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Abstract—Weather impacts are one of the main causes of distri-
bution outages. To devise strategies to mitigate weather impacts,
a fuzzy logic system for decision making is introduced. It allows
utility operators to achieve more precise outage predictions and
optimize real time operation and maintenance scheduling. A novel
approach for weather-driven risk framework is applied to process
the data and produce risk maps for better decision making. The
use of weather data in reducing fault location time, an impor-
tant performance improvement in outage management, is also
presented.

Index Terms—Analytical models, big data, fault location, fuzzy
systems, geographic information systems, meteorology, outage
management, power distribution, risk analysis, smart grids.

NOMENCLATURE

ATP Alternative Transient Program
ASOS Automated Surface Observing System
FL Fault Location
GIS Geographic Information System
GOES Geostationary Operational Environmental Satellite
GPS Global Positioning System
MF Membership functions
MLR Multiple linear regression
NOAA National Oceanic and Atmospheric Administration
NCEI National Centers for Environmental Information
NDFD National Digital Forecast Database
OM Outage Management
OMS Outage Management System
WFS Weather Fuzzy System.

I. INTRODUCTION

WEATHER impacts are the main causes of electrical
outages in the U.S. [1], [2]. Moreover, the incidence

and severity of weather conditions and major outages show
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TABLE I
DISADVANTAGES OF TRADITIONAL OM

a growing trend since 1992 [2], and they are projected
to increase in the future due to climate change [3]. For
instance, the number of outages grew by more than 12% from
2013 to 2014 [1]. The efficiency of OM represents a signifi-
cant factor in increasing the reliability of distribution systems.
Prospectively, higher demand for system reliability requires the
utility industry to improve the existing OMS. Traditionally,
utilities operate through manual exchange of data between
departments and their independent data sources in order to
identify the outage location and manage restoration. This
approach poses disadvantages shown in Table I. By leverag-
ing the properties of Big Data [4], there are opportunities to
perform improved data management and analysis for better
decision-making process.

Mitigating weather impacts to improve OM is a com-
plex task. To locate the weather-related outages precisely,
current utility OMS faces several challenges: (1) maintain-
ing up-to-date distribution model, (2) integrating databases to
receive and process multiple data sources, (3) predicting risks
associated with potential outages. In addition, the complex-
ity of distribution systems may prolong the time to locate
faults. The outage risk mapping techniques become critical
in reducing the search range for the maintenance crew in
locating faults. Without utilizing weather data or relying on
manual predictions only, the outage mapping results can be
unreliable.

References [5] and [6] evaluate states of power system and
analyze time varying factors to allocate resources and deter-
mine network reinforcement. References [7]–[9] propose the
flow chart of OM for large scale outages, such as hurricanes
and ice storms, and discuss estimated time for restoration and
crew management. References [10] and [11] discuss outage
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TABLE II
WEATHER DATA SERVICES AND SOURCES

prediction improvement and preparation for extreme weather
conditions. References [12]–[14] demonstrate development of
Weather Research and Forecasting (WRF) Model and pro-
pose spatial temporal statistical modeling for outage and
restoration predictions. References [15]–[19] analyze impacts
of different weather conditions on particular distribution net-
work components and related types of faults. References [20]
and [21] show GIS usage for OM including crew dispatch,
restoration process, software interfacing. The aforementioned
papers focus on different aspects of OM, but yet fail to
utilize both historical and close-to-real-time weather data,
and consequently derive the risk of weather impacts on
assets in a preventive fashion. To incorporate weather data,
utilities use commercial weather data and forecast service
vendors [22] but additional processing is needed to assess
the risk.

This paper presents a novel fuzzy logic approach for predic-
tive risk analysis utilizing both weather-related forecasts and
power system-related operational data to improve the decision
making processes of OMS. The benefit is an avoided cost in
operating and maintaining the systems.

The rest of this paper is organized as follows. Section II
describes the background. Section III demonstrates the
decision-making applications for risk framework of OM.
Section IV focuses on the historical weather data analy-
sis. Section V discusses risk utilization for OM. Section VI
contains the conclusion.

II. BACKGROUND

A. Risk Analysis Framework Formulation

The risk analysis framework [23], [24] for improving OM
may be defined as a stochastic process using

R = P[T] · P[C|T] · u(C) (1.a)

where R is associated risk index for each component of the
system, Hazard P[T] is a probability of a Threat T affecting
the system; P[C|T] is the vulnerability of the component or
the probability that Consequences C will happen if system is
under the impact of a Threat T, and u(C) is the utility (cost)
of the consequences.

In the OM processes, this framework is applied such that R
represents the overall estimate of expected risk associated with

Fig. 1. A typical weather forecasting process.

power outages, T represents an intensity of weather impact
that may cause an outage event, C represents an outage event.
Hazard P[T] represents a probability of a weather impact
with intensity T. In this work, Hazard is represented spatially
through the outage zone classifications where probability of
a weather associated threat is quantified in different areas.
Vulnerability P[C|T] represents the probability of an outage
under occurring weather conditions. Worth of Loss u(C) repre-
sents the financial loss utility is experiencing due to the outage
event. This study focuses on the Hazard and Vulnerability part
of the risk analysis, which comprises the following part of the
risk expression:

R = P[T] · P[C|T]. (1.b)

B. Weather Variables and Data

The measurements of weather variables and data collection
infrastructures have been particularly designed and gradually
improved for increasingly better operational weather forecasts
in the past decades. Not only localized observations (e.g.,
radar detection of tornados) but also large-scale weather pat-
terns are necessary for predicting the weather over a specific
small area, because the localized weather is closely linked
to meso-scale and planetary-scale dynamic meteorology pro-
cesses such as baroclinic instability and tropical cyclones [25].
Typical weather data used in OM is shown in Table II.

A typical weather forecasting process is shown in
Fig. 1 [26]. Firstly, the raw weather measurements are
collected. Then they are processed for weather predic-
tions. Data for utility use may come from: Step 1 orig-
inal data sources, Step 4 interpolated data, and Step 6
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Fig. 2. OM flowchart with big data analytics.

weather application products. For different applications, suit-
able sources are selected.

In general, there are two situations with weather impacts:
catastrophic (i.e., hurricanes) and extreme (i.e., seasonal
changes). The data used by utilities may be classified into two
categories according to the source [2]: field measurements that
come from the grid and weather data that comes from outside
sources (Fig. 2 input data). Our main focus is on the extreme
weather impacts and risk assessment of such impacts on the
operation of the power grid.

For specific types of weather events, the analytics require
the most relevant weather data input. For instance, the gust
speed may have a stronger relationship to damages rather than
average wind speed [12]. In this paper, we use wind speed
and gust speed as inputs to proposed WFS and create warning
system as a storm approaches.

III. PREDICTIVE RISK ANALYSIS FOR DISTRIBUTION

OUTAGE MANAGEMENT

A typical overall process of OM involving the utilization of
weather information is shown in Fig. 2. Firstly, the weather
data is collected, analyzed, and correlated with power outages,
providing utilities information to predict weather-related out-
ages and prepare for mitigating activities. Then, utilities will
receive outage information through customer calls (interac-
tive voice response platform) and smart meter data (advanced
metering infrastructure platform). With reported outage infor-
mation, utilities can perform outage mapping within GIS and
identify FL precisely. The crews then can be dispatched to
potential FL and then restore the power back if fault damages
are identified and repaired.

The key is the utilization of different data sources as high-
lighted in yellow color in Stage 1 Predictive Risk Analysis
in Fig. 2. In Sections IV and V, the application of historical
weather data analysis, automated WFS and GIS processing

tool will be discussed, which have a direct impact on the avail-
ability and precision of weather data, and defines the values
of Hazard P[T] and Vulnerability P[C|T]. In Section IV, the
weather hazards are calculated using historical weather data.
In general, climatologists would analyze historical weather
effects to a relatively large area (e.g., state of Texas), The
contributions on the weather historical data analysis in this
paper focus on the historical weather data analysis for a much
smaller area. For a utility, the analysis which only focuses on
their service area would be most beneficial.

In Section V, the weather information has been processed
using fuzzy logic model. The Hazard analysis results then are
analyzed using GIS toolbox to form a risk map as shown in
eq. 1.b. The risk study results are demonstrated as spatial clas-
sification maps of probabilities of power outages. How the
outage prediction results may be improved using risk analysis
is discussed, and the automated OM data analysis framework
is proposed.

FL is the critical component in OM. There are two cate-
gories of FL techniques [27]: outage mapping and distance
to fault calculation. Outage mapping is a group of techniques
that intend to narrow down the geographical area where the
fault occurs (e.g., GIS). Distance to fault calculation comprises
techniques that determine the precise location of the fault using
field measurements (e.g., impedance-based FL method). The
selection of precise FL algorithms is highly dependent on the
available data from Intelligent Electronic Device (IED). More
comprehensive literature survey regarding FL capabilities may
be found in [28].

Due to the sparseness of available weather data, it is not
always practical to utilize weather data as an input for precise
FL algorithms. Instead, the weather data may be used for
outage mapping, which in turn may reduce the execution
time of FL algorithms (Section V) by considering detailed
modeling, different types of faults, fault resistance estima-
tion process, and complexity and large scale of distribution
network [29].
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Fig. 3. The geospatial distribution of 4 extreme year summer rainfall data in
each grid cell of Harris County.

IV. HISTORICAL WEATHER DATA ANALYSIS

Since the early research in 1950s, numerical models have
been developed and improved for weather prediction. The
WRF is currently most widely used model for making regional
short-term weather forecasts. However, not only the short-
term (e.g., 2-day), but also the long-term (e.g., 1-month)
weather prediction can benefit OM. For instance, if a hotter-
than-average upcoming summer is predicted, one may expect
a higher demand for electricity and hence an increased pres-
sure on OM. Nino 3.4 represents the sea surface temperature
of a specific region: central and east-central of Equatorial
Pacific Ocean [30]. The anomaly of unusual warmer temper-
ature (positive Nino 3.4) is called El Nino, and the anomaly
of unusual colder temperature (negative Nino 3.4) is called
anti-El Nino (i.e., La Nina) [30]. El Nino events are often
associated with wetter-than-average precipitation conditions in
U.S. Golf Coast area, and anti-El Nino events are opposite.

Despite the richness of global meteorological measure-
ments, the weather data may be too sparse to provide the initial
and boundary conditions for doing numerical weather predic-
tions. Given the large amount of available weather data, the
key issue is how to interpret the most relevant input data from
the available data pool. In this study, we show the linkage
between Nino 3.4 and rainfall over Harris County of Texas
in a seasonal scale. According to 2010 census data from
U.S. Census Bureau, Harris County is the most populous
county in Texas as well as the third most populous county in
the U.S. This linkage gives an example of how predicting long-
term weather impacts using historical weather data in smaller
targeted geographical areas may be useful as an input to WFS
(Fig. 2 input historical weather data to WFS in Stage 1).

The historical long-term weather data, as an input to WFS,
contains useful information for OM. Figs. 3 and 4 show
the results of rainfall data analysis, where the sub-
figures (a) to (d) show the rainfall features in the summers
of 1919, 1973, 2011, and 1980, which are the two wettest and
two driest summers from the historical record, respectively.
Fig. 3 shows the geospatial distribution of summer rainfall
data in each grid cells of Harris County. Fig. 6 shows the
grid cell data in 3-D (longitude verses latitude verses rainfall
amount) using MLR analysis.

In Fig. 3, all 4 cases show a similar pattern where the pre-
cipitation amount decreases from the southeast (coastal area)

Fig. 4. 3-D data visualization of 4 years summer rainfall data in Harris
County with MLR.

Fig. 5. Summer rainfall data between 1894 and 2013 fitting in 4 Q-Q plots;
x-axes are synthetic data quantile of different distributions; y-axes labels are
real data quantile.

to northwest. Such a pattern can be viewed more clearly in
the 3-D visualization in Fig. 4 using MLR analysis. The lin-
ear relationship between longitude, latitude (i.e., explanatory
variables), and the rainfall data (i.e., response variable) is
modeled as:

rainfall = β0 + β1 · longitude + β2 · latitude (2)

where β0, β1, β2 are the regression coefficients. The model
corresponds to a regression plane in the 3-D space for
each case.

Fig. 5 shows the historical summer rainfall data between
1894 and 2013 fitting in 4 quantile-quantile plots, where the
x-axes represent synthetic data quantile of 4 different probabil-
ity distribution functions. The best fit is Gamma distribution,
in agreement with the results proposed in [31] that applies
Gamma distribution for rain-related models.

Fig. 6 shows percentage of prediction accuracy verses num-
ber of wettest or driest cases, where a prediction is regarded
as accurate if Nino 3.4 in the winter of the previous year is in
phase with the rainfall in the summer of this year. For instance,
the prediction accuracy for the 5 years having the top 5 rainfall
amounts is 60%. Fig. 7 (a) shows the time series of normalized
summer rainfall in Harris County and extended Nino 3.4 in
winter between 1894 and 2013. The extended Nino 3.4 data is
from [32], where for each year it is the mean of Dec. of this
year, and Jan. and Feb. of the next year. Fig. 7 (b) shows an
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Fig. 6. Percentage of accuracy verses number of wettest or driest cases;
x-axes representing the order of wettest/driest case.

Fig. 7. (a) Time series data of Nino 3.4 and rainfall. The negative rain-
fall represents the rainfall data below average. (b) Process to extract summer
rainfall data in Harris County area, Texas, U.S.

example of how to process and integrate weather data using
the summer rainfall data [33].

In summary, one may expect a higher frequency of the thun-
derstorm occurrence over the southeast of Harris County if
a wettest summer is predicted. If a utility is interested in
a distribution system located inside certain grid cells, spa-
tial data analysis can be further carried out for specific tasks.
The historical summer rainfall data having the best fit for

Fig. 8. Proposed WFS and GIS toolbox for data analysis framework.

Gamma Distribution shows that the most extreme rainfall
events—severest droughts and floods—occur least frequently.
Also, Nino 3.4-related effects on rainfall of U.S. southwest
grid plain have been well documented in the literature. The
correlation between Nino 3.4 and rainfall over Harris County
is not adequately strong. The main reason is the increased
randomness of rainfall in a smaller area. This indicates more
factors (i.e., other historical weather data) may need to be
considered such as Pacific Decadal Oscillation (PDO) and
Atlantic Multidecadal Oscillation (AMO) to improve predic-
tion accuracy.

V. NETWORK VULNERABILITY FOR OM

In this section, a data analysis framework is proposed
including weather data processing (using proposed WFS) and
geospatially correlated with power system data in a GIS plat-
form (using proposed ArcGIS toolbox) as shown in Fig. 8. For
practical purposes, the weather data for weather fuzzy system
should be online (updated periodically). In our example, we
show that by using historical weather data from two different
airports for demonstration purposes.

A. Hazard Analysis Using Weather Fuzzy System

There is a substantial financial impact of deploying crew
management in utilities. In this case, in the preparation for
outages, predicting which zone may have the highest impact
probability is critical for an operator. The WFS is used to iden-
tify the area where most likely the weather may have highest
impacts on the system, and then process the weather data using
fuzzy logic.

The WFS receives the real-time weather data along with
other additional information such as weather forecasts (e.g.,
severe weather alerts), weather hazard analysis from historical
weather data analysis, and outage predictions in a continu-
ous manner (all weather-related input). The outage prediction
information is like the satellite and radar image analysis. Then,
the WFS will identify the areas associated with the grid which
includes the integration and refreshing of various weather
data layers—having different data properties—into the target
area of interest at the location of the distribution network.

Typical components of a fuzzy logic decision-making
system are demonstrated in Fig. 8 (components from
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TABLE III
IMPACTS OF WEATHER VARIABLES ON DISTRIBUTION SYSTEMS

Fig. 2 Stage 1). Fuzzy logic can be understood as a superset
of traditional Boolean logic devised in order to handle partial
truth values (between completely true and false). Therefore,
fuzzy sets and fuzzy logic are used to heuristically quantify the
meaning of linguistic variables, values, and rules that are spec-
ified by an expert [34]. Some common impacts of different
weather factors on distribution system components are summa-
rized in Table III [15]–[19]. In general, the choice of weather
variable will depend on the localized nature of weather phe-
nomenon. The impact of weather variables on the assets will
determine the design of linguistic rules.

The impacts of wind speed on potential faults caused by
inadequate tree-trimming are demonstrated here. Concluded
from [35]–[37], the wind speed may have a more significant
impact at the boundary values of 39, 44, 49, and 64 knots,
and the gust speed may have more significant impacts at the
boundary values of 54 and 81 knots. Therefore, the output
warning class here is categorized into a 5-classes-15-levels
scale as shown below:

• Rare Tree-trimming Fault Alert: Class 1, Level 0-3
• Small Tree-trimming Fault Alert: Class 2, Level 3-6
• Medium Tree-trimming Fault Alert: Class 3, Level 6-9
• Large Tree-trimming Fault Alert: Class 4, Level 9-12
• Extreme Tree-trimming Fault Alert: Class 5, Level 12-15
Let x1(t) and x2(t) be the wind and gust speeds in unit knot

collected at time instant t, then the designed linguistic weather
rules are:

1. If 0 ≤ x1(t) < 39 Then Issue Warning = “Class 1”
2. If 39 ≤ x1(t) < 44 And 0 ≤ x2(t) < 54 Then Issue

Warning = “Class 2”
3. If 39 ≤ x1(t) < 44 And 54 ≤ x2(t) < 81 Then Issue

Warning = “Class 3”
4. If 39 ≤ x1(t) < 44 And 81 ≤ x2(t) Then Issue Warning

= “Class 4”
5. If 44 ≤ x1(t) < 49 And 0 ≤ x2(t) < 54 Then Issue

Warning = “Class 3”
6. If 44 ≤ x1(t) < 49 And 54 ≤ x2(t) < 81 Then Issue

Warning = “Class 4”
7. If 44 ≤ x1(t) < 49 And 81 ≤ x2(t) Then Issue Warning

= “Class 5”
8. If 49 ≤ x1(t) < 64 And 54 ≤ x2(t) < 81 Then Issue

Warning = “Class 4”
9. If 49 ≤ x1(t) < 64 And 81 ≤ x2(t) Then Issue Warning

= “Class 5”
10. If 64 ≤ x1(t) Then Issue Warning = “Class 5”

Fig. 9. Fuzzy system design: (a) MFs of input wind speed data; (b) MFs
of input gust speed data; (c) MFs of output warning level; (d) surface plot of
fuzzy system input-output relationship.

The designed MFs of wind and gust speed data (two inputs)
and warning level (one output), as well as surface plot of input-
output relationship are depicted in Fig. 9. In Fig. 9 (d), each
colored area represents one tree-trimming fault alert. For the
defuzzification, the centroid-of-area method is applied, which
returns the center of an area under the curve.

The 5-minute ASOS data [38] from 2 ASOS stations IAH
and HOU in Houston prior to landfall of Hurricane Ike [39]
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Fig. 10. Example of WFS system. (a) Input data: 5-minute ASOS data [28], wind and gust speed on Sep. 12-13, 2008; (b) output warning and class.

Fig. 11. (a) Predictions of outage zone classification; (b) Automated toolbox for correlating weather and power system data layers.

in 2008 are used. The effectiveness of the proposed WFS is
demonstrated in Fig. 10. Fig 10 (a) shows the time series of
wind and gust speed measured at the 2 stations from 20:55 to
01:25 central division time (CDT) on Sep. 12 to 13 as inputs,
and Fig. 10 (b) shows the corresponding output warning class
levels. As the hurricane approaches and become closer to
landfall, different warnings may be sent out to the operators.

For practical purposes, the weather data for WFS should
be available online (updated periodically). Regarding imple-
mentation, the challenges are the different spatiotemporal
resolutions for different types of weather data. Some weather
data may be made into a static map data layer and used
directly as input to GIS (wind data in GIS toolbox). If bet-
ter temporal resolutions are needed (e.g., hourly updates for
wind data), then the data itself may be used directly as inputs
to WFS.

In the real-time operations, WFS may provide search
sequence as inputs to FL algorithms. The key of WFS is the
fuzzy system that emulates the human decision making pro-
cess. While its distinct advantage is being computationally fast,
it is also suitable for decision making on a large scale where
the various data sets describe the weather conditions and the
states of power grid.

B. Vulnerability Analysis Using GIS

Fig. 11 (a) shows an example of risk R calculated for
a geographical map [40] using the hazard P[T] and vulnerabil-
ity P[C|T] analysis. The hazard part represents probability of
a harmful weather condition. The hazard P[T] is obtained from

analyzing the wind speed in the associated area. The area with
darker blue color represents higher wind speed. The vulner-
ability part represents probability of how the particular types
of asset may be impacted by a given weather condition. The
vulnerability P[C|T] is obtained from analyzing the impacts of
the wind speed on the tree lamb (Section V-A). The area with
darker green color represents taller canopy height. Then, the
risk R in each grid cell can be calculated from P[T] and
P[C|T]. It will represent a rank of the potential geographical
outage zone for dispatching purposes.

In general, GIS tools enable a user to work with raster and
vector data and provide functionality for geo-spatial process-
ing such as classification of grid data and perform logical and
relational operations [41]. An automated geospatial toolbox
(Fig. 11 (b)) in ArcGIS [42] is proposed so that the correlation
analysis may be done as an automated fashion. The proposed
ArcGIS toolbox enables a predictive geospatial analysis plat-
form to automate the routine tasks of correlating weather
and power system data. Such vulnerability analysis leads to
a prediction of risk map for OM on a continuing basis.

C. Improvement on Fault Location Algorithm Execution Time

Various uncertainties may exist in the FL results as afore-
mentioned in the introduction. In this subsection, we simulate
the cases running different FL scenarios and show how the
program running time for a particular FL algorithm may
be beneficial for WFS while narrowing down the outage
search areas.
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Fig. 12. Distribution network with labeled areas.

TABLE IV
INFORMATION OF THE OVERALL SYSTEM

TABLE V
FEEDER BRANCH LABELING FOR AREA DIFFERENTIATION

The execution time of a correct outage mapping case is
defined as the time the algorithm takes to search through the
nodes and lines within the given geographical area and locate
the fault. The execution time is analyzed through coupling
voltage sag based FL method and presumed outage mapping
accuracy [29]. A real distribution network with underground
lines is used (more details in [29]). The distribution model
is shown in Table IV [29]. For practical simulation purposes,
only one part of the whole network is chosen for this study as
shown in Fig. 12 [29]. The feeder branches are separated and
labeled individually as shown in Table V where 5625 experi-
ments are simulated. One experiment is defined as performing
one FL scenario. All experiments were simulated in ATP using
a desktop having six processors which are Intel Xeon CPU
W3670 operating at 3.20 GHz and installed memory (RAM)
12 GB. Each experiment is simulated under the fair condition
to obtain the most accurate execution time.

Fig. 13. (a) Histogram of execution time of all cases with 100% correct
outage mapping; (b) histogram of execution time of all cases with no outage
mapping; (c) expected time vs. probability of having correct outage mapping.

Fig. 14. Histogram of execution time of simulated cases, with uniform distri-
bution of: (a) 25% correct outage mapping; (b) 40% correct outage mapping;
(c) 55% correct outage mapping; (d) 75% correct outage mapping.

Fig. 13 (a) and (b) show the histograms of execution time
of simulated experiments with 100% correct and no outage
mapping, respectively. Fig. 13 (c) shows the expected exe-
cution time versus the probability of having correct outage
mapping. Fig. 14 (a) to (d) show 4 groups of outage map-
ping accuracy probabilities from a random sample process:
each sub-figure represents the histogram of execution time of
simulated experiments.

Comparing Fig. 13 (a) and (b), the bar shifts left essen-
tially indicating more cases have reduced execution times with
100% correct outage mapping. In Fig. 13 (c), the expected
execution time decreases as the probability of correct outage
mapping increases. In Fig. 14, while the percentage of correct
outage mapping increases from (a) to (d), the bar shifts toward
left, which is indicative of increased cases that have shorter
execution times.

VI. CONCLUSION

This paper presents a new approach to risk-based decision
making using weather impacts. Several contributions are made
in this paper:

• A novel approach to quantify the Hazard and
Vulnerability measures in the context of a weather-driven
risk framework for OM is proposed.
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• The historical weather data analytics in the cases of
extreme weather events are employed through the geospa-
tial techniques

• The proposed WFS and automated ArcGIS toolbox are
proven to be an efficient mechanism to integrate var-
ious weather data sources into utility decision-making
influenced by different weather conditions.

• The suggested framework may improve the OM pro-
cess by enabling the operator to be automatically
alerted when a severe weather condition is approach-
ing for more effective inspection, repair and restoration
decisions.
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