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Abstract—This paper introduces advanced pattern recognition
algorithm for classifying the transmission line faults, based on
combined use of neural network and fuzzy logic. The approach
utilizes self-organized, supervised Adaptive Resonance Theory
(ART) neural network with fuzzy decision rule applied on neural
network outputs to improve algorithm selectivity for a variety of
real events not necessarily anticipated during training. Tuning
of input signal preprocessing steps and enhanced supervised
learning are implemented, and their influence on the algorithm
classification capability is investigated. Simulation results show
improved algorithm recognition capabilities when compared to a
previous version of ART algorithm for each of the implemented
scenarios.

Index Terms—Adaptive resonance theory, clustering methods,
fuzzy logic, learning systems, neural networks, pattern classifica-
tion, power system faults, protective relaying, testing, training.

I. INTRODUCTION

THE issue of detecting and classifying the transmission line
faults based on three-phase voltage and current signals has

been known for a long time. It was addressed some time ago by
introducing the traditional relaying principles such as overcur-
rent, distance, under/over voltage, differential, etc. [1]. All of
these principles are based on predetermined network configu-
ration taking into account worst-case fault conditions. The set-
tings determined by the classical approach have inherent limi-
tations in classifying certain faults if the network actual config-
uration deviates from the anticipated one. In such instances, the
existing relays may miss operate [2]. Consequently, a more de-
pendable and secure relaying principle is needed for classifying
the faults under a variety of time-varying network configura-
tions and events.

The idea of using neural networks in protective relaying is
not new. Various applications of neural networks were used
in the past to improve some of the standard functions used in
protection of transmission lines. They have been related to fault
classification [3]–[9], fault direction discrimination [10]–[12],
fault section estimation [8], [13], [14], adaptive relaying [15],
[16], autoreclosing [17], [18], and fault diagnosis [19], [20].
The applications are mainly based on widely used Multilayer
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Perceptron (MLP) feed-forward networks [1]–[8], [11], [13],
[15], [17]–[19], [21], and in recent years on Radial Basis
Function (RBF) [5], [6], [9], [14], [22], Self-Organizing Maps
(SOM) [5], [16], [23], Learning Vector Quantization (LVQ) [5],
[23], Adaptive Resonance Theory (ART) [20], [24], Recurrent
[12], [25], Counterpropagation [5], [26], and Finite Impulse
Response neural networks [10], [27].

The new concept proposed in this paper is based on special
type of self-organized, competitive neural network, called
Adaptive Resonance Theory (ART), ideally suited for classi-
fying large, highly-dimensional and time-varying set of input
data [24], [28]. The new classification approach can reliably
conclude, in a rather short time, whether, where and which
type of the fault occurs under varying operating conditions
[29]. This type of neural network algorithm for relay protection
has already been used in its original form and with simpli-
fied assumptions about the network and operating conditions
[30]–[33]. This paper introduces several enhancements of the
mentioned original version of the algorithm [34]–[38]. They
include: a.) Improved preprocessing of neural network inputs
affecting the algorithm sensitivity; b.) Redefined concept of
supervised learning which now allows improved neural net-
work generalization capabilities; c.) Attuned fuzzy decision
rule allowing an interpolation of neural network outputs; d.)
Results of extensive solution evaluation, which cover a variety
of power system operating conditions and events. The new
version of the ART neural network algorithm is compared to
the original version using elaborate modeling and simulation
set up that represents a segment of an actual 345 kV network
from CenterPoint Energy in Houston.

The paper is organized as follows. Section II provides the de-
scription of the neural network algorithm. A new technique for
fuzzyfication of neural network outputs is introduced in Sec-
tion III. Proposed relaying solution based on pattern recogni-
tion is outlined in Section IV. Power system modeling and sim-
ulation, pattern generation, design of the ART neural network
based algorithm, as well as corresponding simulation results are
given in Section V. The conclusions are summarized in Sec-
tion VI. An elaborate list of relevant references is given at the
end.

II. NEURAL NETWORK ALGORITHM

A. The Adaptive Neural Network Structure

The ART neural network is a typical representative of com-
petitive networks. It tries to identify natural groupings of pat-
terns from large data set through clustering. Groups of sim-
ilar input patterns are allocated into clusters, defined as hyper-
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spheres in multidimensional space, where the length of input
pattern determines the space dimension. ART neural network
discovers the most representative positions of cluster centers
which represent pattern prototypes [24]. Similarly to SOM and
LVQ networks, the prototype positions are dynamically updated
during presentation of input patterns [23]. Contrary to SOM and
LVQ the initial number of clusters and cluster centers are not
specified in advance, but the clusters are allocated incremen-
tally.

A diagram of the complete procedure for neural network
training is shown in Fig. 1. The training consists of numerous
iterations of alternating unsupervised and supervised learning
stages [30]. The neural network firstly uses unsupervised
learning with unlabeled patterns to form fugitive clusters. The
category labels are then assigned to the clusters during the
supervised learning stage.

The tuning parameter, called threshold parameter, controls
the size and hence the number of generated clusters. It is being
consecutively decreased during iterations. If threshold param-
eter is high, many different patterns can then be incorporated
into one cluster. This leads to formation of a small number of
coarse clusters. If threshold parameter is low, only very similar
patterns activate the same cluster. This leads to creation of a
large number of fine clusters.

After training, the structure of prototypes solely depends on
density of input patterns. A category label that symbolizes a
group of clusters with a common symbolic characteristic is as-
signed to each cluster, meaning that each cluster belongs to one
of existing categories. The number of categories corresponds to
the desired number of neural network outputs, determined by
the given classification task.

B. Unsupervised Learning

The initial data set, containing all the patterns, is firstly pro-
cessed using unsupervised learning, realized as modified ISO-
DATA clustering algorithm [39], [40]. During this stage patterns
are presented without their category labels. Neither the initial
guess of the number of cluster nor their position is specified
in advance, but only a strong distance measure between cluster
prototypes needs to be defined. Unsupervised learning consists
of two steps: initialization and stabilization.

The initialization phase incrementally iterates all the patterns
and establishes initial cluster structure based on similarity be-
tween patterns. The entire pattern set is presented only once.
Training starts by forming the first cluster with only the first
input pattern assigned. New clusters are formed incrementally
whenever a new pattern, sufficiently dissimilar to all previously
presented patterns, appears. Otherwise, the pattern is allocated
into the cluster with the most similar patterns. The similarity is
measured by calculating the Euclidean distance between a pat-
tern and existing prototypes. This phase does not reiterate the
patterns, and although the clusters change their positions during
incremental presentation of the patterns, patterns already pre-
sented are not able to change clusters. Consequently, the output
is an initial set of unstable clusters, and stabilization phase is
needed to refine the number and positions of the clusters.

The stabilization phase is being reiterated numerous times
until the initial unstable cluster structure becomes stable and

Fig. 1. Neural network training using combined unsupervised and supervised
learning.

clusters retain all their patterns after single iteration. This en-
ables more consistent matching of input pattern density.

Unsupervised learning produces a set of stable clusters, in-
cluding homogenous clusters containing patterns of the iden-
tical category, and nonhomogenous clusters containing patterns
of two or more categories.

C. Supervised Learning

During supervised learning, the category label is associated
with each input pattern allowing identification and separation
of homogenous and nonhomogenous clusters. Category labels
are assigned to the homogeneous clusters. They are being
added to the memory containing categorized clusters, including
their characteristics like prototype position, size, and category.
The patterns from homogeneous clusters are removed from
further unsupervised-supervised learning iterations. The set
of remaining patterns, present in nonhomogenous clusters, is
transformed into new, reduced input data set and used in next
iteration. The convergence of learning process is efficiently
controlled by threshold parameter. This parameter is slightly
decreased in each algorithm iteration. The learning is completed
when all the patterns are grouped into homogeneous clusters.

An interesting phenomenon has been observed during super-
vised learning stage. Whenever clusters allocated to different
categories mutually overlap, certain number of their patterns
may fall in overlapping regions. In the previous ART version

, although each of such patterns has been nominally as-
signed to the nearest cluster, their presence in clusters of other
category leads to questionable validity of those clusters. One
typical example of a small set of two-dimensional training pat-
terns and obtained clusters is given in Fig. 2. The training pat-
terns that belong to different categories are noted with different
symbols. Many of the patterns are at the same time members of
two or more clusters with different categories. The clusters are
shown with different colors depending on their category. The
ambiguity can be resolved by introducing restricted condition
for identification of homogeneous clusters.

The improved algorithm revises supervised learning
by requiring the homogeneous cluster to encompass patterns of
exactly one category. Both subsets of patterns, one assigned to
the cluster, and other encompassed by the cluster but assigned
to other cluster, will be taken into account during supervised
learning. Consequently, allows overlapping between the
clusters of different categories only if there are no patterns in
the overlapping regions. For the same set of training patterns,

produces finer graining of cluster structure, noticeable in
Fig. 2.
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Fig. 2. Comparison of cluster structures generated by ART and ART .

D. Training Demo

The transformation of input patterns into clusters during un-
supervised and supervised learning procedures is demonstrated
using a Training Demo. The Demo is applied on a simplified
real problem, but with retention of all its main characteristics.
Simplification is based on reduced number of training patterns,
which belong to only three categories. The pattern length is se-
lected to be only two allowing pattern and cluster representation
in two dimensional graph. Training patterns, shown in Fig. 3, are
generated by simulating three types of ground faults, combined
with six values of fault distance, three values of fault impedance
and fifteen values of fault inception angle. Total number of pre-
sented patterns is . Patterns are built by
using one sample per phase of two-phase currents, few sampling
time steps after fault has occurred. Different symbols are used
for showing patterns corresponding to various types of the fault.

After numerous unsupervised-supervised learning iterations,
the final structure of homogeneous clusters and their prototypes
is generated as shown in Fig. 4. The clusters have different
size, location, and category. During implementation of a trained
neural network, the cluster structure is used as an initial abstrac-
tion tool for facilitating classification of new patterns.

E. Implementation

During implementation or testing, new patterns are classified
according to their similarity to the pattern prototypes generated
during training. The classification is performed by interpreting
the outputs of a trained neural network through K-Nearest
Neighbor (K-NN) classifier [41]. The K-NN classifier deter-
mines the category of a new pattern based on the majority
of categories represented in a pre-specified small number of
nearest clusters retrieved from the cluster structure established
during training. It requires only the number that determines
how many neighbors have to be taken into account. K-NN
classifier seems to be very straightforward and is efficiently
employed since the number of prototypes is significantly
smaller then the number of training patterns.

III. FUZZYFICATION OF NEURAL NETWORK OUTPUTS

A. The Necessity for Applying Fuzzy Logic

The main advantage of the K-NN classifier is its computa-
tional simplicity. Substantial disadvantage is that each of the
clusters in the neighborhood is considered equally important in

Fig. 3. Training Demo: set of labeled training patterns.

Fig. 4. Training Demo: final outcome of consecutive unsupervised-supervised
learning stages.

determining the category of the pattern being classified, regard-
less of their size and distances to the pattern. Using such clas-
sifier, smooth and reliable boundaries between the categories
cannot be established.

An unambiguous situation exists whenever a new pattern is
very close to only one of the prototypes and intuitively has to be
classified to the category of that prototype. One such example is
shown in Fig. 5. A small portion of a previously obtained cluster
structure (in Fig. 4) is enlarged. In reality the events are quite
diverse. The corresponding patterns might appear in unlabeled
space between the clusters or in their overlapping regions, and
be more or less similar to several prototypes located nearby, and
possibly labeled with different categories.

Obviously, K-Nearest Neighbor classifier used in the past
needs to be improved to achieve better generalization of the pat-
terns that correspond to a new set of events, previously unseen
during training, and conceivably dissimilar to any of the existing
prototypes. The classification of a new pattern may be redefined
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Fig. 5. Test pattern and the nearest clusters with different category label,
radius, and distance to the pattern.

not only to be a simple function of categories of nearest clus-
ters, but a complex function composed of their category, size,
and distance to the pattern. A new approach can be proposed by
introducing the theory of fuzzy sets into the classifier concept
to develop its fuzzy version [42]. New classifier is supposed to
provide more realistic classification of new patterns.

B. Crisp K-Nearest Neighbor Classifier

Given a set of categorized clusters, crisp or nonfuzzy K-NN
classifier determines the category of a new pattern based only
on the categories of the nearest clusters

(1)

where is prototype of cluster is membership de-
gree of cluster belonging to category is membership
degree of pattern belonging to category .

; where , and are the number of
patterns, nearest neighbors, and categories, respectively. Given
classifier allows having only crisp values 0 or 1, de-
pending on whether or not cluster belongs to category

(2)

If two or more nearest clusters have the same category, then
they add membership degree to the cumulative membership de-
gree of that category. Finally, when contributions of all neigh-
bors are encountered, the most representative category is as-
signed to the pattern

(3)

where is category assigned to pattern .

C. The Effect of Weighted Distances

Initial enhancement of K-NN classifier is the introduction of
weighted contribution of each of the neighbors according to
their distance to a pattern, giving greater weight to the closer
neighbors. The distance is generally selected to be the
weighted Euclidean distance between pattern and prototype

(4)

where the parameter is fuzzyfication variable and de-
termines how heavily the distance is weighted when calculating
each neighbors’ contribution to the pattern category member-
ship. For choice of , calculated distance is identical to
Euclidean distance. Moreover, as increases toward infinity,
the term approaches one regardless of the
distance, and neighbors are more evenly weighted. However, as

decreases toward one, the closer neighbors are weighted more
heavily than those further away. If , the algorithm will be-
have like crisp K-NN classifier for .

D. The Effect of Cluster Size

Next improvement of K-NN classifier is to insert fuzzy mem-
bership degree as a measure of a cluster belonging to its own
category. There is no meaningful reason why membership value

must retain only crisp value. We propose an extension
of a crisp K-NN by considering size of generated clusters in an
original way [36]. Since each cluster belongs exactly to one of
the categories, membership value may be redefined to
reflect the relative size of the actual cluster

(5)

where is the membership degree of cluster belonging
to category , and is selected to be proportional to the radius
of cluster . The outcome is that the larger neighbors would
contribute more than the smaller ones.

E. Fuzzy K-Nearest Neighbor Classifier

The extensions proposed in (4) and (5) can now be used to
define Fuzzy K-NN that generalizes crisp K-NN given in (1).
A new pattern has to be classified based on the categories of
nearest clusters, their relative size and weighted distances to the
pattern. The Fuzzy K-NN classifier calculates, using superposi-
tion, a set of membership values of input pattern be-
longing to all categories present in the nearest clusters based
on the following formula

(6)

where is given in (5). The pattern is assigned to the
category with the highest membership degree according to (3).
The denominator of (6) uses to allow all neighbors to
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Fig. 6. Fuzzyfication Demo: Fuzzy K-Nearest Neighbor classifier with
contribution of cluster size and weighted distance included.

normalize total membership value, which must be equal to one.
For , both Fuzzy and crisp K-NN become identical.

The idea of fuzzyification of neural network outputs, by their
interpretation through fuzzy decision rule, is an advanced con-
cept that classifies new patterns according to weighted contribu-
tion of few similar prototypes. Playing with parameters and

, and selecting the best pair of values for a particular imple-
mentation can attain adaptive behavior of the classifier. Fuzzy
classifier with properly tuned parameters may result in very pre-
cise category decision boundaries and will improve generaliza-
tion capabilities accordingly.

F. Fuzzyfication Demo

Fuzzy membership degree, introduced for clusters obtained
by the Training Demo, is given in Fig. 6. The clusters are shown
in their original two-dimensional space, while their impact mod-
eled through membership function is represented in a third di-
mension. Merged effects of cluster’s size and distances to the
points in a pattern space are shown for and .

Fig. 7 shows the decision regions between the categories ob-
tained by superposition of cluster’s membership functions. The
solution for and is presented. As expected,
cluster’s impact is substantial in their proximity, having bigger
clusters broadly involved in creating decision boundaries, while
smaller clusters react only in a narrow area nearby.

IV. PROPOSED RELAYING SOLUTION

A functional block diagram of a proposed protective relaying
solution, based on combined neural network/fuzzy logic ap-
proach, is given in Fig. 8.

Transmission line current and voltage signals at relay loca-
tion are measured with instrument transformers and converted
into lower signal levels. Attenuated signals are filtered with low-
pass analog filter to remove noise and higher frequency compo-
nents, according to the sampling theorem requirement. Signals

Fig. 7. Fuzzyfication Demo: Category decision regions established by Fuzzy
K-Nearest Neighbor classifier.

Fig. 8. Proposed solution for protective relaying based on neural network and
fuzzy logic.

are sampled with specified sampling frequency, and samples are
extracted in a dynamic data window, normalized and scaled. Fi-
nally pattern is constructed, and used for either neural network
training and testing or implementation.

The training of neural network can be performed either
using measurement data directly taken from the process or
accessing historical record of fault and disturbance cases. Since
interesting cases do not happen frequently, sufficient data are
provided using simulation of relevant power system scenarios.
The main function assigned to the relay is detection of the fault
and classification of the fault type. Supplemental function is
the recognition of the transmission line faulted section.

Illustration of all the steps of mapping the input space into
the decision region categories is shown in Fig. 9. Using unsuper-
vised/supervised learning, the space of training patterns is trans-
ferred into an initial abstraction level containing set of clusters
with corresponding prototypes, sizes and categories. Moreover,
the clusters are fuzzyfied and transformed into an intermediate
abstraction level. Final abstraction level is attained when, using
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Fig. 9. Mapping of the pattern space into category decision regions using
unsupervised and supervised learning, fuzzyfication and defuzzyfication.

defuzzification, category decision regions with smooth bound-
aries are established.

During real-time (on-line) implementation, the trained neural
network possesses generalization ability and is expected to suc-
cessfully classify new patterns that have not been presented
during the training process. If a new pattern is classified to the
category of unfaulted state then the input data window is shifted
for one sample, pattern vector is updated and the comparison is
performed again until fault is detected and classified. Depending
on the recognized event and selected logic, circuit breaker either
trips the faulted phase(s) within proposed time period, or stays
unaffected.

V. MODEL IMPLEMENTATION AND SIMULATION RESULTS

A. Power Network Model

A model of an actual 345 kV power system section shown in
Fig. 10, with data obtained from CenterPoint Energy, was devel-
oped for relay testing and simulation studies [37]. The network
model is unique since it has the configuration that can exercise
many normal as well as fault conditions that are rather difficult
for the traditional relaying to deal with. The reduced network
equivalent was obtained by using calculations based on load
flow and short circuit data. The model was verified using both
steady state and faults using recordings captured during actual
events in the system. The STP-SKY transmission line is of par-
ticular interest. Transients obtained at the bus SKY were utilized
for performing protective algorithm design and evaluation.

B. Simulation of Training and Test Cases

Alternate Transient Program (ATP) is used for detailed mod-
eling of power network and simulation of electromagnetic tran-
sients [43]. Setting procedure for the network simulation sce-
narios and relaying algorithm parameters is implemented in the
MATLAB software package, which is interfaced with the net-
work model implemented in ATP [44].

Simulation of transmission faults depends on four main fault
parameters. Combining these values, diversity of fault events is
created as follows:

• Fault type: all eleven types of fault and no-fault state;

Fig. 10. CenterPoint Energy STP-SKY power network model.

• Fault distance: from 5 up to 95% of the line length, in
increments of 10%;

• Fault resistance for ground faults: 3, 11, and 19 ;
• Fault angle: from 0 up to 336 , in increments of 24 .

Total number of patterns in the training set, obtained by com-
bining all the selected parameters, is 3315.

Test scenarios are selected to be statistically independent
from the training scenarios. Fault parameters used for genera-
tion of test scenarios are randomly selected from an uniform
distribution of: fault type, fault distance between 0 and 100%
of the line length, fault angle between 0 and 360 , and normal
distribution of fault resistance, with mean 0 and standard
deviation 10 , taking into account only positive values. There
are four sets of test cases:

• Nominal system—5000 patterns;
• Weak infeed in the network, due to disconnected sources

E1 and E9—5000 patterns;
• Off-nominal voltage source E1 with phase angle shift of

—5000 patterns;
• Off-nominal system frequency of 59 Hz—5000 patterns.

Another set of scenarios, statistically independent from test
scenarios, is used to tune the parameters of the fuzzy classifier.
Total number of patterns in that set is 4000.

C. Pre-Processing of the Training and Test Patterns

Quantities selected for forming the patterns are either three
phase currents, or three phase voltages, or both three phase cur-
rents and voltages. The antialiasing filter is the second order
low-pass Butterworth filters with the cut-off frequency equal
a half of the selected sampling frequency. Sampling frequen-
cies of 1.92 kHz (32 samples/cycle) and 3.84 kHz (64 sam-
ples/cycle), and dynamic data windows of 8.33 ms (half cycle)
and 16.67 ms (one cycle) are implemented. The patterns are nor-
malized by scaling their features to have zero mean, and be in
the range . Identical scaling ratio is used later on for nor-
malization of test patterns. Whenever patterns with both current
and voltage samples are involved, additional heuristic rescaling
of only the current portion of the patterns is performed several
times for each individual training case until the best scaling ratio
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TABLE I
SUMMARY OF ART AND ART TEST RESULTS FOR

NOMINAL POWER SYSTEM

offering lowest predictive error is discovered and subsequently
adopted.

D. Simulation Results

Two versions of neural network algorithms, and
are evaluated. is a version that has simplified supervised
learning and nonfuzzy classifier. is with improved super-
vised learning and fuzzy classifier. Table I provides summary
of and training and test results for nominal power
system.

Patterns are generated using different measurement quan-
tities, sampling frequencies and data windows. Classification
tasks are aimed at recognition of fault type or both fault type
and section. Boundary distance between the first and second
protection zone is set to be 80% of the line length. The number
of pattern prototypes, classifier parameters and classification
error for nominal system are given for each training case.
Moreover, the time required for training of each neural network
configuration on a Pentium 4 PC with CPU 2.4 GHz and RAM
512 Mb is shown as well.

First observation is related to the classification error of
for nominal system with respect to varying data window and
sampling frequency. provides very good classification of
fault type since errors are zero or almost zero in all cases. For
fault type and section classification, error is obviously lower
with longer data window and especially with higher sampling
frequency. Comparing to required longer training
time and produces more prototypes due to stronger condition for
supervised learning, which generally accepts lower number of
clusters per single iteration. For fault type and section classifica-
tion, the number of prototypes is few times higher than for fault
type classification case because proper classification of faults
around the boundary between the transmission line sections re-
quires many small, fine-grained clusters.

The comparison of the classification error of and
for different type of measurements is given in Fig. 11.

Fig. 11. Classification error versus pattern type, algorithm and classification
task.

Results show the advantage of comparing to .
Generally, patterns based only on the voltage samples are not
sufficient for successful classification. algorithm with
patterns based on combination of currents and voltages guaran-
tees very low classification error for both classification tasks.

Fig. 12 shows comparative evaluation of and
for faults during nominal operating conditions, weak infeed,
voltage source variation and system frequency variation.
classifies fault type almost perfectly for all nominal and off-
nominal network conditions, and comparing to , extra-
ordinary improvements have been observed. Repeatedly,
is in some degree better than for all network conditions,
reducing the classification error to 16–35% interval.

A summary of the results can be provided through several re-
marks. Classification of fault type and section has been far more
difficult task than classifying only the fault type. has
better recognition capabilities than for all anticipated sce-
narios. Therefore, with the fuzzy classifier and improved
supervised learning provides remarkable recognition capabili-
ties, and is very robust for off-nominal network operating con-
ditions. The classification results are satisfactory for all values
of sampling frequency and data window, which correspond to
typical values used in protective relaying.
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Fig. 12. Classification error versus algorithm for faults in the nominal system
and system with frequency deviation.

VI. CONCLUSION

This paper has introduced an advanced transmission line pro-
tection algorithm with several important improvements when
compared to the previous solution:

• Optimized input signal preprocessing steps enable better
selection of the most representative set of input signals

• Redefined supervised learning allows improved cluster
generation;

• Fuzzy approach provides an interpolation technique for in-
terpreting neural network outputs and is robust for untyp-
ical and noisy inputs;

• Extensive sets of training and test patterns have been uti-
lized, by simulating appropriate power network model and
a variety of fault and disturbance scenarios;

• Combined use of neural and fuzzy techniques in the same
algorithm leads to complex reasoning that improves the
event classification ability;

• Simulation results show superior behavior of the novel
algorithm when compared to the original al-

gorithm.
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