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Abstract: This paper introduces two digital signal processing
algorithms for frequency deviation measurement. The algo-
rithms are derived using a new signal processing scheme based
on quadratic forms of signal samples. These algorithms pro-
vide high measurement accuracy over a wide range of frequency
changes. One is designed for measurements of small deviations
of the nominal frequency whereas the other one measures off-
nominal frequency deviations. Performance of the algorithms
is evaluated using computer simulation tests.

Keywords: Frequency measurements, Digital algorithms, Sig-
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INTRODUCTION

This paper is concerned with two issues: the small fre-
quency deviation measurements and the off-nominal frequency
deviation measurements. Frequency information is one of the
most important parameters for system monitoring and con-
trol. Load shedding, load restoration, generator protection
from overspeeding and detection of the generation-load out-of-
step conditions may in general be based on the small frequency
deviation measurements. For generators, the over-excitation
detection and the voltage and current estimates during start-
up and shut-down procedures may be based on the off-nominal
frequency deviation measurements.

Previous work in this field has resulted in a variety of algo-
rithms for the small frequency deviation measurements. Some
of these algorithms use known signal processing techniques
such as Discrete Fourier Transform, Least Error Squares, and
Kalman Filtering [1-5], while others use a heuristic approach
[6, 7). Most of them use the sinusoidal model for the signal.
Their efficiency (accuracy) is influenced by one or more of the
following factors: superimposed noise, non-linear static char-
acteristic, and slow response. In general, increased accuracy
and robustness require greater complexity. The query for more
accurate, computationally simple and robust algorithms con-
tinues.
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The off-nominal frequency deviation measurement algo-
rithms were proposed in two references [8, 9]. Both use the
results of a small frequency deviation algorithm and calculate
the required correction. One is using the phase-locked loop
and the other one is using a look-up table for correcting the
estimate. Both of these methods are relatively complex and
slow.

This paper presents two algorithms for measurement of fre-
quency deviations. The first algorithm is the result of an at-
tempt to overcome the deficiences in the small frequency de-
viation algorithms stated above. The approach was to look
into existing frequency measurement algorithms for a common
expression that could be utilized for the development of an
accurate estimate of the frequency deviation [10]. The new
process of determining the coefficients of this general form has
resulted in a simple and accurate algorithm.

The second algorithm was designed to capture a wide range
of the off-nominal frequency deviations by adapting (extend-
ing) the frequency deviation algorithm developed by the au-
thors in an earlier reference [10]. Only three more multiplica-
tions were introduced to achieve the improved accuracy. The
algorithm remains extremely simple, fast and accurate. No
table-looking and no iterations are necessary to calculate the
correction.

Extensive testing was performed with both algorithms.
Static and dynamic tests show high accuracy and fast response.
Algorithm robustness was tested using additive noise tests and
Electromagnetic Transient Program (EMTP) network simula-
tion tests. Both algorithms performed well by not amplifying
the noise and converging fast for the EMTP generated signal
transients. .

The general expression used to derive both algorithms was
recognized earlier by the authors as being suitable for accurate
measurements of a number of power system quantities [11-15].
This leads the authors to a conclusion that a custom designed
signal processing chip may be developed to implement the gen-
eralized algorithm form. Selection of the appropriate coeffi-
cients may enable use of the same chip for various applications
such as frequency deviation, line parameter, and power mea-
surements.

First part of the paper gives theoretical background and
the frequency algorithm design procedure. Second part out-
lines derivation of the new algorithm for measurements of the
small frequency deviations. Third part presents a new, very
accurate and extremely simple algorithm for off-nominal fre-
quency deviation measurements. Fourth part provides results
of the extensive testing performed using both algorithms.
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NEW DSP APPROACH

This section presents theoretical background and design
procedute of a Digital Signal Processing (DSP) approach used
to derive new algorithms.

It starts by introducing a general algorithm expression.
This expression is recognized to be a common form for most
of the previously introduced non-recursive frequency deviation
measurement algorithms. The general algorithm expression is
a quotient of quadratic forms (QQF) of signal samples. This
expression is made constant in time and real for all frequency
deviations of a sinusoidal signal. This is achieved by imposing
constraints on the coefficients of the quadratic forms. Finally,
the Taylor expansions of the quadratic forms give a quotient of
two frequency deviation polynomials whose coefficients can be
chosen so that the quotient becomes equal to the value of the
signal frequency deviation.

The second subsection gives the steps of a formal procedure
for the design of algorithms for frequency deviation measure-
ments. This procedure shows a way of deriving the quadratic
forms’ coefficients satisfying the performance requirements and
the constraints derived in the first subsection.

Theoretical Background

The following quotient of quadratic forms of signal sam-
ples is recognized to be a general form for frequency deviation
measurement algorithms [10]:

N-1gN-1—

A ;oo k=0 2am=0 YkmTn—kTn-m
f ;.V:_l)] z;é DkmTn—kTn-m
KFA
~ KFB 1)

K F are the quadratic forms, @xm and bim form matrices A and
B associated with quadratic forms. Their definition is given in
APPENDIX A.

Let us assume the following input signal representation:

2(t) = X cos(wt+¢) (2)
2z, = Xcos(wnlt+ )
= X cos(nd + ¢) 3)

Electrical angle deviation Ad is proportional to the deviation
of frequency since Ad = Aw- At =2rAf - At.

For simplicity, we shall use the electrical angle deviation
estimate which is of the same form as the frequency deviation
estimate given in the equation (1):

A(i _ Z;cv-_-_ol Zﬁ;(lj Ak Tn—kTn-m
- N-1 EN-—-] b T AT
k=0 m=0 Y%kmTn-kTn-m
KFA
= KFB )

whete @im = Grm /(20 AL).
Conditions for expression (4) to be constant and to give the
value of the signal frequency deviation are derived as follows.
In the case of a sinusoidal waveform, given by equation (3),
the value of a quadratic form is:

N-1N-1

KF(n) = 353 hmX?cos{(n ~ k)d + ¢] cosf(n — m)d + 4}
k=0 m=0
X2 N=1N-1

= 5 ST 3" him cos[(m — k)d]

+ =5 himcos{[2n — (k+ m)ld + 2¢]}

2 k=0 m=0
= KF+KF*(n) ()

Equation (5) shows that the value of the quadratic form, in
the case of a sinusoidal signal, consists of a constant K F° and
an oscillating K F*(n) component.

The constant part K F¢, can be expressed in the following
way [11}:

X? :
KF° = —2—Re{K°(e-J‘)} (6)
where:
N-1
Kw) = Y. héw
r=—N+1

heo= 2%
k™ kem=r
w = e

Also, the variable part K F*(n), can be expressed as follows
f11):

KF®(n) = X72|K"(c_jd)| cos{arg[K*(e™)] + 2nd + 24} (7)

where:
2N-2
K'(w) = E hiw"
r=0
hy = ZE Rim (8)
k ™ kym=r
w = e

Since for a steady state sinusoidal signal frequency devi-
ation is constant, the oscillating component K F¥ should be
identical to zero for all frequency deviations and for all n. It
can easily be seen from the equation (8) that K F*(n) is iden-
tical to zero when the following conditions are satisfied:

B = 0 (9)
r = 0,.,2N-2

From the equation (9) one can see that these conditions are
equivalent to saying that the sums of the elements him on the
anti-diagonal and all the sub-anti-diagonals of the quadratic
form matrix H are equal to zero.

For the constant component K F¢ to be real for all fre-
quencies, it is sufficient for the quadratic form matrix to be
symmetrical. For a symmetric matrix, the following holds:

N-1
K{w) = b +2 Y, hiRe{w"} = Re{K*(w)} (10)
r=0
where w = e™J4.
Equations (9) and (10) produce a constant and real value
for the quadratic form of equation (5) as follows:



N-1
KF(n) = h5+2 Y. hiRe{uw’}

r=0

N-1
= Y h,cos(rd) (11)
r=0
Therefore, the QQF for frequency deviation measurements,
given by equation (1), may now be expressed as follows:

5 TN a, cos(rd)
Ad SN b, cos(rd)
A(d)

- 53 (12)

where: a = 33 tm
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This form is constant and real for all deviations of the elec-
trical angle. In order to obtain estimates of the electrical angle,
functions A and B are expressed in the forms of their Taylor
expansions. As a result, the following general expression for
frequency deviation estimate is obtained:

Ad =

A(do) + A'(do)Ad + A”(do) B2 4 ... )
(

B(do) + B'(do) Ad + Br(do) B2 ...

Equation (13) is the generic algorithm expression used in

the next section to derive different algorithms.
Algorithm Design Procedure

The algorithm design procedure is related to the appropri-
ate selection of coefficients in the generic algorithm expression
given by equation (13). The algorithm is designed according to
the application constraints. The following steps allow for the
design of the algorithms for frequency deviation measurements.

o The following algorithm parameters are chosen: data win-
dow, number of signal samples, sampling frequency, mea-
surement range, and degree of desired accuracy.

The size of the quadratic forms’ matrices is chosen using
first three parameters. )

Last two algorithm parameters are used for selecting the
order of the polynomials in the equation (13). Having se-
lected the polynomial order, necessary constraints need to
be imposed on the remaining coefficients. Incidentally, the
most general set of conditions for the equation (13) to give
the signal frequency deviation estimate can be determined.

o Two sparse symmetric quadratic forms’ matrices are
formed. The nonzero elements of these matrices are then
selected to satisfy equation (9). Also, in order to satisfy
the conditions derived in the third step, the total number
of nonzero elements needs to be greater or equal to the
number of these conditions.

A frequency deviation algorithm is derived by solving the
equations obtained in the third step for the unknown ele-
ments of the matrices formed in the fourth step.
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e Last, noise sensitivity and the accuracy requirements are
checked. If they are not satisfied one goes back to the
fourth step to change the matrix elements. If necessary,
one may also go back to the third step to select a different
order for the polynomials.

SMALL FREQUENCY DEVIATION
MEASUREMENT ALGORITHM

The described algorithm design procedure is implemented
as follows.

If one chooses a data window length of three quarters of
the nominal period, and a sampling rate of sixteen samples per

cycle, then the nominal electric angle for this case is equal to
s

.

To achieve high accuracy four terms of the Taylor expan-
sions are used here. In this case, for equation (13) to give the
signal frequency deviation, the most general set of conditions

set upon the remaining polynomial coefficients is as follows:

A(d) = 0
B"(dy) = 0
A'(do) = B(do)
A" dD) ,
é = B'(dp)
= - B (14

In this case, the frequency deviation estimate given by equa-
tion (13) approximates the signal frequency deviation as fol-
lows:

Ad~ NAd (15)

The goal is to determine the quadratic forms’ coefficients.
Accordingly, the fourth step of the frequency deviation mea-
surement algorithm design procedure requires forming two
sparse symmetric matrices whose sums of elements on the anti-
diagonal and all the sub-anti-diagonals are equal to zero (fol-
lows from equation (9)). Another requirement is that these
matrices have a greater (or equal) number of nonzero elements
than the number of algorithm coefficients’ constraints derived
in the third step of the procedure.

Matrices of the following form are used:

0 0 ab500 0c000 0 d)

0 2a =50 00 —c 0000 —d o0

a b 0000 00000 00

b 0 0000 00000 00

0 0 0000 00000 00

0 0 0000 00000 00

A=1]0 -~ 0000 00000 00

c 0 0000 00000 00

0 0 0000 00000 00

0 0 0000 00000 00

0 0 0000 00000 00

0 -4 0000 00000 00

ld 0 0000 00000 0 0]
[0 0 ef 00 0g]
0 2 —f 000 —g 0
e =f 0000 00
B_|f 0 0000 00
10 0o 0000 00
0 0 0000 00
0 —-g 0000 00
Lg 0 0000 0 0]
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Matrix B is a symmetric 13 by 13 matrix that can be re-
duced to an 8 by 8 matrix because the remaining elements
are zero. Both matrices satisfy the above requirements. They
have in total seven nonzero elements against the five algorithm
coefficients’ constraints given by equation (14). Two of these
elements are assumed in a way that simplifies the calculation

. of other elements and enables getting small enough numbers
for the other elements.

For matrices of this form, and for ¢ = 0.05 and d = 0.01,
coefficient constraints, expressed by equations (14), give as
a result the following values for the coefficients of quadratic
forms: @ = —1.044303503155235, b = 0.52823862829380,
e = 0.78543321540189, f = —1.05813678372674 and g =
—0.03443924221845.

The estimate of the electrical angle deviation, given by
equation (4), now becomes:

Tn Wo — Tn-1" W1

Ad = (16)
Tp 20— Tn-1"21
where:
Wo = @ Tpg+b Tpgt+c Tn7+d Taaz
W, = @ Tpoa+b-Taztc Thetd Taon
20 = e Tpot [ Toatg Tar
21 = e Tnat+fTa2t g Taoe

Results presented in the algorithm testing section indicate
high accuracy and low noise sensitivity of the obtained algo-
rithm.

OFF-NOMINAL FREQUENCY MEASUREMENT
ALGORITHM

Due to their simplicity, algorithms for small frequency devi-
ation measurement do not calculate the off-nominal frequency
deviation of the sinusoidal signal very accurately. As shown
in reference [9], one can calculate the measurement error in an
off-line mode. This error estimate can be used to improve the
frequency deviation estimate.

The goal of this paper is to introduce an efficient and simple
measurement algorithm for off-nominal frequency deviations.
The Taylor expansion of the estimate error function is used to
derive this new algorithm. o

To design an algorithm that uses a data window which is
equal to one half of the nominal period and a sampling rate
of eight samples per cycle, one can proceed as follows. In this
case the nominal electric angle is equal to do = .

Let us assume low influence of the Taylor expansion terms
in equation (13) that are higher than the third order. To get
an accurate estimate of the electric angle deviation, the follow-
ing constraints for the coefficients of the frequency deviation
polynomials are imposed.

Ald) = 0
B"(dy) = 0
All(d()) _ B’(dﬂ)
2
A'(d) = B(do) 17

In order to simplify the selection of the quadratic forms’
coefficients, some of the coefficients are assumed to be zero.
For the reasons given earlier, quadratic forms’ matrices are

chosen to be symmetrical and to have the sums of the elements
on the antidiagonal and all sub-antidiagonals equal to zero.
Hence, the matrices have this form:

0 0 a b ¢

0 -2 -b 00

A = a —-b -2¢ 00
b 0 000

L ¢ 0 000

[0 0 g f h

0 -2¢g —-f 00
B=|g ~f -2 00
f 0 000

LR 0 0 00

Furthermore, for f = 0 and g = 1, equations (17) give as a result
the following values for the coefficients of quadratic forms: a
=05,b=0,c=-025and h =0.

After the selection of the quadratic forms’ coefficients, equa-
tion (4) gives as a result the following algorithm for determining
the electrical angle deviation estimate:

Ty Tnog — T2

=y

2
Tn* Tp-2 ~ Tp1

Ad=05-|1-05-

For a sinusoidal signal £ = X cos(nd + ¢), equation (12)
gives:

Ad = —0.5 4 cos(2d) — 0.5 cos(4d)
B 2 - [cos(2d) — 1]
- B8 v ad (19)

This equation is much simpler than the one given in refer-
ence [9]. Following the approach given in reference [9], a more
accurate estimate for off-nominal frequency deviation can be
obtained. This is achieved by using an arcsin look-up table
which helps to solve the following equation:

arcsin(2 - Ad)
s
A different approach that obviates the need for a look-up
table and gives a more simple solution is described here.
Five terms of the arcsine Taylor expansion series provide
the following corrected electrical angle estimate:

Ad= (20)

~ . — 22
Ad = 0.5.[1—0.5'__—:‘" Tnd I;-Z]

Ndy = Ad-Ad
Ady = Ody-Ddy
R s Ad, Ady
Ndery = Od- |1+ ——+3-— 21
( LT (21)

Ouly three new estimate multiplications are introduced. In
this way the algorithm remains extremely simple and easy to
implement.

Test results given below show a great improvement in the
static as well as in the dynamic accuracy of the developed al-
gorithms. Improved dynamic and static accuracy for the off-
nominal frequency deviation algorithm, and lower noise sensi-
tivity of the small deviation algorithm are achieved by the new
algorithm designs.



TEST RESULTS

The algorithms are tested using a synthesized sinusoidal
signal and a voltage signal output from Electromagnetic Tran-
sient Program (EMTP) [16].

Three tests were performed using a synthesized sinusoidal
signal. First, algorithm static accuracy was tested. The second
test evaluated algorithm dynamic response. Third, algorithm
noise sensitivity for a simulated data acquisition and signal
processing system, was tested.

Transient test was performed using simulation of a fault
and a load disturbance in the test system. The EMTP voltage
output was used as the algorithm input signal.

Static Test

In this test, synthesized sinusoidal signals with frequencies
in the range from 40 to 80 Hz in steps of 1 Hz were provided
as inputs to the algorithms. Results given in Figure 1 show
a comparison of the algorithm outputs. High measurement
accuracy may be observed.

Dynamic Test

Frequency deviation algorithms were applied to a synthe-
sized sinusoidal signal with an oscillating and decreasing fre-
quency. This resembles the system frequency change in the
event of power deficiency in a power system. The following
equation shows the change in frequency over time:

f(t)=60—10-¢—1-sin(2r - 5¢) (22)

Results in Figure 2 show a very good dynamic response of
the algorithms within their range of accuracy.

Noise Test

A simple data acquisition and signal processing system is
considered for the noise test. This system consists of a 12
bit analog-to-digital converter, low pass filter and one of the
measurement algorithms. A sinusoidal 60 Hz signal with su-
perimposed white zero-mean Gaussian noise was used as input
for the test. The test block diagram is shown in Figure 3.

The results for the Small Deviations (SD) Algorithm and
the Off-Nominal Deviations (OND) Algorithm are shown in
Table 1. This table shows the relation between the mean and
standard deviation of the noise and the mean and standard de-
viation of the relative measurement error. Since the algorithms
have a very high static and dynamic accuracy within the fre-
quency range from 54 to 66 Hz, one can assume a measure-
ment range of 12 Hz. This range has been used for calculating

the mean and standard deviation value of the relative mea-:

surement error . Results indicate that the algorithms in this
systemn configuration do not amplify the noise and that they do
not introduce a bias. They also show that the SD algorithm is
slightly less influenced with noise than the OND algorithm.
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full line :algorithm from reference [15]
dotted line: small frequency deviation algorithm
dashed line: off-nominal frequency algorithm
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Fig. 1. Frequency Deviation Error for the Three Algorithms
for the Static Test
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Fig. 2. Dynamic Test Results for the Three Algorithms

na& ™M,

_ LPF A/D Alg

- o;;ml'

LPF Alg

Fig. 3. Block Diagram for the Noise Test
where:
v is a synthesized sinusoidal waveform.
n is a white zero mean Gaussian noise.
Onr is the relative standard deviation of the noise.
My, is the mean value of the noise.

g, is the relative standard deviation of the measure-
ment error.

m,, is the mean value of the measurement error.

LPF is Butterworth low pass filter of the fourth order
with 76.8 Hz cutoff frequency.

A/Dis a 12 bit analog to digital converter.

Alg is a frequency deviation algorithm.
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Table 1: Noise Test Results

Meas. Noise Characteristics QOutput Error
Number Characteristics
SD alg. Mypri Tnri Meri Oeri

1 -0.0059 0.0986 0.0016 0.0824

2 0.0017 0.0498 | -4.121-107* | 0.0447"

3 -2.06-10-* [ 0.0102 -1.719-1074 | 0.0111
OND alg

1 -0.0046 0.1033 -1.5-107% [ 0.1129

2 1.7510% | 0.0504 | -1.07 -10~* [ 0.0573

3 -7.3 .107° 0.099 -2.025-10~* | 0.0119

Transient Test

Two EMTP simulations were performed. Both simulations
used a model of a synchronous machine with an exciter and a
governor. For the first simulation, a simple two transmission
line model shown on Figure 4 was modeled. For the second
simulation, system model shown on Figure 5 was used. Line
Z, in Figure 4 and line Z. in Figure 5 were modeled using the
EMTP distributed-parameter line model. Line Z; in Figure 4
was modeled using the EMTP lumped-parameter line model.
Node voltage output v, from the first and the second EMTP
simulation, were used as inputs for the Small Deviations (SD)
Algorithm and the Off-Nominal Deviations (OND) Algorithm,
respectively.

For the first simulation, that used a model shown in Figure
4, a 20 milliseconds long load disturbance was applied. For
the second simulation, that used a model shown in Figure 5, a
three phase fault at 30 milliseconds as well as a fault clea,rance
at 100 milliseconds were applied.

Figure 6 shows a block diagram of the measurement scheme
used for testing the two algorithms.

Three tests have been performed with both algorithms.
First test calculates the frequency deviation directly from the
EMTP output. Second test uses a low pass filter (LPF) for
filtering the EMTP output. Third test uses both LPF and the
following scheme for averaging the frequency estimate:

INAEED WA (2)
k=0

Test results are shown in figures 7 to 12. Figures 7 to 9
show deviation estimates calculated by the Small Deviations
(SD) Algorithm. Results for the three test conditions are indi-
cated together with the scaled change in synchronous machine
velocity. Figures 10 to 12 show the same estimates for the Off-
Nominal Deviations (OND) Algorithm. One can see that SD
Algorithm follows the rate of change of the small frequency de-
viation, after filtering the input or averaging the estimate, quite
accurately. The OND Algorithm follows large off-nominal de-
viations of frequency very accurately. In general, the transient
tests performed by the authors, and not reported here, show
that the SD algorithm follows more closely the small frequency
deviations, whereas the OND algorithm follows more closely
the large off-nominal deviations.

{Hz)

Z1

ze L2

Fig. 4. EMTP System Model for Testing
the Small Deviations (SD) Algorithm

Tr

: :E v
L
L3 Zc
>
or
& %z

Fig. 5. EMTP System Model for Testing-
the Off-Nominal Deviations (OND) Algorithm

EMTP LPF Alg Ave
voltage filtered frequency average
output voltage estimate estimate

Fig. 6. Testing Scheme Using EMTP Output

LPF - Butterworth low pass filter of the fourth order
Alg - frequency deviation algorithm
AVE - eight-sample averaging unit

0.12

01
0.08 {

full line : rotor velocity

dashed line: frequency deviation estimate

02 0.3 0.4 05 06 07 08 09 1 L1

Fig. 7. SD Algorithm Estimate



01
0.08} dashed line: frequency deviation estimase
full line : rotor velocity
9
J
02 03 04 05 06 07 08 09 1 11

Fig. 8. SD Algorithm Estimate with Voltage Filtering

0.1

dashed line: average deviation estimate

0.08f A
A full line : rotor velocity

02 03 04 05 06 07 08 09 1 1.1

Time [sec)

Fig. 9. SD Algorithm Average Estimate with Voltage Filtering

25

20 dotted line : frequency deviation estimate
full kine : rotor velocity

0 02 0.4 06 08 1 L2 L4 16

Time fsec]

Fig. 10. OND Algorithm Estimate

Fig.
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204 doued Line : frequency deviation estimate
full line : rotor velocity

(Hz]
=

[} 02 04 0.6 08 t 12 14 L6

Time [sec]

Fig. 11. OND Algorithm Estimate with Voltage Filtering

20}  doued line : average deviation estimate
full line : rotor velocity

[Hz)
3

0 02 04 06 08 1 12 1.4 1.6
Time [sec}

12. OND Algorithm Average Estimate with Voltage Filtering

CONCLUSIONS

The results presented in the paper lead to the following
conclusions:

- The two algorithms defined in this paper are extremely
accurate and yet quite simple to implement.

- The new algorithm design approach enables definition of
the generic algorithm form.

- The generic algorithm form provides a straight-forward
way to define new algorithms for frequency deviation mea-
surements. :

- Algorithm implementation may be further optimized by
developing a custom DSP chip that performs the calcula-
tion for a general quadratic form of signal samples.

ACKNOWLEDGEMENTS

Mr. Predrag Spasojevi¢ was granted a Research Assis-
tantship by the Electric Power Institute, Department of Elec-
trical Engineering, Texas A&M University to participate in the
research activity reported in this paper. Thanks are also due
to Dr. A. Abur for his assistance in setting EMTP simulations.



1570

References

{1) A. A. Girgis, and F. M. Ham, “A New FFT-Based Digital
Frequency Relay for Load Shedding”, IEEE Transactions
on Power Apparatus and Systems Vol. 101, No. 2, 1982.

[2] A. G. Phadke, J. S. Thorp and M. G. Adamiak, “A New
Measurement Technique for Tracking Voltage Phasors, Lo-
cal System Frequency, and Rate of Change of Frequency”,
IEEE Transactions on Power Apparatus and Systems Vol.
102, No. 5, 1983.

[3] M. S. Sachdev and M. M. Giray, “A Least Error Squares
Technique for Determining Power System Frequency”,
IEEE Transactions on Power Apparatus and Systems Vol.
104, No. 2, February 1985.

[4] S. A. Soliman, “An Algorithm for Frequency Relaying
Based on Least Absolute Value Approximations”, Elec-
tric Power Systems Research Journal , Vol. 19, 1990, pp
73-84.

[5

A. A. Girgis, and T. L. D. Huang, “Optimal Estimation
of Voltage Phasors and Frequency Deviation Using Lin-
ear and Non-linear Kalman Filtering: Theory and Limita-
tions”, IEEE Transactions on Power Apparatus and Sys-
tems Vol. 107, No. 10, 1984.

[6] H. Tao and I. F. Morrison, “The Measurement of Power
System Frequency Using a Microprocessor”, Electric
Power Systems Research Journal, Vol. 11, 1986, pp 103-
108.

[7) M. S. Sachdev and Jianping Shen, “A Technique for Digi-
tal Relays to Measure Frequency and Its Rate of Change”,
IFAC Symposium on Power Systems and Power Plant
Control, Korea, 1989.

[8] G. Benmouyal, “An Adaptive Sampling-Interval Gener-
ator for Digital Relaying”, IEEE PES Winter Meeting,
Paper No. 89, WM 054-8 PWRD, Jan/Feb 1989.

[9] M. M. Giray and M. S. Sachdev, “Off-Nominal Fre-
quency Measurements in Electric Power Systems”, IEEE
PES Winter Meeting, Paper No. 89, WM 050-6 PWRD,
Jan/Feb 1990.

[10] B. Peruni¢ié, M. Kezunovi¢, P. Spasojevié, “New Ap-
proach to the Design of Frequency Deviation Measurement
Algorithms”, JECON , November, 1990.

[11] B. Peruni¢i¢, M. Kezunovié and S. Kreso, “Bilinear Form
Approach to Synthesis of a Class of Electric Circuit Signal
Processing Algorithms”, IEEE Transactions on Circuits
and Systems Vol. 35, No. 9, September 1988.

[12] B. Peruni¢ié¢, M. Kezunovi¢, S. Levi and E. Soljanin, “Dig-
ital Signal Processing Algorithms for Power and Line Pa-
rameter Measurements With Low Sensitivity to Frequency
Change”, IEEE Transactions on Power Delivery Vol. 5,
No. 2, April 1990.

[13] M. Kezunovié, B. Peruni&i¢ and S. Levi, “New Methodol-
ogy for Optimal Design of Digital Distance Relaying Algo:
rithms”, Intl. Conf. Power System Protection 1989, Sin-
gapore, September 1989. ’

[14] B. Perunicié, S. Levi, M. Kezunovi¢ and E. Soljanin ,
“Digital Metering of Active and Reactive Power in Nonsi-
nusoidal Conditions Using Bilinear Forms of Voltage and
Current Samples”, IEEE Symp. on Networks, Systems and
Signal Processing, Zagreb, Yugoslavia, June 1989.

[15] M. Kezunovi¢, E. Soljanin, B. Peruni¢i¢ and S. Levi, “New
Approach to the Design of Digital Algorithms for Electric
Power Measurements”, IEEE PES Summer Meeting, Pa-
per No. 90, SM 340-0 PWRD, July 1990.

(16] “Electromagnetic Transient Program (EMTP) Rule
Book”, EPRI EL-6421-L, Vol. 1,2, Research Project 2149-
4, June 1989.

APPENDIX A

Quadratic forms of a signal z, denoted here as I{ ', may be
expressed using matrix notation in the following way:

N-1N-1

KF(n) = 3 3 bmk®n-iZn-m
m=0 k=0
= xTBx (24)
where:
xT = [®n Tno1.. TN
B = {bim}

z, is a signal sample at the discrete time n, B is the quadratic
form matrix and by, are the elements of this matrix.
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Discussion

I. Kamwa and R. Grondin (Hydro-Québec, IREQ, Varennes, Canada) : For
some time, the discussers have been involved in designing algorithms and devices
for real-time estimation of power system quantities, such as phasor and frequency
[A). Thus, they have followed the authors’ work [11][12]{15) with much interest.
The bilinear form approach to the synthesis of signal prc ing algorithms scems
a quite powerful tool, and its application to the measurement of small frequency
deviations and off-nominal frequencies has been described with great care in the
present paper. The tworesulting algorithms compare favorably with some previous
schemes [9], in terms of both accuracy and computational complexity.

However, the authors’ comments about the following concerns could enhance
the clarity of the paper .

1/ The frequency estimates in fig. 7 show an oscillating component. When
the raw EMTP voltage is filtered through the low pass filter, the interfering com-
ponent is smoothed out (fig. 8). At first sight, we believe that the noise in fig. 7
results froma 2nd harmonic in the phase voltage, since by the frequency conversion
process, synchronous machine are known to generate such components during
transient periods [B]. Thus, when the 2nd harmonic is filtered out (or more exactly,
greatlyattenuated) by the Butterworth filter, the phase voltage becomes a so-called
"noise-free” signal, and the algorithm performs well. This behaviour, even if
suitable, raises a question: since harmonics, subharmonics and DC trends are
unavoidable in actual power system measurements, are we right to conclude that
filtering of the phase voltage is really necessary for the algorithm to provide useful
frequency estimates? In this context, we wonder if a band-pass filter, centered
around the line-frequency, is not preferable to a simple low-pass, since DC offset
and subharmonics eventually presentin the phase voltage should also be attenuated.
As shown in [A], this can be succesfully achieved using a digital band-pass FIR
filter designed through DFT.

Along the same lines, we find the results in table 1 somewhat discouraging
since they show that a 1% noise on the phase voltage roughly converts to a 1%
error on the frequency estimates. Thus, a 1% subharmonic distortion (in a series
compensated network for example), would induced on the line-frequency esti-
mates, a subharmonic jitter of nearly 60mHz. Perhaps the authors should comment
on wether this represents some misunderstanding in our part.

2/ A large part of our work on frequency estimation has been oriented towards
power system stabilizer (PSS) applications [C]. We know from experience that,
notonly the accuracy as measured through the experiment in fig. 1 is an important
factor, but also that the phase lag at frequency modulation below 10Hz, can be of
great concern [D]. When the phase lag introduced by the digital transducer is high
(greater than that due for instance to a 40ms time constant), the estimates normally
tend to be more accurate, but the stabilizer gain needs to be reduced, in order to
maintain the feedback loop stable. When the maximum achievable gain is lower
than that required by the planning division to warrant the overall power system
stability, the usefulness of the stabilizer is greatly reduced and the only solution in
this case is 1o use a better transducer or change the controller input signal. In this
context, any delay in the measurement chain is a flaw which should be corrected
whenever possible. The eight tap FIR filter used to smooth raw frequency estimates
(figs. 9 and 12), is remarkable for its simplicity. But since it introduces a four
sample pure delay on the estimates, this price can be too high for the achieved
accuracy, at least for sensitive applications such as those described in [C] and [D)].

3/ Our last point is a matter of detail: how do the authors explain that the
estimated rotor speed leads the actual rotor speed (figs. 7, 8 and 10)? Since the
algorithm as expressed by equations 16 and 21 relies on past samples only (up to
lag 12), and does not make any explicit extrapolation of the future frequency value
based on some high pass filtering equivalent, we feel that we need a little more
information to understand fully such a behaviour.
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M. KEZUNOVIC, P. SPASOJEVIC, B. PERUNICIC: The au-
thors wish to thank the discussers for their interesting com-
ments and questions.

Before attempting to respond to the points raised in the dis-
cussion, the authors feel that the following general comments
are due:

e Any frequency measurement algorithm design may consist
of three processing steps: input signal filtering, frequency
(deviation) measurement, smoothing of the results.

The filtering and smoothing algorithms are used to opti-
mize the performance of the frequency measurement algo-
rithm for a given application.

Selection of the filtering and smoothing algorithms is usu-
ally driven by the following factors: dynamic characteris-
tics of the input signal (voltage), computational behavior
of the frequency measurement algorithm, time response
and accuracy requirements of a given application, hard-
ware/software implementation constraints.

Our development was concentrating on derivation of digital
algorithms for two broad application areas, namely small and
off-nominal frequency deviation measurements. An effort was
made to derive algorithms that are very accurate, computa-
tionally simple and robust. To illustrate these achievements,
a number of tests were performed and quite good results were
obtained as shown in the paper. However, since the goal of
the tests was not to demonstrate an optimized frequency mea-
surement algorithm for a given application, the selection of the
input signal filtering and the result smoothing algorithms was
quite arbitrary. In particular, the selection of the filtering and
the smoothing techniques given in the paper would not be the
same for both the small and the off-nominal frequency devia-
tion measurements if an optimized measurement of each was
required.

Having the above stated general comments in mind, it is un-
derstandable that the use of the algorithms given in the paper
in any specific application would require a thorough analysis of
the requirements for all of the three processing steps before an
optimized algorithm for that application is designed. The dis-

. cussers have designed a frequency measurement algorithm for a

very interesting application related to power system stabilizer
control. Their comments relate to the references concerning
mentioned application. Even though we have found the dis-
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cussers’ comments very interesting, our understanding of the
mentioned application is limited at this time. Therefore, our
replies can not be considered a final judgment regarding suit-
ability of our algorithms for the mentioned application.

The following are our replies given in the order as stated
by the discussers:

1/ The first comment relates to the selection of the input
signal filtering. The discussers are inquiring about the input
signal filtering characteristics used in Figures 7 and 8, giving
only the results for the small deviation (SD) algorithm. As
commented earlier, if a given application requires an accurate
measurement of only the small frequency devatiation then the
choice of the filtering may have to be different from what is
given in our paper. The filter that the discussers have intro-
duced in their reference [A] may be a very good choice. In
order to illustrate the SD algorithm performance for a differ-
ent choice of the input filtering, the SD algorithm estimate was
obtained using the input filter specified by the discussers. The
results are shown in Figure A. The corresponding results from
the paper, shown in Figure 8, are repeated in Figure B for easy
comparison. (A small difference between Figure 8 and Figure
B is explained as a part of the comment #3.) Comparison of
the results given in Figires A and B indicates that in this test
case the SD algorithm performance does not change much with
the use of the band-pass input filter instead of a low-pass filter.

The discussers have also raised a question if the filtering was
really necessary for the algorithm to provide useful frequency
estimates. In order to answer the question, one would need to
study the application to determine if it is possible to character-
ize the occurence of DC offset, harmonics and subharmonics. If
‘these components are present then the input signal filtering is
needed. In that case a study .of the application is needed to de-
termine an optimum filter selection. However, if the DC offset,
harmonic and subharmonic modes are known, the algorithm
design methodology presented in the paper can be extended to
accomodate rejection of the known modes [1]. In this case very
simplified filtering may be sufficient, or filtering may not even
be needed.

Finally the discussers are inquiring about the SD algorithm
performance under the influence of the noise and the subhar-
monics. First, it should be noted from Figure 3 given in the
paper that the noise is applied prior to Low Pass Filtering
(LPF) and Analog to Digital (A/D) conversion. Therefore, the
choice of these components will make a difference in the results.
To illustrate this point, additional test results are shown in Ta-
ble A. These results correspond to noise characteristics given
in entry #3 (SD algorithm results) of Table 1, presented in the
paper. Table A gives results of a sensitivity study where the
influence of A/D and filtering selection was studied. The first
three entries show results for different choices of A/D conver-

sion setup, while the LPF block was the same as in the paper.’

It can be observed that the 16 bit A/D choice gives better re-
sults than the 12 bit one. Furthermore, two different band-pass
filter designs were used. The subsequent two entries in Table
A show the results when the LPF block was substituted with
a band-pass filter, while the 12-bit A/D is removed. Again,
the output error was further reduced. Finally, the last entry
in Table A shows the results for a band-pass filter and a 16-bit
A/D. These results are much better than the resuits obtained
for a low-pass filter and a 12-bit A/D originally selected. Along
these lines, it would not be correct to draw a conclusion about
the algorithm error under the presence of the subharmonics
based on the results given in Table 1. Furthermore, it would
be hard to make any sound judgement at all as how the sub-
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Table A. Additional Noise Test Results for the SD Algorithm

Meas. Noise Output Error
Parameters Characteristics Characteristics
A/D conv. Mari Tnri Meri Oeri

12 bit -2.06-107% | .0102 |[ -1.719-10~* | .0111

16 bit 9.7810°° 01 |[-1.08-10"* | .0093

no 21.05.10°° | .099 [ -1.617-10~* | .0081
Bandpass [Hz] Mapri Onri Meri Oeri
43.2-76.8 -2.22:10~% | .0101 -.0065 .0027
52.8-67.2 1.16 -107% | .0102 -.029 .0006
52.8-67.2 (16b) | -1.29 .10~ 1.0103 -.029 .0008

harmonics affect the algorithm accuracy unless an optimized
version of our algorithm is designed for this application and
tested under the presence of subharmonics.

2/ This comment, as we understand it, relates to the trade
off between the frequency measurement accuracy and the com-
putational complexity of the three processing steps, namely in-
put signal filtering, frequency measurement, and result smooth-
ing. The discussers are inquiring about a time delay introduced
by the smoothing algorithm given in the paper since this time



delay may be critical in the application studied by the dis-
cussers. Again, the selection of the smoothing filter in the pa-
per was quite arbitrary and did not take into account the spe-
cific application described by the discussers. It is the authors’
opinion that an optimization of the frequency measurement
algorithm for the mentioned application may produce much
more computationally efficient solution while still preserving
a remarkable accuracy. To illustrate this point, a result of
the SD algorithm obtained by using the band-pass filter and a
simplified one-pole smoother, introduced by the discussers in
reference [A], is given in Figure C. Comparison of the results
from Figure C with the results given in Figure B indicates that
the overall algorithm accuracy is still preserved.

3/ The authors want to thank the discussers for indicating
irregularities in Figures 7, 8, and 10. This is due to an oversight
in the figure making process when the measurement curves in
Figures 7 to 12 were mistakenly shifted to the left. When a
correction is made (as given in Figure B for Figure 8) it ca
be observed that the overall results are even better since the
estimates in Figure B, for example, follow the rotor velocity
more closely than what is shown in Figure 8.

Since the discussers have inquired about the possible ex-
trapolation effect due to the algorithm itself, an additional test
was run to clarify the point. The algorithm has been tested
using the sinusoidal input voltage signal whose frequency was
changing sinusoidally around the nominal 60Hz. The input
signal frequency change and the algorithm estimate are shown
in Figure D. The results show that the estimate does not lead
the input signal. However, it was interesting to observe that
the estimate overshooting phenomenon is still present, as it is
demonstrated in Figures 7 to 12 in the paper. It is our specula-
tion that this is caused by the nonlinear processing that takes
place during the evaluation of the frequency deviation estimate.
Further study may be needed to clarify this phenomenon.
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