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ABSTRACT

This paper introduces a new methodology for optimal design of digital distance re-
laying algorithms. The methodology is based on bilinear forms of voltage and current
samples. The new algorithm representation enables definition of the algorithms that are
insensitive to the presence of the DC offset and harmonics in the signal as well as to the
changes in the system frequency. Several algorithm forms are derived to illustrate how
the same design methodology may be used to define different algorithms. It is shown

how the new methodology may also be used to classify the existing algorithms.
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INTRODUCTION

The field of computer relaying has been developing since the late 60's. A number of
digital algorithms for distance relaying were introduced up until now [1]. Each of the
algorithms is developed to fit a specific set of application conditions. Several algorithms
are proposed for the same application with each auther making a claim that his algorithm
is the “best”. However, a detailed comparative study and evaluation of digital algorithms
for distance relaying indicates quite different performance under specified application
conditions [2].

The main problem to be resolved by digital algorithms for distance relaying is to dis-
eriminate between a no-fault and a fault situation. The decision is based on measurement
of voltage and current signals. The ;nput signals may be related to the travelling waves
caused by a fault, or the input signals may be distorted fundamental frequency signals.
Even though there are some papers published on the use of travelling waves for distance
relaying [3), it is fair to say that the majority of the published papers are related to the
algorithms based on the measurement of the distorted fundamental frequency signals
[2]. This paper is concerned with the second category of the algorithms.

The main distortions in the fundamental frequency signal at the moment of the fault
a.re. related to introduction of the D.C. offset, higher harmonics and deviations in the
fundamental frequency. Therefore, all of the algorithms introduced so far had to cope
with the problems of accurately measuring the fundamental frequency signal under the
mentioned distortions [2]. This has to be taken into account during the design phase of
the relays so that different filtering and pre-processing features are used to compensate
for the algorithm inaccuracies under the mentioned conditions.

This paper introduces a new algorithm design methodelogy which enables derivation

of a generalized algorithm form. The form can be used to perform an optimal algorithm



design for a given set of input signal conditions. Therefore, this methodology can be
used to design algorithms which would be insensitive to the above mentioned signal
distortions.

The first part of the paper is related to the algorithm classification scheme introduced
in an earlier study [4]. This classification scheme is used here to illustrate expected per-
formance of various algorithms under different signal distortions. The second part gives
the theoretical background of the Bilinear Form Approach used to derive a generalized
algorithm form and the related optimal algorithm design methodology [5]. The next
section illustrates the use of the new algorithm design methodology to define algorithms
insensitive to the presence of D.C. offset, harmonics and fundamental frequency distor-

tions [6]. Conclusions and Bibliography are given at the end.

ANALYSIS OF EXISTING ALGORITHMS

Algorithm Classification Scheme

The main algorithm classification is based on the approach used for impedance cal-
culation [4]. As it is well known, the impedance of a transmission line may be defined

in one of the two following ways:

Z=R+ jul (1)
Vv
2= T (2)

Thfrtfm’:, one class of algmil'.h.ms is related to calculation of B and L based on the
voltage and current measurements. In this case a differential equation model is needed

as given below:

ul(t) = Ri(t) +L% +e(t) (3)



where:

R, L — line parameters e(f) — the noise terms

An algorithm classification scheme related to the model given by equation (3) can
be defined, as given in Table A in the Appendix. These algorithms are designated as
Class [ algorithms. The classification is based on the two basic steps needed to determine
parameters R and L. One step is to treat the di/dt term, and the other step is to treat
the e(t) term. The important observation is that various algorithms defined to perform
these two steps may have quite different properties,

The other class of algorithms, designated as Class II, can be defined by the following
model:

u(t) = Veos(w,t + ¢) + 3 C} fi + nylt)
E

i(t) = Teos(wot + ¥) + 3_ Cifi +ni(t) (4)
']

where:

C;,Ci — unknown coefficients
»(t), fi(t) — known functions representing higher harmonies and transients
(1), n;(t) — noise terms

Typical estimation approach in this class usually consists of the following two steps:
estimation of the first harmonic (direct and quadrature components, or amplitude and
phase components); caleulation of impedance as a quotient of the voltage and current
phasors. This is indicated by equation (2). Again, a number of methods may be im-
plemented to perform mentioned estimations. They primarily depend on an assumption
about the complexity of the waveforms described by equation (4). Some basic methods

are indicated in Table B given in the Appendix.



A detailed analysis of the algorithms that belong to the two mentioned classes reveals
that the algorithm performance depends on several factors. The first group of factors
are the distortions of the input waveform at the moment of the fault, The second group

are the design parameters of the relaying systems. This analysis is summarized in

Table L.

Algorithm Properties

The approach given in this paper is derived to cope primarily with the signal dis-
tortion factors. As indicated in Table I, Class I algorithms are quite insensitive to the
distortion influences. Howewver, the implementation reguirements have to be carefully
selected so that an optimal design is obtained. The class II algorithms are in general
quite sensitive to different types of the signal distortions. On the other hand, it may be
easier to select the optimal design perameters for this class. In either case it is hard to
suggest what is the “best™ algorithm. It is even harder to suggest what would be the
methodology for selecting the “best” algorithm.

Some attempts to select the “best” algorithm [7], and to define the required method-
ology [8] have been proposed in the past., All of these attempts were taking into account
the existing algorithm definitions. The selection process and the evaluation methodol-
ogy where based on the algorithm transient testing and performance comparison. This
approach has been quite useful for both the design performance evaluation [2] and for
educational purposes [9]. However, the approach discussed in this paper is related to a
new definition of the algorithms which enables development of a design methodology for

synthesis of an optimal algorithm.
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The Generalized Algorithm Form

This section is introduced to indicate how all of the mentioned algorithms can be rep-
resented by a single generalized form. This form will serve as the basis for development
of our new approach to algorithm and design methodology definition.

The class | algorithms are based on a discrete-time representation of the equation

(3), with the noise term neglected:
Jlug = BRI, + L%, (5)

where J', J?, J* are the operators used to convert the differential equation (3) into a
difference equation. Since equation (5) is an algebraic equation with respect to R and L,
two such equations defined for two different time instances are used to obtain estimates

of the line parameters:

~ Jlup J o = T P
T TN T — T T,
= 2. _ T3 1
o ] J o Uiy J :IL_]J L {ﬁ‘]

J2, PPy — JYip T,
The class II algorithms are based on the voltage and eurrent signal models given by

equation (4). These models can be represented by the following general form:
2(t) = zp - coswyt + 27 - sinw,t + 3 k() (7)
where:
rp,z; — real and imaginary part of the fundamental frequency phasor

k;, ¢, — other harmonics and transients

For an assumption that the fundamental harmonic is the relevant signal model, it is

possible to obtain discrete-time estimates of the voltage and current phasor components:

Tp= az; 7= Pzs (8)



where a and § are operators. As a result, the line parameters can be determined using

the estimated values of the phasor components:
"-_ ﬂ't.kﬂ'uk + ,Sl:;..ﬂll.i
(@ )? + (B )?

~  Pusai, — aupBis

[ﬂl't::lz + {ﬂi#]j
Finally, all of the mentioned line parameter algorithms, represented by equations (6)

[

(@)

and (9), can be defined using the following generalized form:

vrer UTDr
UI. R e —

R=TEI TTEI (10)

where C, D, and E are the weight matrices.
EILINEAR FORM APFROACH

G | Bilinsar Form Definiti

As mentioned in the previous section, equations (10) are representation of the existing
algorithms using the generalized form. It could be ob@;ermd that both nominators and
denominators of equations (10) are of the similar form which will be in our further
developments designated as the bilinear form.

The general bilinear form of two sequences of samples z,, and y, is defined by the
following expression:

N=1 N-=1

BFI'I. — E E hkm:ﬂ.—kyu—m {11:|

k=0 m=0

where g is the discrete time when the bilinear form value is determined. The term him
is a weight attached to the product of two samples r,_; and y._.. The bilinear form

given by equation (11) is therefore defined by the following weight matrix:

H={him } (12)



The matrix dimension is N x N for the window having the width equal (N — 1)At,

Our further discussion will point out some properties of the bilinear form given by
equation (11). Based on these properties, it will be shown how the value of the hilinear
form can be selected to give either active power P or reactive power Q. This process is
designated as a methodology for selection of properties and coefficients of the matrix H so
that the desired power measurements are obtained. The use of the power measurements
to calculate the values of parameters R and L is explained at the end.

This final explanation concludes the definition of our methodology based on the
bilinear form approach, This methodology enables one to derive different algorithms for

R and L. measurements.

Bilinear form Value for Harmonie Signals

Let us assume that the fundamental harmonic voltage and current signals are defined

tin = Ucos(ny +¢)
1, = [cosny (13)
where:
U, I - signal magnitudes

¢ — phase between two samples

2w .
th = = — electrical angle between two samples
“‘I'

w, — system fundamental frequency

w, — sampling frequency



The bilinear form value for the harmonic signals defined by equation (13), at the moment

o, is given as:
N=1MN=1

BFN = Z Z hhm“n-—iin—m [14}

k=0 m=0

=UTHI

Further expansion of the equation (14) indicates that the bilinear form may be ex-

pressed as a sum of a constant term BF® and a variable term BF}:

BF, = BF* + BF’ (15)
These two terms can be represented as a function of the weight matrix H:
vr -3 ef g— I
BF = —2-|H"I:e )| - cos[¢ + LH (%)) (18]
vl g =g U=

where the related weight matrix polynomials H* and H" are represented as:

+N=1
Hip)= 3 M- p° (18)
r==N+1
with:
h:='£:£hm D<k<N-1 (19)
E m
E—m=r DZ<m=<N-1
and:
IN-2
H'(p)= 3 hi-p' (20)
=0
with:
if=Y 3 hm 0SESN-1 (21)
'] m

k+m=r 0<m<N-=1



Analysis of the equations (15), (16) and (17) indicates that the constant part BF*
can be used to determine power and line parameter values. Therefore, it is desirable to
define conditions that will make the variable part BF} to be equal zero. The variable

term will vanish if the following condition is fulfilled:
Hute—Jﬁj =0 {22]

This is satisfied when e?¥ is a zero of the polynomial H¥(p). Furthermore, the
variable term will vanish for any  if H"(p) is identically equal to zero. This is the case
when:

k'=0 r=01,---,2N-2 (23)

ix Conditions for Diff M !

The first set of conditions is related to the selection of matrix H so that the require-
ment (22) is satisfied. As indicated by the expression (23), this means that the sums of
the matrix elements in the anti-diagonal and all the sub-anti-diagonals have to be zero,
Such matrices will be named constant-valued.

The next set of conditions is related to selection of the polynomial H¢(e %) so that
the bilinear form value gives active and reactive power.

The active power calculation requires that the H°(e %) is real for any value of the
electrical angle, and equal to 1 for a given value of the angle. Therefore, if the following
condition is satisfied:

HY(e™) =1, ¥=1o (24)



then it can be seen from equation (16) that:

BF=%£EDS¢=P (25)

It can be easily shown that the symmetric matrices defined as
A=AT (26)

satisfy the requirement that their value is always real, i.e., that their imaginary part is

always equal to zero:
Im{A%(e= ™)} =0, ¥§ (27)
However, the symmetric matrices are not necessarily constant-valued, which is also the

required condition as expressed by equation (22). Omne way to construct a constant-

valued symmetric matrix A is to choose its elements to satisfy the following conditions:
gzah=_“§ r=0,1,2--N-1 (28)
0<k<N-1,0<m<N-1 k:.:-m,l'+m=2-r
?Eam:'ﬂ r=0,1,2,---N -1 (29)
0<k<N=10<m<N-1 k>mk+m=2r+1
1f the following condition is also satisfied:
Re{A%(e™™)} £0, =10 (30)

then a weight matrix for real power calculation can be constructed as

1

= Refa ey o

H,

The reactive power calculation requires that the polynomial H*(e™/%) is imaginary
for any value of the electrical angle, and equal to —j for a given value of the angle.

Therefore, the following condition needs to be met:

HY( ) =~j, ¥=4 (32)



In this case the equation (16) gives the value of the reactive power:
ur .
BF* = = sin ¢=0Q (33)
It can be shown that the skew-symmetric matrices defined as:

B'=-B (34)

satisfy the requirement that their value is always imaginary, i.e. that their real part is
always equal to zero:

Re{B(e™™)} =0, W¢ (35)
However, these matrices always satisfy the following condition as well:
BY(e~™)=0, W (36)

which is needed to make the varable part of the bilinear form to be equal to zero. In
addition, if the following condition is satisfied:

Im{B(e ™)} £0, o =1y (37)

then a weight matrix for reactive power caleulation can be constructed as:

1

Ho = ey B (38)

The transmission line parameter calculations are based on active and reactive power

caleulations. Using the following expression:

U %stdl_ P
ol Shohime e

e G cosé Q@

ol g ey Bl

(39)

it is possible to determine the required bilinear form matrices from the related power

measurement weight matrices. The only additional value that needs to be defined is the



RMSI value. The condition for RMSI calculation can be obtained from expression (16)
by taking into account that both signals in the bilinear form are the current signals and

that they are equal with no angle difference hetween them:
.l.r'3 ef L =f
E.F“=?R={H (Cada ] (40)
This brings the new condition:
Re{H%(e™*)} =1 (41)

which is needed to make equation (40) to represent the RMSI value. This value is

denoted as the quadratic form (QF):

(42)

APPLICATION OF THE NEW METHODOLOGY TO THE OPTIMAL
ALGORITHM DESIGN

Conditions for optimal design

The previous section has provided derivation of the matrix conditions for different
measurements. These conditions have been derived for the case when the input signals

are the fundamental harmonic signals only. In this case the conditions are derived to

satisfy the requirement that the variable part BF} is equal to zero and that the con-
stant part BF* has the value of the desired measurement. Therefore, the conditions for
parameter R and L measurements for the input signal with no distortions are already
derived in the previous section.

If & distortion in the fundamental frequency is considered, then the conditions (22},

(24) and (32) are no longer satisfied. This implies that it is desirable that polynomials



H* and H*® show low sensitivity to frequency change. In order to derive the required
conditions, let us represent the bilinear form expression given by equation (13), using
the Taylor series expansion. This expansion is performed around the point 1, which is

the desired frequency out of the range of the frequency values y.

dBF(¥) ¥ -t

#BF,(
vt

If only the first two terms are considered, then the low sensitivity to frequency change

=l . .

¥)

(43)
translates into the condition that:

dBF.(¥) _

=0 for ¥=to (44)

This further means that the following conditions are also satisfied:

dH*(e"7¥) _ i
=g =0 for ¥=t (45)
dH(e1¥) &
=0 for $=to (36)

If the weight matrix H is selected to satisfy the condition (23), then the requirement
(45) is satisfied. As far as the polynomial H* is concerned, both real and imaginary

parts have to satisfy the condition (46):

dRe{H(e=*)} e
T =0 for =1k (47)
d'fm*[ﬁ;::E"""}} =0 for w=1y (48)

Conditions for the ealeulation of parameter R can be derived by using equations (10},
(22), (29) and (30). As a result, the following weight matrix conditions for the estimated

value F{ are obtained:
vTCcr
ITEI

(49)



where:

C* (e ™) =0 for V¥
C(e™*¥) = real number (50)
E*(e™¥) =0 for Wy
E*(e™¥) = real number (51)

Observing the conditions (31) and (40), it is possible to write the expression (49) in
the following form:

~ Re{C%(e~™)}-P _ Re{C(c")}-P
" Re{E<(e=%)}) - E ~ Re{E<(e-¥)}- 2,

(52)

Taking into aceount equation (38), the following relation is obtained for equation

(62):
B Re{C"(e~7%)} R

= Re{Ev(c)) (53)

Analysis of the equation (53) suggests that the estimated value R is equal to the
actual value R, for any value of the angle ¢, if polynomials C° and E° are equal:
C(e™7%) = E*(e™¥), for Wy (54)
This translates to the following condition for the corresponding weight matrices:
C=E (55)

Therefore, the condition (55) needs to be satisfied in order to define an algorithm for
caleulation of the line parameter R so that this algorithm is insensitive to the frequency
change. Obviously, in this case the condition (47) is also satisfied.

The conditions for the caleulation of the parameter L can be derived in the similar

manner by observing equations (9), (22), (35) and (37). In this case the estimated value



[ can be obtained as:

Lw,= {;:ED II (56)
under the following conditions:
D¥(e™)=0 for Wy
Df(e”#¥) = imaginary number (57)
E¥(e"*) =0 for Wy
E(e™"¥) = real number (58)

Further derivation is based on the equations (38) and (40). Using these equations it
is possible to write the equation (56) as:

1 Im{D(e)} Q@
oo Re(B(e™)) T
Lfm{D‘[e‘N)}‘_Q_
"o Re(EX(e ) T2

s (59)

Taking into account equation (39), the following relation is obtained for equation

(59):
- 1 Im{D(e~¥)} :

g Re{ Be(e¥)} <

Further rearrangements of equation (60) are needed:

L= " Re(B(c™) w0 Bt o

to obtain the final expression as:

s _Im{D(eM) ¥ (62)

= " Re{E¥(e )} o
In order to make the estimated value L to be equal to the actual value L, it is needed
that:

— Im{D*(e™*¥)}¥ = Re{E*(e™"*)}¥u (63)



If also the conditions (47) and (48) are needed in order to provide the low sensitivity

to the frequency change, then the new condition for the equation (63) is:

d

- Lt (Dl = %Rewwr”m}w.h (64)

The consideration of the D.C. offset and higher harmonic distortions can be per-

formed in a combined manner. Let us assume that the input signal contains, besides the

fundamental harmonic, & signal mode of the following discrete form:
M=A-q" (65)

where

A = amplitude

g = et
A = characteristic value
If the fundamental frequency signals are given by equation (13) then the distorted

signal, having a mode given by equation (65) added to it, is equal to:

tUp= tn+ Uy ¢" (66)

-;n= in =T Iw 5 q“

where U, - ¢" and I, - " are the voltage and current modes respectively. If the distorted
signal expressions (66) are substituted in the equation (14), the following expression is
obtained:

BF,.= BF, + BF, (67)

A detailed analysis of the expression for BF, indicate that the following conditions

have to be met in order for BF; to be equal to zero:



N=1N=1

E E hh.q_" cosmiy = 0

k=0 m=0
N=1N-1
z z humg ™ coskyy =0

k=0 m=0
N=1N=1

3 Y himg tsinmyp =0 (68)
k=0 m=0
N=1N-=1

E E himg ™ sinkyy =0
k=0 mml
N-1N-1

33 b4 =

k=0 mw
It should be noted that the mode g will be eliminated only if the fundamental fre-

quency is such that ¥ = y%y. However, the conditions (68) indicate that mode g can be

eliminated for any value of ¢ if the following conditions also are satisfied:

N=1
Y Byg™ =0 k=01, ,N-1
m={}

N=
Y hmg*=0 m=0,1,-- N-1 (69)
k=0

Therefore, this creates 2N additional conditions.

It should be recognized that the above analysis can be applied to the D.C. component

elimination if ¢ = 1. In this case equations (13) are:
U= U cos(ny + ¢) + Up (70)

in= Jcosny + I

In this case conditions (69) are given as:

N=1
him =0 k=0,1,---, N -1
m=i
N-1
5 hiem =0 k=0,1,---,N -1 (71)
(3]

The condition (71) indicates that the sums of the H matrix elements in the rows and

in the columns have to be equal to zero.



Algorithm Synthesis

This section provides an illustration as how the derived methodology can be applied
to the optimal algorithm design. To keep this illustration simple, only the optimal
design of the algorithms for active power measurement is discussed, In the previous
discussions it was shown how the power measurements are related to the parameter R
and L measurements. Therefore, the following procedures can be essily applied to the
synthesis of the R and L algorithms as well.

First, it will be illustrated how the basic conditions (23), (29), and (30) are used to
synthesize the H matrix used to caleulate active power P. Let us assume that the H

matrix has the following form:

H, = (72)

Applying the mentioned conditions one obtains the following expression for the de-

sired matrix:
1 1 — cos iy
H, = P~ (73)
—costly 1
The second example is related to selection of the matrix H coefficients so that in-
sensitivity to frequency change is maintained. If again the active power measurements

are of interest, then the conditions (26) (27) and (45) should be satisfied. Let us select

a matrix H to satisfy the conditions (26) and (27) as follows:

0 0 a b
0 -2a =5 0
H, = (74)
a —=b 00
b 0 00




The condition (45) determines the values of the coefficients g and b to be equal to:

cos 24 + cos? iy b 08 Y

dsin'y, = 4sin'p (75)

a =

Finally, an example of the synthesis of the matrix H so that a mode ¢" is eliminated
is given. Let us select a matrix H to satisfy the specific conditions (68) as well as the

basic conditions (24), (28) and (29) as follows:

0 a b
Hy=|-a 0 ¢ (78)
b = 0

The general condition (69) can now be used to select the required coefficients. This

procedure gives the following values for the coefficients:
a=) b==)g c=) (7T)
CONCLUSIONS
The discussion given in the paper indicates that:
- A number of digital distance relaying algorithms exist today.
- There is no straight forward methodology available to either select or
synthesize an optimal algorithm,
- The methodology proposed in the paper can be used to perform both analysis of
the existing algorithms and synthesis of the new ones.
- The new methodology can be used to synthesize algorithms that are insensitive to

signal distortions such as change in fundamental frequency, and presence of the

D.C. offset and higher harmonics,

As a final conclusion, it should be noted that the study presented in this paper is

lacking consideration of the noise influence as well as the experimental results related



to the new algorithm's performance. These additional considerations have been studied

and the results are being prepared for publication in a future paper.

REFERENCES

(1] IEEE Tuterial “Microprocessor Relays and Protection Systems” [EEE, Pub. No.
S88EH 0269-1-PWR, 1987.

[2] Kezunovic, M., Kreso, S., Cain, J. T., Perunicic, B. “Digital Protection Relaying
Algorithm Sensitivity Study and Evaluation” [EEE PWRD, Vol. 3,No. 3, July
1988,

[3] Shehab-Eldin, E. H., McLaren, P. G. “Travelling Wave Distance Protection —
Problem Areas and Solution™ JEEE TPWRD, Vol. 3, No. 3, July 1988,

[4] Kezunovic, M., Cain J. T. “Analysis, Synthesis and Evaluation of Digital Protec-
tion Relaying Algorithms™ NSF Project JFP 476, Final Report, 1989

[5] Perunicic, B., Kezunovic, M., Kreso, 5. “Bilinear Form Approach to Syn-
thesis of a Class of Electric Circuit Digital Signal Processing Algorithms”
IEEE Trans. on Circuits and Systems, Vol. 35, No. 9, 1988,

[6] Perunicie, B., Kezunovie, M., Levi, S., Soljanin, E., “Digital Signal Processing
Algorithms for Power and Line Parameter Measurements with Low Sensitivity to
Frequency Change” [EEE PICA, Seattle, U.S.A., May 1989,

[7] Kim, C. E, Cain, J. T., Guyker, W. C., “A Step Towards Identify-
~ ing the “Best” Digital Algorithm for Transmission Line Distance Protection”
IEEE PES Summer Meeting, paper No. A 79 414-4, July 1979.

[8] Gilber, J. G., et. al. “The Development and Selection of Algorithms for Relaying of
Transmission Lines by Digital Computers” Power System Control and Protection,
ed. by B. D. Russell and M. E. Conncil, pp. 83-127, Academic Press, 1978.

[9] Kezunovie, M. “DYNA-TEST Simulator: Protective Relaying Teaching Tool”
IEEE PES Winter Meeting, paper No.83 WM 042-3 PWRS, February 1989




APPENDIX

._.l._:

uﬂauunw St =
|
3

1., €
re 0" Te

;unjiajifia ioiia alenbe
mnejuym 3yl Supen Aq

Y g=taena

sulgg_-.vm,.._d

(pauTElqo q A
sucfienba ojeigadye oal

02

suofi1enba om)
uEyY] BI0y

*mia)
IP/TP @Yl JO JusEIEILY
A0] pIUCTIUME @ROLY 7
oAl a3yl jo auo Hupsm
Lq paurelqo a1 J puw
24094V WATITFIN0D

A="13+80
D="T4+4¥
17 pue § Jo

UOFIN[OR 10] papadsu a1
suofienbs >pwaqeBiw oAl

0=(3)2

suoTienba o]

w

() x="x
1

3
- on, B T R
(M) e A
IW(N-u)="3 tIuety
I
r— 3
w'x 7 =ap{3)x f "]
1-u 2,
L
1 z
ap()e f +1D=-Core
Hu
._u ._u
+Ip(3)F J w=3p(3)n
E, Z,

*1e1¥33UT BTA SATIBATISP
@Yyl JO vOFIRUTEE[E

VL
.”_”13“_.:|n_+xu:

3 X ;
Iu__..!&ﬂmuf.ﬁ SR

(- T

(", e

1Y A i
—_—t——aT3),F 1
F-Cr

*xoadde dafIvafIap-(1),F
Cose(ty et se=Clage

saydues Fupen aafIRATIap
ay3 jo uojimmypxoiddy

wia] (1)@2 jo JusElEal]

wial Ip/TP jJOo Juamleai]

[ 85[0 Jo SUN[ILIOA[Y Y Squl



Fupiajy) usajey-
UofIFE]IEd IFIUT]-

k¥

aawnbs JEwa] ErETUTH-

ipaEn aq uwd
O ST ASTEREERE T F1 ]

(wufife [emjido 103
spoylsm Fupmoyrojy ayl

3., 1 11
(y M 4 o0+

(42 ) 80312 (3)

n 1. 1.1
(1) U A, 23+

_;+vn.¢ B0Ip={1)N

iaaw wapom TeulE ayl

suofisuny Jyltam ayl
218 alwl[oa pur JualIng-

IfUORIRH [EIUMEEPUNg =Wy
(3)7¥0 puw ® Yipa efedpedy 1ajinog-
(1)T¥s suoFIdung ysTEM- .
afRi(euy 1afanog 124y JTPH-

OTUOMINY WU U~
epei[euy 1apanog 724 TIng-
iapqreecd saw
suopizuny Iydiaa g3 103
@ayovoidde Bupmorioy syl

rarqiesod
saw saydwordde Bupmoyrojy syl

"ROpUTA
®IFp Yl Yiga ....w.nf-._l._.
uofizuny Jydjam w YIgAa

PaTIdrIre 8] [euife ayg

"HOpUTA EJEp

¥ uf paiwiBajuy puw uojidung
IYETaa juspuadap smy] w

yiga pagidyapom 87 eulie ayg

u._._uu.mi_rlnﬁ 803 =(1)T

¥
L o
a o i+ {$43 A)B0Ip=(I)n
ieaw eTapom [wulye Iyl
WO INToAUDY LT ETET LY

(eulife syl uy eJusucdmod Jsylg

*#uojienba oay

Y3 uFelqo 03 pajwnba
23w apye puwy Iydpa pue
2321 ay1 w01l Taupe pue
Ousod Bupdpdjipne ewiay
Suypuodeazzon ayp +I1+1y
_u_hI_ J.u Iﬂ_n:._..-ul:._" Ty
om3 Bugyed £q paujeaqo
21F 7] pUE Y 10] aafos
0] suofienba oml 3y

ip
TP+ (1) TE=(2)n
:uofienba

ay3 ojuf pa¥¥npd
21w e[apom [eullE ayl

(#43°A)8031=(2) 7
a:u.u:u-nubl....—__:
faaw slapom (wud]e ayl

ATuo DJuomIwy ISITH

uojiezpayidy

wopIwzjwildy oy

11 s5%[) jo sunpuoily g Aqu],



