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Abstract: This paper presents two new intelligent systems for power
quality assessment applications. One is for automated power quality
disturbance detection and classification, and the other is for power
system model validation. Seeking improved performance over
existing approaches for power quality disturbance detection and
classification, a novel fuzzy-expert system utilizing fuzzy logic and
expert system techniques has been proposed. The common types of
power quality disturbances such as the voltage sags, swells,
interruptions, flickers, impulses, etc. are considered. Membership
selection and rule sets building of the fuzzy-expert system are
illustrated in detail. A genetic algorithm based system for validating
the power system model in capacitor switching studies has also been
developed. The problem formulation and the proposed new solution
are illustrated. The implementation of the two new systems is
stressed. The feasibility of the developed systems for practical
applications is demonstrated by evaluation studies.

Keywords: Fuzzy-Expert System, Genetic Algorithms, Artificial
Intelligence, Power Quality Assessment, Modeling and
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I. INTRODUCTION

In a power system, faults, dynamic operations, or non-linear
loads often cause various types of power quality (PQ)
disturbances such as voltage sags, swells, interruptions,
switching transients, impulses, notches, flickers, harmonics,
etc. [1-4]. On the other hand, the increased use of sensitive
electronic circuitry by industrial, commercial and residential
customer, as well as the progress of utility deregulation and
competition have imposed greater demand on the quality of
power. Consequently, PQ assessment aimed at analyzing PQ
disturbances and designing a better system has assumed
greater importance [3]. Existing tools for carrying out PQ
assessment may not be completely satisfactory. More efficient
solutions for performing PQ assessment are needed [3].

PQ assessment is a complex subject and may contain
diverse aspects such as power system and equipment
modeling, PQ monitoring, PQ problem mitigation and
optimization, and data analysis [1, 3]. This paper is not
intended to consider all of these topics, but to concentrate on
specific aspects related to automating the PQ assessment. This
may facilitate the overall PQ assessment.

The paper is focusing on developing better tools for: a)
automating the detection and classification of PQ disturbances,
and b) validating the power system model in capacitor switching
studies. Specifically, we are investigating applications of
intelligent techniques such as fuzzy-expert system and genetic
algorithms for achieving more efficient solutions for these
aspects of PQ assessment.

Generally speaking, the PQ disturbance detection and
classification problem may consist of two steps [3-4]. The first
step includes feature extraction, during which the distinct and
dominant features (or patterns) of various events are selected
and obtained using appropriate techniques. The second step is
called decision making: the extracted features are further
processed by an inference engine to determine the types of the
events. This paper will be focusing on only the decision
making step, while the first step is referred to [3-5]. For
decision making, neural network based approaches have been
developed. However, the correct identification rates resulting
from the existing approaches are still low and not quite
satisfactory [4]. This paper proposes a novel fuzzy expert
system for decision making [6].

Another intelligent system presented in the paper deals
with power system model validation. PQ event modeling and
simulation may be useful for understanding the power quality
phenomena and solving various types of power quality
problems [1, 3]. The accuracy of the system model used in the
simulation studies needs to be verified before the model may
be used for performing PQ studies. No systematic solutions
for model validation have been proposed. Motivated by its
global optimization capability, the genetic algorithm is
attempted.

In the rest of the paper, the fuzzy-expert system for
automated detection and classification of PQ disturbances is
presented first. Then the application of genetic algorithms for
validating the power system model in capacitor switching
studies is illustrated. Finally, conclusions, acknowledgements
and references are given.

II. AUTOMATED POWER QUALITY DISTURBANCE
DETECTION AND CLASSIFICATION

Fuzzy logic refers to a logic system that generalizes the
classical two-valued logic for reasoning under uncertainty. It
is good at reasoning by utilizing concepts and knowledge that
do not have well-defined or sharp boundaries (i.e., vague
concepts). A fuzzy expert system is an expert system that uses
a collection of fuzzy sets and rules, known as the rule base or
knowledge base, instead of Boolean sets for reasoning about
data [6]. Power quality disturbance detection and classification



deals with real-world data that may be very likely inaccurate.
In a normal expert system consisting of a set of crisp rules for
determining the type of the disturbances, it may be difficult to
draw a conclusion if the actual situation does not exactly
match the assumptions of certain rules. This situation can be
easily handled by a fuzzy-expert system because a partial
membership is allowed in fuzzy logic. Fuzzy logic essentially
realizes the needed non-linear functional mapping by tuning
the parameters contained in the rule sets. The computation of
the output variable usually takes the steps such as
fuzzification, inference, composition and defuzzification.

Motivated by the capability of fuzzy logic to deal with
ambiguity contained in the input data, we have developed a
fuzzy expert system based decision making system for PQ
disturbance detection and classification. The flowchart of the
proposed solution is shown in Fig. 1.

Fig. 1 Detection and classification flowchart

The sub-module “Data Format Conversion” converts the
inputs from a specific recording device or simulation package
into a common data format comprehensible to other modules
of the software. The “Fourier and Wavelet-transform Based
Feature Extraction” module obtains unique features pertinent
to specific events and “Fuzzy Expert System for Detection and
Classification” module reaches a decision regarding detection
and classification, as discussed next.

A number of power quality events of various types have
been simulated and corresponding waveforms obtained. The
following eight distinct features inherent to different types of
power quality events have been identified: the Fundamental
Component ( nV ), Phase Angle Shift ( n� ), Total Harmonic

Distortion ( nTHD ), Number of Peaks of the Wavelet

Coefficients ( nN ), Energy of the Wavelet Coefficients

( nEW ), Oscillation Number of the Missing Voltage ( nOS ),

Lower Harmonic Distortion ( nTS ), and Oscillation Number

of the rms Variations ( RN ). A more detailed description on
these features is referred to [3].

Next, the statistical properties of the parameters for
various power quality events can be obtained. Extensive
studies have evinced that the extracted parameters display
distinctive patterns under different types of events. Based on
these distinctive patterns, appropriate fuzzy rules can be
established for distinguishing between different types of
events as shown below [6].

a) Detection: For detection, one rule is used as follows

Rule 1: if 2n AisTHD  or 2n BisPS  or 3n CisV or 1n CisV

then DETECT=1

b) Classification: fifteen rules are used as follows
Rule 1: 41n AisV

�
 and 1n FisN  and 1n GisOS then

IMPULSE=1
Rule 2: 1n AisV  or 11n AisV

�
 then INTERRUPTION=1

Rule 3: 6n AisV or 61n AisV
�

 then SWELL=1

Rule 4: 5n AisV  and 1n CisPS  and 11n CisPS
�

 and

11n DisEW
�

 and  { 21n HisTS
�

 or [ 41n HisTS
�

 &

12n HisTS
�

]} then SWELL=1

Rule 5: 51n AisV
�

 and { 2n CisPS  or 21n CisPS
�

} then

SWELL=1
Rule 6: 21n AisV

�
 then SAG=1

Rule 7: 31n AisV
�

and { 2n CisPS  or 21n CisPS
�

} then

SAG=1
Rule 8: 31n AisV

�
and { 1n CisPS  and 11n CisPS

�
} and

{ 11n BisTHD
�

 or [ 21n BisTHD
�

 and 41n GisOS
�

]} then

SAG=1
Rule 9: 31n AisV

�
 and 1n CisPS  and 11n CisPS

�
 and

2n GisOS  and 21n BisTHD
�

 and 22n BisTHD
�

 and

23n BisTHD
�

 then NOTCH=1

Rule 10: 31n AisV
�

 and 2n FisN  and 2n GisOS  then

NOTCH=1
Rule 11: 41n AisV

�
 and 1n CisPS  and 11n CisPS

�
 and

3n BisTHD  and 13n BisTHD
�

 and { 4n GisOS  or

41n GisOS
�

} then TRANSIENT=1

Rule 12: 41n AisV
�

 and 31n HisTS
�

 and 32n HisTS
�

 and

33n HisTS
�

 and 41n GisOS
�

 then HARMONIC=1

Rule 13: 41n BisTHD
�

 and 42n BisTHD
�

 and

43n BisTHD
�

 and 42n GisOS
�

 then HARMONIC=1

Rule 14: 41n HisTS
�

and 42n HisTS
�

 and 43n HisTS
�

and

42n GisOS
�

 then HARMONIC=1

Rule 15: If  1KisRN  then FLICKER=1

In the above rules, i,i,i,i,i,i,i,i KandHGFDCBA are the

membership functions for the input patterns, and the following
trapezoidal and triangular functions are used [6, 7]:
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The fuzzy partitions and the corresponding membership
functions can be obtained based on both the statistical studies
and the expert’s knowledge. Opinions from operators can be
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conveniently incorporated into the system in practical
applications.

The output for the detection part is the variable “Detect”
whose value reflects the credibility that certain disturbance
exists. The outputs for the classification parts are fuzzy
variables “Flicker”, “Impulse”, etc. whose values represent the
degree to which the event belongs to each of these categories.
The type of the event selected will be the one with the largest
membership. This proposed system has been implemented in
MATLAB [7].

Extensive evaluation studies have demonstrated that the
fuzzy DMS results in a correct identification rate of 99%, and
that the proposed methods for decision making are efficient
and feasible.

III. POWER SYSTEM MODEL VALIDATION
UTILIZING GA

A. Genetic Algorithms

Generally speaking, the GA is a simple yet powerful tool for
finding the global solution to an optimization problem. It is
suitable for large-scale optimization problems, has tendency to
find the global optimal solution and shows little effects of the
discontinuities in the objective function on the overall
optimization performance [8-9]. The GA solution to the
problem: Maximize )x,...,x,x(fy n21� , where y is a real

valued function and ]b,a[x iii 
 , takes the following main

steps [8].

1) Encoding and Decoding: The most commonly used binary
encoding approach is described here. Suppose the variable ix

( iii bxa 		 ) is to be represented by a binary string (also

called chromosome) of length biL . Then the encoded value

bix  for the variable will be

))ab/()12)(ax((roundx ii
L

iibi
bi 


�                               (3)

and the decoding process is given by

i
L

biiii a)12/(x)ab(x bi �

�                                              (4)

2) Fitness Evaluation: This stage evaluates the performance of
a solution according to the following fitness function

)x,...,x,x(fy n21�                                        (5)

The larger the value obtained by this equation, the better the
solution is.
3) Selection of Parents: A parent is defined as a vector of
binary strings of all the variables obtained through the
encoding process that will be used to produce the offspring.
The standard Roulette wheel approach is adopted here.
4) Crossover and Mutation: Crossover and mutation are the
two processes through which the parents produce the
offspring. In the crossover, the two parents exchange some
bits of their binary strings. In the mutation, the offspring
obtained through the crossover process complement some bits
of their binary strings. Appropriate values for the crossover
probability cP  and mutation probability mP  need to be

selected. Normally we take 9.0~6.0Pc �  and

1.0~01.0Pm � . Elitism principle is adopted during which the

best chromosome (or a few chromosomes) is (are) first copied
to the new population, and the rest is done in the classical
way. Elitism can greatly increase the performance of GA
because it prevents losing the best found solution.

In practical applications, an initial value for the solution is
given. Then the above procedure is iterated until the
convergence criterion is met. The criterion is normally defined
as when the offspring strings are dominated by an individual
string or the total iteration times exceed a specified value or
the fitness value reaches a specified value. The general
flowchart of the genetic algorithm is shown in Fig. 2. In the
figure, the ranges of the variables can be estimated according
to their typical values.

Fig. 2 The general flowchart for the genetic algorithm

B. Model Validation Using GA

(1) Problem Formulation: The system model validation is to
verify the accuracy of the system model and evaluate certain
parameters used for the simulation studies. The validation is
done by comparing the simulated waveforms and data
recorded during specific events. The data usually include the
voltage or/and current waveforms that may be collected by
diverse types of digital recorders. Without losing generality,
all the data here are supposed to be recorded by the DFRs. By
replaying the event using simulation packages like
Electromagnetic Transients Program (EMTP) and comparing
the simulated and recorded waveforms, the degree of accuracy
of the system model can be evaluated [10]. If the matching
does not satisfy pre-defined criteria, certain model parameters
or configurations may be modified. The event is replayed and
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then the simulated and recorded waveforms are compared
again. This process is iterated until certain pre-defined criteria
are met. The number of unknown or uncertain parameters of a
system may be several depending on the size of the system.
The most credible values for these parameters are those values
that will generate the waveforms that best match the recorded
waveforms. In the work presented here, we are trying to match
the frequency spectra of the voltages and currents obtained
from the EMTP simulations and those obtained from the DFRs
using Fourier transform. The mathematical formulation of the
problem is illustrated next using a capacitor switching
example.

Fig. 3 A sample distribution system

The one-line diagram of a sample distribution system is shown
in Fig. 3. 1L , 2L , and 3L represent the loads. 2C  is the

capacitor bank installed at bus3 for improving the power
factor of load 2L . 2S  is the switch used for controlling the

open or close status of 2C . 1z (= 11 jxr � )  and 0z (=

00 jxr � ) are the positive sequence and zero sequence

impedance of the feeder between bus3 and bus4. For
simplicity, suppose that for the system, only 1z  and 0z  are

the parameters that have uncertain values and need to be
evaluated. Suppose that a switching event occurred when the
switch 2S  closes the capacitor bank 2C . The voltage and

current waveforms during the switching event were recorded
by the DFR installed at bus2.

Suppose that the switch 2S  is a normal switch without

any supplementary synchronizing control circuits, and the
closing times for the three phases are designated as aT , bT

and cT respectively. Due to mechanical limitations of the

physical switch, these closing times are rarely the same and
normally satisfy the following equations [9].

��� ba TT           (6)

��� ca TT          (7)

��� cb TT          (8)

� denotes the maximum difference between the closing times
for different phases and is chosen as 3 ms here.

Then the problem of evaluating 1r , 1x , 0r  and 0x  can be

formulated as finding the values for 1r , 1x , 0r , 0x , aT , bT

and cT that minimize
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or maximize
)T,T,T,x,r,x,r(f)T,T,T,x,r,x,r(f cba0011ccba0011f 
� (10)

where
)T,T,T,x,r,x,r(f cba0011c : the defined cost function.

)T,T,T,x,r,x,r(f cba0011f  : the defined fitness function. The

larger the value of the fitness function, the better the solution
is.
k : the index of the voltage or current quantities
n : the harmonic order for voltages or currents.

kvr  and kir : the weights for the errors of the voltages and

currents respectively.
n
ksV and n

krV : the voltage magnitude of the n-th harmonic

occurring during the event obtained from EMTP simulation
and from DFRs respectively.

n
ksI and n

krI : the current magnitude of the n-th harmonic during

the event obtained from EMTP simulation and from DFRs
respectively.

vH  and iH : the total number of harmonics calculated for the

voltage and current waveforms respectively.

vN  and iN : the total number of the voltage and current

quantities respectively.
The term harmonic here is used to represent the spectra of

the signal, and does not mean the steady state harmonics. All
the spectra components are calculated using one cycle Fourier
transform on the sampled voltage data in the cycle
immediately following the occurrence of the switching event.

It is noted that the largest fitness value defined by (8) is
equal to zero and can be reached if the spectra of the simulated
waveforms exactly match those of the DFR waveforms.
Therefore, the best estimate for the unknown parameters
would be the one that maximizes (8).

For this multi-variable optimization problem, it is difficult
to use the gradient-based method to find the global optimal
solution because of the multi-modality nature of the problem.
An exhaustive search through every possible solution may be
too time-consuming and hence impractical. Applications of
GA for solving this problem are illustrated as follows.

When applying the GA to the system model verification
and parameter evaluation, (8) will be the actual form for the
fitness function. 1r , 1x , 0r , 0x , aT , bT  and cT  are the seven

changing variables. In the flowchart as shown in Fig. 2, the
ranges during which the variables vary can be decided as
follows. 1r , 1x , 0r , and 0x  can be selected as typical values

according to the type of  the feeder used. aT , bT  and cT  can

be selected from 0 to 16.67 ms subject to (6-8).

(2) An Example: This section presents an example for
illustrating the concept described above. Part of a distribution
system provided by the TXU Electric and Gas is depicted in

Es Bus1 Bus2 Bus4Bus3

L1 L2

C2

S2
L3

01 z,zDFR



Fig. 3. A switching event is created by switching in the
capacitor 2C . The transient overvoltage waveforms at bus2

caused by the switching event are recorded using Dranetz
4300 recorder with a sampling frequency of 7680 Hz and
shown in Fig. 4.

Fig. 4 The recorded voltage waveforms at bus2

In the GA based approach, the length of the strings for the
each of the three variables is chosen as 10 bits. The number of
population in each generation is selected as 10. The crossover
probability is chosen as 0.8 and mutation probability chosen as
0.01. After 66 iterations, the GA obtains the following results:

aT = 0.0306, bT =0.03137, cT =0.03138, 1r =0.38, 1x =0.88,

0r =1.24, and 0x =3.10 with time in second and impedance in

p.u.. The simulated voltage waveforms with these parameters
are plotted in Fig. 5 that shows a quite close matching between
the simulated and the recorded waveforms. This verifies that
the model of the system as well as the estimated parameters
are reasonably accurate.

Fig. 5 The simulated voltage waveforms at bus2

IV. CONCLUSIONS

This paper presents new software developments on the
applications of intelligent techniques for automated power
quality assessment. A fuzzy-expert system for automated

power quality disturbance detection and classification has
been proposed and implemented. A genetic algorithm based
solution for validating the system model in capacitor
switching simulation studies has been developed. The
implementation of the proposed intelligent systems is
addressed. Feasibility of the proposed approaches for practical
applications has been demonstrated by case studies utilizing
both the simulated and field data.
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