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Abstract - Accurate determination of fault loca-
tion and phase shift are crucial steps in protective
relaying and fault analysis on transmission lines
as well as in system restoration and economic
dispatch control. Major advancements in these
areas can be achieved uwsing synchronized sam-
pling and new digital algerithms for fault location
and phase shilt measurements. This paper in-
troduces new approaches for those measurements
using synchronized samples obtained from record-
ing instrumentation interfaced to the Global Po-
sitioning System (GPS) of satellites.
Keywords: Fault Location, Phase Shilt Calcu-
lation, Synchronized Sampling, GPS
Satellites

INTRODUCTION

Application of synchronized sampling Lo var-
ious power system monitoring and control func-
tions has been proposed in the early "8 [1]. How-
ever, enly recent advancements in the methods
and uses of the precise time in power sysiems
have enabled more practical studies to be car-
ried out [2]. As a result, several new applications
of synchronized sampling have been identified in
the control and protection area [3]. Introduction
of the recording instrumentation capable of inter-
facing with the Global Positioning System {GPS)
of satellites provided environment for implemen-
tation of several new systems for control and pro-
tection [4]. This paper summarizes development
activities in the areas of fault location and phase
shift measurements undertaken at Texas ALM
University in the last two years [5-7].

The fault location implementation using syn-
chronized sampling provided a number of advan-
tages over the schemes already proposed. The
main improvements are an increased accuracy and
an enbanced algorithm robustness. The phase
shiflt measurement using synchronized sampling
demonstrates similar properties. Both measure-
ment approaches enable fast calculations making
these techniques suitable for both real-time and
off-line applications.

The fault location application is discussed
first, followed by a discussion of the phase shilt
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measurement. Theoretical algorithm derivations
and a briel summary of tests results are given for
both applications.

FAULT LOCATION

Theoretical Background

Consider an arbitrary unfaalted three—phase
gvstem depicted in Fig. 1. The two ends of the
transmission line of interest are labeled 5 (send-
ing) and R (receiving). The vectors of the phase
voltages and currents at the two ends of the trans-
mission line are vg, iz, and vg, ig, respectively.
The length of the line is d. At any location X
along the given line, the instantaneous values of
the phase voltages and currents are defined as:

vy = vz, 1) = [ug(z, ), wiz, 1), ne(z,1)] (1)
ix =iz, 1) = [ialz 1), sz, 1) 0z, 2)] (2)
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Fig. 1. Unfaulted Three-Phase System

In the case of a homogeneous line (constant line
parameters per unit length), the voltages and cur-
rents at the end 5 can be expressed in terms of
the voltages and currents at the end R (and vice
versa) as:

vp = LY{vs,is,d) (3]
ig= L'{bs,i;,iﬂ (4)

vg, ig, and vy, 15 are vectors defined in the same
manner as vy, iy (eqs. (1) and (2)). L* and L'
are linear operators with respect to the vectors of
voltages v and currents i,

The relations betwesn voltages and currents
at any two points of the transmission line (eqgs.
{3) and (4)) are not influenced neither by the con-
figuration nor the parameters of the rest of the
system of which the line is a past. The particu-
lar form of the operators LY and L' depends on
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the transmission line parameters and its electrical
length.

Now, consider the faulted three phase trans-
mission line depicted in Fig. 2. The fault point
is denoted as F, and is at a distance z from the

line end K.
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Fig. 2. Faulted Three-FPhase Transmission Line
The phase voltages at the faclt point F are

related to both line ends” phase voltages and cur-
rents (eq. (4)):

ve = L"|vs,is5,d - z} (5)
v = L"{vp,in 2] (6}
where op is the vector of instantanecus phase
voltages defined in the same way as vy (eq (1)),

and d = r is the distance between the end § and
the fault point F.

Because of the continuity of the voltage along
the transmission line, eqs. (5) and (6) can be
combined, leading to:

L*{vs,ig,d =z} = [*{vg,in, 2} {7)

Finally, consider a hypothetical unfaulted three-

phase transmission line having the same charac-
teristics as the faulted ope. This line is depicted
in Fig. 3. The point F on this hypothetical un-
faulted line iz at the same location as the fault
point F on the [aulted line (Fig. 2). The vectors
of phase voltages and currents of the hypothetical
line are defined as for the case of the faulted line.
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Fig. 3. Hypothetical Three—Phase Transmission Line

Let us assume that the vectors of voltages
and currents at the end 5 of the hypothetical line
are exactly the same as the corresponding ones
vg and ig on the actual faulted line. Therelore,
st the point F on the hypothetical line, the volt-
ages are the same aa the corresponding ones on
the faulted line. Since the hypothetical line is un-
fanlted, it is homogeneous over its whole length.
Therefore, the end K voltages and currents on the

hypothetical line can be expressed, using eqs. (3]
and (G) as:

Br = L*{vs,i5,d) (8)

in = L'{vs,is,d} (9
The parts of the hypothetical line between the
end § and F, and the end R and F, are also
homogeneous. Thus, for the point F, expression
(7] becomes:

L*{vg,is.d -z} = L*{Fg, 1R, 1) {10}

Due to the assumption that the end 5 walt-
ages and currents are the same on both the faulted
and the bypothetical lines, eqs. (7) and (10] can
be combined, leading to:

L*{vR.ir,z} - L*{Fr in,2} =0  (11)

The linearity of operators L* and L', with
respect to the vectors of veltages and currents,
enables expression (11) to be rewritten as:

L*{&vp, Aig,z)} =0 (12)
where Avg and Aig are defined as:

Avg = vg - Tn
Aig = ig —‘l?n

Equation (12) is & generic faull location equation.
It relates the apknown distance z to the fault
point F and the mismatch of the phase voliages
and currents, Avg and Adg. The mismatches
Awpg and Aig contain both line ends' voltage and
current values, While v and ig are the measured
vectors at one end, Ty and 15 are the calculated
ones. The vectors tp and 15 are calculated us-
ing the measured values of the other line end, vs
and iz (eqs. (8) and (9)). Therefore, the generic
equation (12) implicitly relates the unknown dis-
tance £ to the fault point F, and both the line
ends’ instantaneous phase voltages and currents,
g, 1:3. and LI A

For & particular transmission line, the generic
equation (12) has a unique form that determines
the way it can be solved for an unknown fault
location. In the case of a short line, the equation
can be solved in an explicit form. For a long line,
the equation is solved in an indirect way.

Performance Evaluation

The performances of both the short and long-
line algorithms were evaluated using EMTF gen-
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erated data. Two test systems were modeled us-
ing the EMTP, one for testing the short-line al-
gorithm, the other for testing the long-line al-
gorithm Both test systems are models of ae-
tual power systems. Test system 1 is a LG kV
power system with a short transmission line used
for testing. The one-line diagram of system 1 is
shown in Fig. 4. The transmission line of interest
is the one between buses 2 and 3.

The other test system (system 2) is 345 kV
with & long transmission line considered for test-
ing the fault location algerithm for the long lines.
The transmission line of interest is untransposed
and 195 miles long. The one-line diagram of sys-
tem 2 is shown in Fig. 5. The transmission line
of interest is between buses | and 2.

Fig. 4. One-Line Diagram of System 1
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Fig. 5. One-Line Diagram of System 2

The test cases were generated by varying the
following four parameters of the fault event: fault
lecation, type of fault, fault resistance, and inci-
dence angle of the fault occurrence.

The error of the faull location algorithms was
observed for a variety of fault cases. The error
(%) of the fault location algorithm is defined as:

lact. fault loc. = cale. fault I|:u:.]JlEJ
total line length

Typical test results for the short and ihe long
line are given in Tables | and 11, respectively.

Error (%) =

-1038 -

00

More elaborate test results are provided in rel-
erences |5,6).

The results indicate that the error is rather
small for all cases, as it never exceeds 0.75%.
Moreover, typical errors are 0.5% for the most
common fault type, namely, the line to ground
fault. Such & small error is achieved under vary-
ing fault characteristics which confirms the ro-
bustness of the algorithma.

Table 1. Error (%) of the Short-Line Fault Loca-
tion Algorithm for a Phase A to Ground

Fault
Letalion
=l Fushi a1 0.8 0.8
lncidence

Angle [deg)  © w0 0w [ W
Ry =31 0434 cadee 07901 02083 00388 0.030
Ry = 501) 04576 04549 0.7I37 01179 00484 0.0471

Table I1. Error (%) of the Lhort-Line Fault Locs-
ticn Algorithm for & Phase A wo Ground

Fault
Locasion
of Fault a.1 0.5 'R ]
Iecidence

Angledeg] © W o w0 o W
fip= 31 04283 04213 03903 0.3968 04TRI 04183
flp = 5000 04300 04837 00991 04003 04853 0.4THS

MEASUREMENT OF PHASE SHIFT

Theoretical Background

The building blocks of the algorithm are bi-
limear and quadratic forms of signal samples in-
troduced by the authors in [8]. The bilinear form
of two discrete signals z, and g, is defined as:

Nl N=1
BFHXY(n)= 3 3 himTn-st-m (13)
k=0 m=0

The quadratic form of a discrete signal z,, is
defined as:

N-1N=1

QFHI(HJ: E z BimEnbn—mm [I.‘J

k=0 m=0

In these expressions, r, and y, are sample
sequences of two signals o{f) and yp{f) taken in
times n/f,, where f, is the sampling frequency.

For two signals that are pure sinusoids of the

same [requency, f, z, and g, have the following
values:



Tn = Xcos(fn+ y)

(15
1"-.=Ytus{h+¢]1.a=hf_; (15)

The value of any bilinear or quadratic form
obtained using samples of sinusoidal waveforms
consist of two terma, one is constant and the other
is oscillating with the frequency of 2f. The os-
cillating term is equal to zero when the weight
matrix {fym} satisfies the condition:

MN=1MN=-1

B3 hemem Mt np (16)
k=0 mul
In the general case, the above condition is
satisfied only for a particular value of . However,
il the sums of anti-diagonals in the weight matrix
are all equal to zero, the condition (16) is satisfied
for any value of & [8]. This is a very convenient
property if the frequency of the signal varies. For
this reason, only such weight matrices are used
for the algorithm presented in this paper.
The constant terms of bilinear and gquadratic
forms have the following values [9]:

BFHXY =x u}% cos(y — &)
- 3[&1% sin{v —4)  (17)
x'l‘
QFHX = (§)- 5 (18)

Coeflicients oo (8) and G(4) are dependent on
angle ¢ and weight matrix elements hym:

N-1MN-1

x(8) = Y Mumcosim-k)é (19)
=0 m=l
M= N=1
B6) =3 3 humsin(m=k)§ (20
k=0 m=0
The phase shift is calculated combining bilin-
ear and guadratic forms in the following expres-
sion:

BFH XY (n)
FH:X(n)-QFH3Y (n)
(21)
Weight matrices Ky, [fy and iy have sums

of their anti-diagonals equal Lo zero, and they
also satisly two additional conditions:

w-¢==in"{

oy (6 =10 (22)

G118} =z () =3 (8) (23)

Any three matrices satisfying the above con-
ditions may be used for the calculation of the
phase shilt.

The expression (21) holds only if amplitudes,
frequency and phases of the same signals are con-
stant. If these signzl parameters vary in time,
then expression {17) holds only if their variations
are sulliciently slow so that they may be neglected
in the data window.

Performance Evaluation

Two types of computer simualation tests were
performed to verify the algorithm. The aim of
the first type of tests was Lo prove that algorithm
properties hold if signals are sinusoids with con-
stant or slow varying parameters. For this type
of test, samples were defined as follows:

£y = Ain)cos|f(n)n + win)] (24)

Yo = H[njms{&(n]nl [25)

The particular functions used for A{n), Bin),
d{n)and w(n) m (24) and (25), as well as test out-
comes for the first type of tests, are presented in

Table I11.
Table 111. Test Results

Test A(n) p.n. Bin) pu.
1 1 1
2 1 1
3 1 1
4 |1+0.1cosi0.017n) 1
5 1 1
] 1 1
Test | fin) Nz | J. Kz | win)"
1 [ 12 45
2 60 (] 45
3 60 0.240 45
A |+ | 17 i5
5 [1] 12 45 - =
fi 0 7 0+ |

Tests @1, #2, and #3 were designed to demon-
strate that the algorithm may be used for an ar-
bitrary sampling frequency. Therefore, in these
tests, only the sampling frequency was changed.
The results were absolutely unalfected by the sam-
pling frequency choice,

The algorithm is also transparent to changes
in the value of amplitude and system [requency, as
long as these parmmelers are constant in Lthe data
windluw. Il these changes are sulficiently slow, the
errof is not significant,



In the test #4, the amplitude of the first sig-
nal was modulated with a subharmonic having
10% amplitude of the main signal and a frequency
of 6 Hz. The frequency of both signals had a
linear change of 1 Hz per cycle. Although the
changes were significant from the point of view of
the system, the algorithm showed quite an accu-
rate value of the phase shift.

The goal of test #5 was to show the dynamic
properties of the algorithm. In this test, only the
phase shift was varied, Other parameters were
kept constant. The algorithm results gives a small
error.

In test @6, the phase shilt was changed lin-
early for 60% in 10 eycles. The measurement is
expressed as gine of the shift. The results fol.
lowed the true phase shift with a delay equal to
a fraction of a cvcle.

The second type of test demonstrated the ro-
bustness of the algorithm using EMTP simulation
of voltages taken at two transmission line ends
during & BC fault. The EMTP model used for
this test is the one shown in Figure 4.

The EMTP generated voltage signals were
filtered using a four state low pass Butlerworth
filter to reduce the higher frequency components
induced by the fault. The simulated fault changed
the phase shilt between voltages for § degrees,
The algorithm cutput was smooth and a new sta-
tionary value was established in the course of one
cycle.

Detailed results of all the tests are further
dizcussed in reference (8],

CONCLUSIONS

The results of the study reported in this pa-
per lead to the following conclusions:

# Synchronized sampling enables new approaches
to measurements of a fault location and a
phase shift.

The fault location algorithm developed us-
ing synchronized sampling offers greater ac.
curacy and robustness than any of the previ-
ously publisheq techniques.

# The phase shilt measurement approach using
synchronized sampling offers an accurate and
robust result that is transparenl to any con-
stant or slow moving fundamental frequency
and signal amplitudes.

Both fault lecation and phase shift measure-
ments are obtlained in a very short time inter-
val and can be used for real-Lime monitoring,
control and protection applications.
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