constraints for the aggregation of DPs are given below: 

𝐸𝑡
𝑑𝑎 + 𝐸𝑗,𝑡

𝑟𝑡 ≤ ∑ 𝑝𝑗𝑎𝑡
𝑎 𝐴𝑎𝑡

𝑎

                         ∀𝑗, 𝑡 (3) 

𝑆𝑅𝑡 ≤ ∑ 𝑠𝑟𝑗𝑎𝑡
𝑎

𝑎

                                          ∀𝑗, 𝑡 (4) 

Φ𝑗𝑡
𝑠𝑟 ≥ 𝜌𝑠𝑟 (∑ 𝑠�̌�𝑗𝑎𝑡

𝑎 𝑈𝑎,𝑡−1

𝑎

− 𝑆𝑅𝑡)      ∀𝑗, 𝑡 (5) 

𝜏𝑗𝑡 . 𝑆𝑅𝑡 = 𝑝𝑠𝑟𝑗𝑡                                          ∀𝑗, 𝑡 (6) 

Φ𝑗𝑡
𝑒 ≥ 𝜌𝑒 ∑ 𝑝𝑗𝑎𝑡

𝑢

𝑎

𝑈𝑎𝑡                                  ∀𝑗, 𝑡 (7) 

Φ𝑗𝑡
𝑒 , Φ𝑗𝑡

𝑠𝑟 , 𝑆𝑅𝑡 ≥ 0                                       ∀𝑗, 𝑡 (8) 

Note, 𝑈𝑎𝑡 and 𝐴𝑎𝑡 stand for the unavailability (outage SoR) 

and availability of DP 𝑎 at hour t, such that 𝑈 = 1 − 𝐴. Based 

on (3), the total energy traded in DAM and RTM must meet 

the aggregated need of DPs multiplied by their availability at 

hour t. Per (4), the total offered SR in DAM must be limited to 

the total available SR capacity in DPs. The portion of the 

rewarded SR not delivered in real-time is penalized per (5). 

Parameter 𝜌𝑠𝑟 denotes the penalty for not delivering 1 MWh 

of the committed SR set by the ISO. This portion comes from 

the difference of the expected SR capacity of the DPs after the 

outage multiplied by their associated outage SoR and the total 

rewarded SR in DAM. The expected SR called for power 

generation in real-time as a portion of the total procured SR is 

set in (6). Equation (7) sets the penalty for load loss of the 

disconnected DPs. This constraint ensures that DPs have 

enough stored energy to supply their load in case of an outage. 

The non-negativity of load loss and SR shortage penalties and 

SR capacities is enforced in (8). 

B. INDIVIDUAL PROSUMER CONSTRAINTS  

The constraints for each DP are provided below: 

𝑝𝑗𝑎𝑡
𝑎 = 𝑃𝑉𝑗𝑎𝑡 − 𝐿𝑗𝑎𝑡

𝑛𝑐 − 𝑙𝑗𝑎𝑡
𝑡ℎ − 𝑙𝑗𝑎𝑡

𝑑𝑓
+ 𝑝𝑗𝑎𝑡

𝑏,𝑑𝑖𝑠 − 𝑝𝑗𝑎𝑡
𝑏,𝑐ℎ

 

+ ∑ (𝑝𝑗𝑘𝑡
𝑒𝑣,𝑑𝑖𝑠 − 𝑝𝑗𝑘𝑡

𝑒𝑣,𝑐ℎ)

𝑘∈𝐷𝑃𝑎

      ∀𝑗, 𝑎, 𝑡     
(9) 

𝑠𝑟𝑗𝑎𝑡
𝑎 = 𝑠𝑟𝑗𝑎𝑡

𝑡ℎ + 𝑠𝑟𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠 − 𝑠𝑟𝑗𝑎𝑡

𝑐ℎ   

+ ∑ (𝑠𝑟𝑗𝑘𝑡
𝑒𝑣,𝑑𝑖𝑠 + 𝑠𝑟𝑗𝑘𝑡

𝑒𝑣,𝑐ℎ)

𝑘∈𝐷𝑃𝑎

      ∀𝑗, 𝑎, 𝑡     
(10) 

𝑝𝑗𝑎𝑡
𝑢 + 𝑝𝑗𝑎𝑡

𝑢 ≥ 𝐿𝑗𝑎𝑡
𝑛𝑐 + 𝑙𝑗𝑎𝑡

𝑡ℎ − 𝑃𝑉𝑗𝑎𝑡         ∀𝑗, 𝑎, 𝑡 (11) 

𝑝𝑗𝑎𝑡
𝑢 = 𝑝𝑗𝑎𝑡

𝑏,𝑢 + ∑ 𝑝𝑗𝑘𝑡
𝑒𝑣,𝑢

𝑘∈𝐷𝑃𝑎

                      ∀𝑗, 𝑎, 𝑡 (12) 

𝑝𝑗𝑎𝑡
𝑑 + 𝑝𝑗𝑎𝑡

𝑑 ≥ 𝑃𝑉𝑗𝑎𝑡 − 𝐿𝑗𝑎𝑡
𝑛𝑐 − 𝑙𝑗𝑎𝑡

𝑡ℎ         ∀𝑗, 𝑎, 𝑡 (13) 

𝑝𝑗𝑎𝑡
𝑑 = 𝑝𝑗𝑎𝑡

𝑏,𝑑 + ∑ 𝑝𝑗𝑘𝑡
𝑒𝑣,𝑑

𝑘∈𝐷𝑃𝑎

                     ∀𝑗, 𝑎, 𝑡 (14) 

𝑠�̌�𝑗𝑎𝑡
𝑎 = 𝑠�̌�𝑗𝑎𝑡

𝑏,𝑑𝑖𝑠 + 𝑠�̌�𝑗𝑎𝑡
𝑏,𝑐ℎ + 𝑠𝑟𝑗𝑎𝑡

𝑡ℎ   

+ ∑ (𝑠�̌�𝑗𝑘𝑡
𝑒𝑣,𝑑𝑖𝑠 + 𝑠�̌�𝑗𝑘𝑡

𝑒𝑣,𝑐ℎ)

𝑘∈𝐷𝑃𝑎

     ∀𝑗, 𝑎, , 𝑡    
(15) 

𝑝𝑗𝑎𝑡
𝑢 , 𝑝𝑗𝑎𝑡

𝑢 , 𝑝𝑗𝑎𝑡
𝑑 , 𝑝𝑗𝑎𝑡

𝑑 , 𝑠𝑟𝑗𝑎𝑡
𝑎 , 𝑠�̌�𝑗𝑎𝑡

𝑎 ≥ 0     ∀𝑗, 𝑎, 𝑡 (16) 

The above constraints can be divided into two cases:  

• DP normal operation (9)-(10): the power balance for each 

DP is enforced in (9). The net power injection of a DP 

equals the summation of PV generation and storage 

discharging power minus total load and storage charging 
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power. Per (10), the total SR capacity in normal operation 

is the summation of the SR capacities of DP resources. 

• DP outage (11)-(15): in case of DP outage, the following 

two scenarios can happen:  

1) Positive DP net-load (𝐿𝑗𝑎𝑡
𝑛𝑐 + 𝑙𝑗𝑎𝑡

𝑡ℎ − 𝑃𝑉𝑗𝑎𝑡  ≥ 0). In 

this case, the DP uses the stored energy in its BESS 

and EVs (if they are plugged in) to supply the extra 

load not supplied by PV generation. Per (11), the total 

power generation from the stored energy (𝑝𝑗𝑎𝑡
𝑢 ) plus 

the load loss (𝑝𝑗𝑎𝑡
𝑢 ) is equal to the DP net-load. Based 

on (12), the total power generation from stored 

energy equals the corresponding values from BESS 

and the plugged EVs. 

2) Negative DP net-load (𝐿𝑗𝑎𝑡
𝑛𝑐 + 𝑙𝑗𝑎𝑡

𝑡ℎ − 𝑃𝑉𝑗𝑎𝑡  ≥ 0). In 

this case, the DP must store extra PV generation. Per 

(13), the PV generation stored in batteries (𝑝𝑗𝑎𝑡
𝑑 ) plus 

the spilled PV generation (𝑝𝑗𝑎𝑡
𝑑 ) is equal to the net-

load. Enforced in (14), the total stored PV generation 

is equal to the corresponding amounts of the BESS 

and plugged EVs. 

Based on (15), the total SR delivered by DP after outage 

clearance is equal to the summation of SR capacities of 

DP resources.  

The non-negativity constraints are enforced in (16). 

C. BATTERY STORAGE SYSTEM CONSTRAINTS  

The technical constraints associated with the BESS power 

output and SR capacity are presented below: 

𝑝𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠 + 𝑠𝑟𝑗𝑎𝑡

𝑏,𝑑𝑖𝑠 ≤ 𝑥𝑗𝑎𝑡
𝑏 �̅�𝑎

𝑏,𝑑𝑖𝑠                ∀𝑗, 𝑎, 𝑡 (17) 

𝑠𝑟𝑗𝑎𝑡
𝑏,𝑐ℎ ≤ 𝑝𝑗𝑎𝑡

𝑏,𝑐ℎ ≤ (1 − 𝑥𝑗𝑎𝑡
𝑏 )�̅�𝑎

𝑏,𝑐ℎ        ∀𝑗, 𝑎, 𝑡 (18) 

𝑝𝑗𝑎𝑡
𝑏,𝑢 ≤ �̅�𝑎

𝑏,𝑑𝑖𝑠                                             ∀𝑗, 𝑎, 𝑡 (19) 

𝑝𝑗𝑎𝑡
𝑏,𝑑 ≤ �̅�𝑎

𝑏,𝑐ℎ                                              ∀𝑗, 𝑎, 𝑡 (20) 

Constraints (17), (18) are for normal operation, and 

constraints (19), (20) are for the case of outage. Based on 

(17), the summation of the power output and SR capacity in 

discharging mode does not surpass the maximum output 

power limit. In other words, the SR capacity in discharging 

mode must be limited to the extra power generation capacity 

that is available. Per (18), the SR capacity in charging mode 

is limited to the current power output, which is consequently 

restricted to the maximum output power limit. In charging 

mode, the BESS can offer SR up to the current power output. 

In case of outages, the discharging or charging power is 

limited to the corresponding maximum limits enforced in 

(19) and (20).  

The relationship between the stored energy in BESS and 

power output is as follows: 

�̅�𝑗𝑎𝑡
𝑏 = �̅�𝑗𝑎𝑡−1

𝑏 + (𝑝𝑗𝑎𝑡
𝑏,𝑐ℎ𝜂𝑎

𝑏 − 𝑝𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠/𝜂𝑎

𝑏)𝐴𝑎𝑡 

+(𝑝𝑗𝑎𝑡
𝑏,𝑑𝜂𝑎

𝑏 − 𝑝𝑗𝑎𝑡
𝑏,𝑢/𝜂𝑎

𝑏)𝑈𝑎𝑡    ∀𝑗, 𝑎, 𝑡     
(21) 

𝑒𝑗𝑎𝑡
𝑏 = �̅�𝑗𝑎𝑡−1

𝑏 + 𝑝𝑗𝑎𝑡
𝑏,𝑐ℎ𝜂𝑎

𝑏 − 𝑝𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠/𝜂𝑎

𝑏    ∀𝑗, 𝑎, 𝑡 (22) 

�̃�𝑗𝑎𝑡 = �̅�𝑗𝑎𝑡−1
𝑏 + 𝑝𝑗𝑎𝑡

𝑏,𝑑𝜂𝑎
𝑏 − 𝑝𝑗𝑎𝑡

𝑏,𝑢/𝜂𝑎
𝑏         ∀𝑗, 𝑎, 𝑡 (23) 

𝐸𝑎
𝑏 ≤ �̃�𝑗𝑎𝑡 , 𝑒𝑗𝑎𝑡

𝑏 , �̅�𝑗𝑎𝑡
𝑏 ≤ �̅�𝑎

𝑏                         ∀𝑗, 𝑎, 𝑡 (24) 

Here, three variables for the stored energy in BESS are 

defined: (i) the expected stored energy (�̅�𝑗𝑎𝑡
𝑏 ) the end of 

timestep 𝑡 in which the outages SoR is weighted, (ii) the 

stored energy (𝑒𝑗𝑎𝑡
𝑏 ) at the end of timestep 𝑡 in case of normal 

operation, and (iii) the stored energy (𝑒𝑗𝑎𝑡
𝑏 ) at the end of 

timestep 𝑡 in case of outage. According to (21), the expected 

stored energy in BESS at the end of 𝑡 is a function of the 

stored energy at 𝑡 − 1, and charging and discharging power 

weighted by the outage SoR. Based on (22), the stored 

energy at the BESS in the case of normal operation without 

outages is a function of the expected energy at 𝑡 − 1, and 

charging and discharging power in normal operating mode at 

𝑡. As enforced in (23), the stored energy in case of outage 

depends on the charged/discharged power during the outage, 

and the energy before the outage. Per (24), the three stored 

energy variables must fall within the minimum and 

maximum limits of the battery storage capacity. 

The connection between the SR capacity and the stored 

energy is given below: 

𝑠𝑟𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠 ≤ (𝑒𝑗𝑎𝑡−1

𝑏 − 𝐸𝑎
𝑏)𝜂𝑎

𝑏                       ∀𝑗, 𝑎, 𝑡 (25) 

𝑠�̌�𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠 ≤ (�̃�𝑗𝑎𝑡−1 − 𝐸𝑎

𝑏)𝜂𝑎
𝑏                        ∀𝑗, 𝑎, 𝑡 (26) 

𝑠�̌�𝑗𝑎𝑡
𝑏,𝑐ℎ ≤ 𝑠𝑟𝑗𝑎𝑡

𝑏,𝑐ℎ                                              ∀𝑗, 𝑎, 𝑡 (27) 

𝑝𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠, 𝑝𝑗𝑎𝑡

𝑏,𝑐ℎ , 𝑠𝑟𝑗𝑎𝑡
𝑏,𝑑𝑖𝑠 , 𝑠𝑟𝑗𝑎𝑡

𝑏,𝑐ℎ ≥ 0                 ∀𝑗, 𝑎, 𝑡 (28) 

Ensured in (25), the offered SR in normal operation in 

discharging mode must be limited to the available stored 

energy. Similarly, per (26), the SR capacity after outage 

clearance must be limited to the corresponding stored 

energy. The SR capacity in charging mode after outage 

clearance at 𝑡 cannot exceed the SR capacity in normal 

operation at that timestep enforced in (27). The non-

negativity constraints are set in (28). 

D. ELECTRIC VEHICLE CONSTRAINTS 

A set of constraints similar to the BESSs is enforced for the 

connected EVs. Note that the EV constraints are applied only 

for 𝑡 ∈ [𝑡𝑗𝑘
𝑎𝑟𝑟 , 𝑡𝑗𝑘

𝑑𝑒𝑝
] where 𝑡𝑗𝑘

𝑎𝑟𝑟 and 𝑡𝑗𝑘
𝑑𝑒𝑝

 are the arrival and 

departure time of EV 𝑘, forecasted in scenario 𝑗. For the sake 

of conciseness, the EV constraints are not repeated here. 

E. CONTROLLABLE LOAD CONSTRAINTS 

The thermal and deferrable loads account for the 

controllable loads of DPs. The building temperature can vary 

between the minimum and maximum comfortable 

temperatures set by building occupants to offer SR capacity. 

The deferrable load is defined as the load currently in use 

which can be postponed to later times such as dishwasher 

and laundry appliances. The thermal load and deferrable load 

can be used for ASP procurement. We do not consider the 

lighting loads for ASP delivery. The lighting load cannot be 
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adjusted per ISO's demand for SR delivery since the SR is 

used frequently which impacts the comfort of occupants. The 

lighting load can be adjusted by the building occupants 

during the times with low occupancy (for example during 

weekends/holidays in commercial buildings) to lower the DP 

demand. Our assumptions only apply to the normal grid 

operation and regular ASP procurement/delivery. In cases of 

high impact low frequency (HILP) events, such as infrequent 

winter storms, hurricane, earthquake, and wildfire, non-

critical loads (including non-critical lighting) may be shed 

for ASP delivery under demand response or emergency 

reserve. Such cases are out of the scope of this study.    

According to [43], the technical constraints for thermal 

load are as follows: 

𝜃𝑗𝑎𝑡 = 𝛽𝑎𝜃𝑗𝑎𝑡−1 + (1 − 𝛽𝑎)(𝜃𝑗𝑡
𝑎𝑚𝑏  

−𝐶𝑎𝑅𝑎𝑙𝑗𝑎𝑡
𝑡ℎ ) + 𝜗𝑗𝑎𝑡    ∀𝑗, 𝑎, 𝑡 

(29) 

𝜃𝑎 ≤ 𝜃𝑗𝑎𝑡 ≤ �̅�𝑎              ∀𝑗, 𝑎, 𝑡 (30) 

0 ≤ 𝑠𝑟𝑗𝑎𝑡
𝑡ℎ ≤ 𝑙𝑗𝑎𝑡

𝑡ℎ ≤ �̅�𝑎
𝑡ℎ           ∀𝑗, 𝑎, 𝑡 (31) 

𝛽𝑎𝜃𝑗𝑎𝑡−1 + (1 − 𝛽𝑎)(𝜃𝑗𝑡
𝑎𝑚𝑏 − 𝐶𝑎𝑅𝑎(𝑙𝑗𝑎𝑡

𝑡ℎ  

−𝑠𝑟𝑗𝑎𝑡
𝑡ℎ )) + 𝜗𝑗𝑎𝑡 ≤ �̅�𝑎    ∀𝑗, 𝑎, 𝑡 

(32) 

The building temperature as a function of the AC load and 

building parameters is provided in (29). The building 

temperature must fall within the comfort range of building 

occupants set in (30). Per (31), the AC SR capacity is limited 

to its current load, which in turn is limited to the AC 

maximum power. Constraint (32) ensures that the building 

temperature does not exceed its maximum limit when the 

offered SR is activated, i.e., the AC load is called to lower its 

power consumption. 

According to [43], the constraints for deferrable load are: 

∑ 𝑙𝑗𝑎𝑡
𝑑𝑓

𝑡

= ∑ 𝐿𝑗𝑎𝑡
𝑑𝑓

𝑡

           ∀𝑗, 𝑎 (33) 

𝑙𝑗𝑎𝑡
𝑑𝑓

≤ ∑ 𝐿𝑗𝑎ℎ
𝑑𝑓

𝑡

ℎ=max(1,𝑡−𝑑𝑐𝑎)

    ∀𝑗, 𝑎, 𝑡 (34) 

Based on (33), the total deferrable load supplied throughout 

the day is equal to the forecasted deferrable load. Constraints 

(33)-(34), ensure the deferrable loads are supplied during 

their duty cycle set by building occupants.   

F. GRID CONSTRAINTS  

The underlying distribution grid technical constraints must 

be regarded. In this vein, a linear approximation of the 

distribution grid power flow model is used as follows [44]: 

𝑝𝑛𝑚𝑡
𝑎 − 𝑃𝐿𝑚𝑡 = ∑ 𝑝𝑓𝑚𝑛𝑡

𝑛,𝑛≠𝑚

         ∀𝑚, 𝑡 (35) 

𝑞𝑛𝑚𝑡
𝑎 − 𝑄𝐿𝑚𝑡 = ∑ 𝑞𝑓𝑚𝑛𝑡

𝑛,𝑛≠𝑚

         ∀𝑚, 𝑡 (36) 

𝑞𝑛𝑚𝑡
𝑎 = 𝑝𝑛𝑚𝑛

𝑎 (
𝑄𝐿𝑚𝑛

𝑃𝐿𝑚𝑛

)                     ∀𝑚, 𝑡 (37) 

𝑉𝑚𝑡
𝑠𝑞

− 𝑉𝑛𝑡
𝑠𝑞

= 2(𝑟𝑚𝑛𝑝𝑓𝑚𝑛𝑡 + 𝑥𝑚𝑛𝑞𝑓𝑚𝑛𝑡)   ∀𝑚𝑛, 𝑡 (38) 

𝑝𝑓𝑚𝑛 ≤ 𝑝𝑓𝑚𝑛𝑡 ≤ 𝑝𝑓
𝑚𝑛

                       ∀𝑚𝑛, 𝑡 (39) 

𝑞𝑓𝑚𝑛 ≤ 𝑞𝑓𝑚𝑛𝑡 ≤ 𝑞𝑓
𝑚𝑛

                        ∀𝑚𝑛, 𝑡 (40) 

𝑉𝑚
𝑠𝑞

≤ 𝑉𝑚𝑡
𝑠𝑞

≤ 𝑉𝑚

𝑠𝑞
                                ∀𝑚, 𝑡 (41) 

Equations (35), (36) ensure that the active and reactive 

powers injected into each node are equal to the 

corresponding values in the distribution lines connected to 

that node. Per (37), the reactive power of DPs follows the 

same portion of the reactive to active power of other loads 

connected to that node. The voltage drop across a line as a 

function of line power and impedance is given in (38) where 

𝑉𝑠𝑞 is a linear variable representing the square of node 

voltage. This variable is used to linearize the power flow 

constraints. Lastly, constraints (39)-(41) set the minimum 

and maximum limits for the line active and reactive powers 

and the node voltages.  

G. PROFIT RISK MEASURE   

 The CVaR risk measure is implemented as follows [43]: 

 max {(1 − 𝜔). OF − 𝜔(𝜙 +
1

1 − 𝛼
∑ Π𝑗𝛾𝑗

𝑗

)} (42) 

prof𝑗
𝑟𝑡 + 𝜙 ≥ −𝛾𝑗  ;        0 ≤ 𝛾𝑗              ∀𝑗 (43) 

Here, 𝜙 is the value-at-risk (VaR) denoting the maximum 

profit the aggregator can reach for a given confidence level 

𝛼, where the probability of the profit not exceeding the VaR 

is lower than (1 − 𝛼). Variable 𝛾𝑗 is the excess of profit in 

scenario 𝑗 over the VaR. The CVaR denotes the expected 

profit if the profit falls below the VaR. Weighing factor 𝜔 

provides a trade-off between the aggregator profit and the 

risk management from CVaR. 

H. SOLUTION PROCEDURE  

  The solution procedure for aggregator bidding in the DAM 

is provided in Fig. 4. The aggregator, based on its historical 

data of PV generation, load, EV scheduling, SR activation, 

and market prices, generates real-time forecast scenarios. It 

also receives the grid status forecast from the distribution 

utility, and the weather-related outage SoR prediction from 

DP CEMS. Based on these input data, the aggregator runs 

the bidding optimization with objective function (42) subject 

to constraints (3)-(41) and (43). The outputs of this 

optimization are the aggregator's desired energy and SR 

capacity in DAM. Then, the aggregator submits energy and 

SR bids to the market. After receiving the bids from all 

market participants, the ISO clears the day-ahead market, 

where all of the rewarded energy and ASPs are binding. The 

aggregator controls the DP energy resources through CEMS 

to deliver ASPs and comply with ISO dispatch commands. 

The disconnected DPs manage their resources through the 

CEMS based on the algorithm described in Section V.  
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V. RESOURCE MANAGEMENT DURING OUTAGE 

 When an outage occurs and several DPs are disconnected, DP 

resource management's goal is to meet DP occupants' 

convenience requirements, supply the loads or absorb the extra 

power generation. To do so, we propose the resource 

management strategy given in Fig. 5. This algorithm is run by 

the DP CEMS during outages. On this basis, first, the thermal 

load is lowered to its minimum level set by building occupants 

and the deferrable loads are postponed to later times. Then, if 

the PV generation is greater than the remaining load, the extra 

energy is stored in EVs and BESS; otherwise, the BESS and 

EVs are discharged to supply the remaining load. Note that the 

EVs, if connected, are charged before the BESS and 

discharged after BESS. The reason is that the energy stored in 

EVs is of a higher priority for the owners since they may need 

to use it for trips.  

VI. CASE STUDIES AND SIMULATION RESULTS 

A. MAIN ASSUMPTIONS   

 We assume a distribution grid with 10 feeders, and 100 DPs 

connected to each. Of the total of 1000 DPs, we assume that 

800 are residential, and 130 are small, 50 medium, and 20 

large commercial buildings. The buildings' PV generation and 

electric load data are discussed in [45], [46]. Currently, 28% 

of the residential PV projects in Texas include BESS, 

compared to 99% in California [47]. To have a realistic 

assumption, we consider that half of the buildings are 

equipped with BESS (400 BESSs in residential and 100 

BESSs in commercial buildings). The BESS capacity follows 

a discrete uniform distribution in the range of [5kWh, 10kWh] 

in residential, and [10kWh, 25kWh] in commercial buildings. 

The maximum power run-time for BESSs is randomly 

selected from [2hr, 4hr, 6hr]. Since the primary source of SR 

in DPs comes from energy storage, the aggregator only 

contracts with the DPs that own BESS and/or EV, and would 

offer their availability. Hence, we assume 500 EVs in 

residential buildings and 500 EV chargers in commercial 

buildings. The EV battery capacity in kWh is randomly 

selected from [30, 40, 50, 60] with a maximum charging 

power in the range of [7kW, 12kW]. We also assume that the 

minimum and maximum temperature comfort ranges set by 

building occupants are uniformly distributed between [67℉, 

75℉] and [72℉, 80℉], respectively. The deferrable load 

accounts for 20% of the total load in residential and 0 in 

commercial DPs. We set 𝛼 = 0.95 and 𝜔 = 0.5 in the CVaR.   

 

FIGURE 4. Solution Procedure. 

 

FIGURE 5. Resource management strategy for disconnected DPs. 

 

FIGURE 6. Outage SoR for 10 distribution feeders. 
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The scenario generation process for PV generation, loads, 

RTM prices, building occupancy and heat gains and losses, 

EV arrival, departure times and the initial stored energy is 

elaborated in [26], [43]. The algorithm used for DAM energy 

and SR price forecasts described in [43]. The outage SoR 

predictions in the 10 distribution feeders for the 24 hours of 

the next day are given in Fig. 6. According to Fig. 6, inclement 

weather is expected during hours 1-3, 10, and 18-21. To 

remove any biases, we assume that the aggregator participates 

in 5 days of the CAISO day-ahead market from 9/5/2022 to 

9/9/2022 [48]. Two use cases (UCs) are considered, and their 

results are compared:  

• UCI: without outage SoR prediction data, 

• UCII: with outage SoR prediction data. 

The simulations were conducted in the Python 

programming language, and the IBM CPLEX solver was 

utilized for solving the problems. The PC had 64GB of RAM 

and 2GB of SSD hard drive. In the MILP model, the minimum 

optimality gap was set to 0.5%. The average computation time 

was 4650 s.  

B. BIDDING STRATEGY   

The total procured SR in the DAM and traded energy in the 

DAM and RTM for the five-day case study for UCI and UCII 

are shown in Fig. 7 and Fig. 8. Ignoring the risk of outages in 

UCI, the aggregator has over-purchased energy in the DAM 

and as a result, it has traded higher amounts of energy in RTM. 

This imposes energy trading profit risks on the aggregator 

since it will be exposed to highly uncertain prices in the real-

time energy market. Considering the risk of outages in UCII 

assisted the aggregator in accurate energy need estimation 

leading to less energy trading in RTM. In addition, the 

aggregator has committed to less SR capacity in UCII 

compared to UCI. The total procured SR for five days in UCI 

is 55.1 MW and in UCII is 49.4 MW. The reason is that by 

having the outage risk predictions, the aggregator acts more 

conservatively in SR bidding and avoids excessive SR 

capacity commitment and subsequent penalties associated 

with capacity unavailability. Another point worth mentioning 

is that during hours 7 to 16, the aggregator has barely procured 

SR in both use cases. Since the DP load and energy price were 

high during these times, the aggregator used the stored energy 

in BESSs and EVs to supply a portion of the load.    

Total energy costs in DAM and RTM, SR procurement 

profit and penalties for the inability to deliver the committed 

SR capacity in real time for the two use cases are provided in 

Table I. In UCII, the aggregator has purchased less energy in 

the DAM, leading to less DAM energy cost than UCI. The 

aggregator RTM energy cost in UCII is higher than UCI since, 

in the latter, the aggregator over-purchased energy in the 

DAM that is traded in the RTM. Note that the traded energy 

in the RTM imposes high profit risks on the aggregator due to 

high RTM price fluctuations. The total energy cost in UCII is 

$69,031, roughly 3% lower than UCI. In UCII, the aggregator 

has made less profit from offering SR in the DAM. However, 

it has managed to deliver all the committed SR and has faced 

no penalties. On the other hand, the aggregator has offered 

excessive SR capacity in UCI, which was unable to deliver in 

real-time and has faced penalties accordingly. All in all, the 

total cost in UCII is ~4.5% lower than UCI, demonstrating the 

effectiveness of the proposed informed bidding strategy model 

in the aggregator profit securement. 

C. DISCONNECTED DP RESOURCE MANAGEMENT   

The performance of the disconnected DP resource 

management algorithm in terms of load loss and PV 

generation spillage is depicted in Fig. 9. 

The total critical load of the disconnected DPs for the 5-day 

case study was 6.65 MWh and the total load loss was 0.026 

MWh. These numbers for the total PV generation and spillage 

 

FIGURE 8. Average traded energy and SR in DAM and RTM in UCII. 

TABLE I 
ENERGY & SR COST/PROFIT FOR 5 DAYS IN UCI & UCII 

 
Energy  

Cost 

DAM 

Energy 

Cost 

RTM 

SR 

Profit 

DAM 

SR 

Penalty 

Total 

Cost 

UCI $61,808 $9,315 3,397 $1,334 $69,060 

UCII $59,063 $9,968 $3,012 0 $66,019 

 

 

 

FIGURE 7. Average traded energy and SR in DAM and RTM in UCI. 
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were 13.81 MWh and 7.61 MWh. The algorithm’s 

performance in load loss mitigation was more significant than 

PV generation spillage. The reason is that PV generation is 

high during the day when the residential building occupants 

are away. During these times, the residential electric load is 

low, and EVs are usually unavailable. Hence, there is a limited 

capacity to store or consume the extra PV generation during 

outages. That being said, the load loss is of higher importance 

for customers, and in our case study, the load loss was trivial. 

VII. CONCLUSIONS AND RECOMMENDATIONS 

A significant challenge for DP aggregator participation in the 

WEM is the high risk of weather-caused outages in the 

distribution grids impacting the delivery of ASPs. We 

incorporated the outage SoR prediction with the aggregator 

bidding strategy model to avoid penalties for not delivering 

the committed ASP. We also developed an algorithm for 

optimal energy resource management of disconnected DP so 

that they are minimally distorted from their optimal 

operating point. The significant findings of this research are:    

1) Considering the outage SoR prediction, the total SR 

delivery profit increased by 46%, from $2,063 (w/o 

outage prediction) to $3,012 (with outage prediction). 

2) The total energy cost decreased from $71,123 (w/o 

outage prediction) to $69,031 (with outage 

prediction). The aggregator avoided ASP penalties 

and reach the highest rewarding market participation. 

3)  By implementing the disconnected DP resource 

management algorithm, we supplied 99.6% of the 

critical electric load and stored/consumed 45% of PV 

generation during outages.  

4) The algorithm's performance for PV generation 

storage/consumption was weaker since the total PV 

generation in the disconnected DPs (with a peak of 

3.6 MW) was comparatively higher than the load 

(with a peak of 0.78 MW). 

The outage SoR predictions can be used for other purposes 

such as peer-to-peer energy trading schemes, retail market, 

and back up services for the distribution grid. These topics 

are recommended for the future work.  
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