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ABSTRACT

Utilization of synchronized sampling for utility applications is presently
being demonstrated through several pilot projects. One of them is measuring of the
phase shift of two node voltages. However, changes in local frequency can cause
gubstantial errors when a phase shift needs to be determined.

This paper presents a novel approach for the measurement of the phase shift
between voltage signals at two ends of a transmission line. The technique assumes
that the data is sampled at both ends at the same time. The proposed algorithm
performs a direct computation of the phase shift. The algorithm is fast and accurate
and it is not influenced by a possible variation of the system frequency. The
algorithm may be used with an arbitrary sampling rate with no additional
adjustments. Some test results obtained using computer simulations confirm the

predicted algorithm properties.

INTRODUCTION

Caleulation of the phases is one of the most important application of
synchronized sampling [1,2]. The voltage phasors in the power network nodes are
used to assess system security, predict voltage collapse, estimate power flows and
warn of future system instability.

A very extensive review of the algorithms for the phasor ealeulations is given
in [3]. Al of the proposed algorithms are based on some assumptions regarding the
voltage signal components. Some methods use prefiliering to obtain the
fundamental component and suppress the other ones, and then proceed to find the
phase. The others are based on some assumptions regarding signal content and
have inherent filtering capabilities. Ewven if the basic signal is a pure sinusoid, the
varying frequency of the signal is one of the main obstacles to the phase calculation,
since the calculation requires a precise knowledge of the signal frequency.

IV-1.1



oscillating with the frequency 2f. The cscillating term is equal to zero when the
weight matrix {];g. satisfies the condition:
—1 N-l1
1;1 e
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In the general case, the above condition is satisfied only
for a particular value of delta. However, if the sums of antidiagonals in the weight
matrix are all equal o zero, the condition (4) is satisfied for any value of delta [4].
This is a very convenient property if the frequency of the signal varies. For this
reason, only such weight matrices are used for the algorithm presented in this paper.
The constant terms of bilinear and quadratic forms have the following values

gkl —imb _ g (4)

[5):
BFEXY = of8) —% cos(y — ¢) + A(8) 5~ sin(¥— ¢) (5)
QFEX = afd) - (6)

Coefficients off) and & §) are dependent on angle § and weight matrix
elements big:
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A= 3, ‘L hya sin(m—k)d (8)
k=0 m=0
The phase shift is calculated combining bilinear and quadratic forms in the
following expression:
: BFH , XY(n) ]
v—¢=sn"| JOoFH,X(n) - QFH;Y(n) (8)
Weight matrices H,, Hy and Hy have sums of their antidiagonals equal to
zero, and they also satisfy two additional conditions:
aff) =0 (10)
Fi(6) = az( ) - as(8) (11)
Any three matrices satisfying the above conditions may be used for the
calculation of the phase ghift. The proof and the particular choice of bilinear and
quadratic forms are given in Appendix L
If the value of the phase shift needs only to be compared with a threshold,
then the algorithm can be simplified, and the computation burden eased, by
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Table I. Test Results

Algonithm
Test Aln) pu B{n)p. u | fin)Hz | f, kHz | +(n)* Result
1 1 1 60 12 45 45°
2 1 1 60 60 45 45
3 1 1 60 0.240 45 45°
4 1+ 0.1 cos(0.01xn) 1 N+ 12 45 See Fig. 1
5 1 1 60 12 45— g2 | See Fig. 2a, 2b
i} 1 1 60 12 30433 | SeeFig. 2a,3b

Tests #1, #2, and #3 were designed to demonstrate that the algorithm may
be used for an arbitrary sampling frequency. Therefore, in these tests, only the
sampling frequency was changed. The results were absolutely unaffected by the
sampling frequency choice.

The algorithm is also transparent to changes in the value of amplitude and
gystem frequency, as long as these parameters are constant in the data window. If
these parameters vary in time, the expressions (5) and (6) are only approximate.
But, if these changes are sufficiently slow, the error is not significant. In the test
#4, the amplitude of the first signal was modulated with & subharmonic having 10%
amplitude of the main signal and a frequency of § Hz. The frequency of both signals
had a linear change of 1 Hz per cycle. Fig. 1 shows the algorithm result. Although
the changes were significant from the point of view of the system, the algorithm
showed quite an accurate value of the phase shift,
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Figure 2(b): Measurement Error for Test #5
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Figure S{a): Input Signals for Test #£6
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CONCLUSIONS

A novel algorithm based on synchronized sampling measurement of the
phase shift of two sinusoidal signals is presented. This algorithm may be
implemented with an arbitrary sampling frequency without any adjustments. It is
transparent to any constant gystem frequency and any constant value of signal
amplitudes. If these parameters vary sufficiently slow, the measurement error is
tolerable. The data window may be smaller than a cycle, and the calculation is
performed after each new sample. This makes possible a virtually continuous
measurement of the phase shift.
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APPENDIX I
The bilinear form in the nominator of (8) in accordance with
(5), (10) and (11) has the following value:

BFHXY(x) = X3 6(8) - sin(y - ¢) (A1)
Two quadratic forms in l.he denominator have the following values:

QFH;X(n) = o §) -%—1 (A2)

QFH;Y(n) = as(f)—— (A3)
Since ﬁ"{ﬂ aig‘ﬂ"‘] aa( §), the value of the expression (9) is equal to:

_ [ - YE T - mw-ﬂ] k
gin~t =y—¢
LR TR (a40)
R

It may be cbserved that all f#~dependent terms and the amplitudes cancel.
That is the reason for the algorithm outcome to be transparent to both amplitudes
of signals and system and sampling frequencies. Particular bilinear and quadratic
forms used for these tests are:

BFHXY(n) = xz—3 ¥u + 3%n-3 ¥o-1 —3%Xn- Fo-1 + Xn ¥o (A5)
Bi(8) = Bsin

QFH:IEHJ = —dXpXn.g + dx}. (A6)
o 6) = Bsinif

QFH;Y(n) = <3¥u¥n-2 + ¥u¥u + 3y3-1— ¥o-¥n-3 (AT)
a3 f) = 8 sindf
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Table A-II-2. System Equivalents

Bus Name Per-Unit Value (1) Real Value {ﬂ]
Zo | 110.69 + ) 188.93 | 310.248 + j 489.725
1-3 [ Z T 180+, 1144 | 4666+ 20654
o oo oo
2-3 [z, 1258+ im0 32.09 + j 191.815
1= Zo | 39.70 + ) 10063 | 103.140 + j 260.843
Z 2.75 + j 18.32 7.128 + j 47.487

Table A-11-3. Self Impedances of Transmssion Lines

Bus Name | Per-Unit Value (i2) Real Value (02
Zo | B.94 + ) 28.34 | 23.1734 + ) T3.4601

1-3 Z, | 1.52 +j 9.06 | 3.0400 + j 23.4844
Z, | B.52 + ) 29.23 | 22.0847 4 j 75.7671

1-3 Z, | .38 +j 880 | 3.5771 + ) 22.8105
"7, | .40 +) 20.37 | 21.7736 + j 76.1300

1-3 Z, | 134 +) B.73 | 3.4734 +j 22.6290
Z, | 8.42 + ) 26.74 | 218255 + ) 69.3128

1-2 Z, | 1.50 +) 5.47 | 3.8882 4 ) 21.9551
Zo | 367 +j12.38 | 9.5130 + j 32.0002

2-3 Z, | 067 +) 3.92 | 1.7367 + j 10.1610
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THE FAULT DESCRIPTION: BC FAULT AT 10% OF THE 2-3 LINE LENGTH




