
Electric Power Systems Research 71 (2004) 169–177

Locating faults in the transmission network using sparse field
measurements, simulation data and genetic algorithm

Shanshan Luoa, Mladen Kezunovicb,∗, Don R. Sevickc

a Shanghai Tengen Future Electric Automation Co., Shanghai, PR China
b Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3128, USA

c CenterPoint Energy, Houston, TX, USA

Received 4 December 2003; accepted 28 January 2004

Abstract

The paper presents a modeling and simulation approach to locate a fault in a transmission network. The basic concept is to match
phasors recorded during fault with the corresponding phasors obtained by simulating the same fault. For the simulation, it is necessary
to assume a fault location in a power system model, and then carry out short circuit study. The matching degree can be calculated by a
pre-set criterion. The operation is repeated till the best match is found. The process of finding the best match is an optimization problem,
therefore, the genetic algorithm (GA) is introduced to find the optimal solution. The proposed approach is suitable for situations where only
sparsely recorded field data is available. Under such circumstances, the proposed approach can offer more accurate results than other known
techniques.
© 2004 Published by Elsevier B.V.
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1. Introduction

The fault location in the transmission network is an impor-
tant issue since identifying an accurate fault location can fa-
cilitate repairing the damage and restoring the transmission
line rapidly. If a fault location cannot be identified quickly
and this makes prolonged transmission line outage during a
period of peak load, severe economic losses may occur and
reliability of service may be questioned.

A lot of efforts were spent on the topic and several solu-
tions were proposed in the literature. In Refs.[1,2], expert
systems utilize both the binary quantities (relay and breaker
status) and analog quantities (voltage and current measure-
ments) to locate a fault. Various one-, two-, or three-end
algorithms utilizing voltages and currents for estimating
the fault location have been proposed[3–8]. In order to
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obtain a more accurate result, the use of global positioning
system (GPS) of satellites was introduced for performing
synchronized data sampling[9]. In Ref. [10], fault loca-
tion is based on the measurement of the fault-generated
traveling wave component. The mentioned methods are
applied successfully in many transmission network fault
scenarios.

These applications have a common requirement: the mea-
surement must be obtained from one or both ends of a faulted
line. In some systems, only sparsely recorded data at lim-
ited substation locations are available. When a fault occurs
in such systems, only a few (two or three) recording devices
are triggered. The most likely case is that the measurements
could not be obtained at either or both ends of the faulted
transmission line. Under this situation, the mentioned meth-
ods could not be applied correctly.

The proposed method gives a solution even when only
the sparse measurements are available. The first part de-
scribes the basic concept of the proposed method, the second
presents the genetic algorithm application, the third shows
details of implementation, and the last gives several typical
fault cases and results.
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2. Fault location approach

2.1. Sparse data case

In the paper, sparse data means the data obtained from
recording devices sparsely located at substations in a power
system network. Examples of recording devices may include
digital fault recorders (DFR), digital relays, or other intelli-
gent electronic devices (IED).

Fig. 1 illustrates the sparse data case. The system rep-
resents a part of the 138 kV CenterPoint Energy transmis-
sion system. While the system part has a total of 19 buses,
DFRs are installed at three buses only. Clearly, the system is
sparsely monitored. When a fault occurs on the line between
buses 11 and 12, the DFRs located at bus 1, 3, or 16 may
be triggered to record specified quantities during that fault.
In certain cases, some of the DFRs at bus 1, 3, 16 may not
be triggered. Then, even fewer measurements will become
available for locating the fault. The data obtained in these
cases may be designated as “sparse data”. The fault may be
several buses away from DFR locations. Therefore, none of
the common algorithms, such as one-, two-, or three-end is
applicable for locating the faults. To solve this problem, a
phasor matching approach is proposed as follows.

2.1.1. Phasor matching
In the phasor matching approach, the model of the power

system is utilized to carry out simulation studies. The match-
ing is made between the voltage or current phasors obtained
by recording devices and those generated in the correspond-
ing simulation studies. The fault location is placed in the
system model and simulations are carried out in an itera-
tive way. First, an initial fault location is assumed and the
simulation study is set up according to the specified fault lo-
cation conditions. Next, the simulation study corresponding
to the specified fault is carried out and simulated phasors of

Fig. 1. The sample system for illustrating data sparsity.

the signals of interest are obtained. Then, the simulated pha-
sors are compared with the recorded ones, and the match-
ing degree between the simulated and recorded phasors is
evaluated by using an appropriate criterion. The initial fault
location is modified and the above steps are iterated until
the best match between simulated and recorded phasors is
produced. The fault location is then determined as the one
specified in the simulation study generating the simulated
phasors that best match the recorded ones.

2.1.2. Degree of matching
To evaluate the matching degree of the simulated and

recorded waveforms, phasors are used. To perform the pha-
sor matching, short circuit model of the system is needed.
Short circuit studies can usually directly generate simula-
tion results in the phasor format. To extract phasors from
the recorded fault transients, appropriate signal processing
technique needs to be applied. Fourier transform may be
used for this purpose[11]. For this study, CenterPoint En-
ergy provided the short circuit model in PSS/E[12].

In order to determine the matching degree between the
simulated and recorded phasors and find out the best match,
a criterion for determining the matching degree is necessary.
First, the variables should be determined. When posing a
fault in PSS/E, a fault location, and fault resistance should be
specified. The matching degree can be formulated as follows:

fc(x, Rf ) =
Nv∑
k=1

{rkv|V̇ks − V̇kr|} +
Ni∑

k=1

{rki |İks − İkr|} (1)

or

fc(x, Rf ) =
Nv∑
k=1

{rkv||V̇ks| − |V̇kr||} +
Ni∑

k=1

{rki ||İks| − |İkr||}

(2)

wherefc(x, Rf ) is the defined cost function using either both
the phasor angle and magnitude or the magnitude only for
matching,x the fault location,Rf the fault resistance,rkv
and rki the weights for the errors of the voltages and cur-
rents, respectively,Vks andVkr the during-fault voltage pha-
sors obtained from the short circuit simulation studies and
recorded phasors, respectively,Iks and Ikr the during-fault
current phasors obtained from the short circuit studies and
recorded phasors, respectively,k the index of the voltage or
current phasors match, andNv andNi the total number of
voltage and current phasors to be matched.

The cost functionfc(x, Rf ) theoretically equals to zero
when the phasors obtained from a simulation study exactly
match those obtained from the field recordings. Therefore,
the best fault location estimate would be the one that mini-
mizes the cost function. An appropriate optimization needs
to be selected to solve the problem of finding a minimum.
Formula (1) and (2) can be converted into the problem of
finding a maximum

ff (x, Rf ) = −fc(x, Rf ) (3)
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Fig. 2. The fitness surface for an A–G fault.

whereff (x, Rf ) represents the fitness function using phasor
magnitude for matching.

2.2. Properties of the fitness function

To investigate the nature of the fitness function, various
simulation studies have been carried out to obtain fitness
value using the sample power system shown inFig. 1. The
fitness value is obtained by specifying the fault location and
varying fault resistance on each line throughout the system,
and then running the simulations and applying formulae (2)
and (3). When posing faults, the fault location was changed
in the steps of 4 miles and fault resistance in the steps of
0.02 pu. For each fault location and fault resistance, a cor-
responding fitness value was obtained. To select fault loca-
tions, a search sequence for all transmission lines in the sys-
tem had to be defined. If the recorded data are only available
at bus 1, the fitness value versus the fault location and fault
resistance for this specific fault is depicted inFig. 2. The
maximum fitness value occurs at point (312.7, 0.1), which
is the optimal solution for the phase A to ground fault.

As it may be noted fromFig. 2, the surface is not reg-
ular since it contains some local maxima and saddles. The
research shows that the genetic algorithm (GA)-based op-
timization approach is good at finding the globally optimal
solution while avoiding the local optima and it is more ro-
bust than the conventional optimization methods. The GA
is selected as a tool for finding the global optimum in our
study[13].

3. Genetic algorithm application

3.1. The genetic algorithm solution

Genetic algorithms were initially developed using binary
strings to encode parameters of an optimization problem.
Binary encoding is a standard GA representation that can

be employed for many problems: a string of bits can encode
integers, real values, sets or whatever is appropriate. For
our case, the binary encoding representation is selected. The
variables we use are the fault location and fault resistance.

Encoding is used to map the parameters of an optimization
problem into a binary string of lengthl. Suppose the variable
x (xmin ≤ x ≤ xmax) is a decimal value that is a positive
non-integer number) and it is to be represented by a binary
string of lengthl. The encoded valuex for the variable will
be

xb =
[

round

(
(x − xmin)(2l − 1)

xmax − xmin

)]
b

(4)

where the value identified by round( ) gives the nearest in-
teger of the argument,xb and [ ]b represents binary number.

Decoding is used to convert the binary string into a mean-
ingful decimal parameter employed in the GA. The decod-
ing process is given by

x = xmax − xmin

2l − 1
xb + xmin (5)

Based on above formulae, fault location and fault resis-
tance should be known in advance. For the fault location,
the upper limit is determined as the sum of all the candidate
lines.

3.2. Fitness scaling

In order to speed up the search and convergence, a small
population is used. This may result in converging prematu-
raly or losing the diversity. To overcome this, fitness scall-
ing is introduced[13]. So-called fitness scaling is actually
a linear scaling. Let us define the raw fitness functionf

(obtained from (2)) and the scaled onef ′. The relationship
betweenf andf ′ is as follows:

f ′ = af + b (6)

where

a = (Cmult − 1)favg

fmax − favg
(7)

b = fmax − Cmultfavg

fmax − favg
favg (8)

whereCmult is the number of expected copies desired for
the best population member,favg an average of the fitness
values for a specific generation, andfmax the maximum of
all fiteness values for a specific generation.

3.3. Mapping the objective function into the fitness function

In formula (3), the fitness function is a negative value.
This character does not meet the GA requirement[13]. In
GA, a fitness function must be a non-negative figure of merit
[13]. It is necessary to map the function to a desired fitness
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Fig. 3. Maximum fitness value for the resistance range 0–0.8.

function form through one or more mappings, which then
meets the requirement of GA.

The following cost-to-fitness transformation is used

f(x) = Cmax − fc(x, Rf ) (9)

whereCmax is the maximumfc(x, Rf ) value in the current
population, andfc(x, Rf ) has the same meaning as the one
in the formula (3).

3.4. Updating the population

There are several approaches for updating the population.
The most utilized approaches known are the general and
steady state. For the general approach, the population is
replaced by offspring created by reproduction, cross-over
and mutation. When creating new population by GA process,
the best chromosome might be lost since the selection of
chromosome is more or less done at random. Elitism is the
name of the method, which first copies the best chromosome
(or a few best chromosomes) to new population for further
evolution. Elitism can very rapidly increase performance of
GA, because it prevents losing the best-found solution.

For our case, this approach is utilized. The best individual
in the population pool is generally retained (these individuals
are elitists). In this case, individuals can only be recombined
with those from the same generation.

For some cases, the elitists are almost unchanged through-
out the iterations. In order to enlarge the search region, some
strategies such as using the multi-point cross-over to replace
the simple cross-over, and adopting variable mutation pos-
sibility may be used as described next.
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Fig. 4. Average fitness value for the resistance range 0–0.8.

3.5. Convergence

It has been observed that GA-based FL software does not
always converge to the same solution when number of gen-
eration is set as the criterion to stop iteration. In some cases,
differences may be significant. Several alternative methods
are investigated in an attempt to obtain further improve-
ments. Only two of them are listed as follows.

3.5.1. Using maximum fitness value as the iteration stop
criterion

Maximum fitness value refers to the maximum of all
population’s fitness values within a specific generation. In
order to observe the changing regularity of the maximum
fitness value, some cases were tested.Fig. 3 shows one ex-
ample in which the maximum fitness value varies with the
iteration and may remain the same within many generations.
The tendency of hill climbing is visible.Note: The fitness
value inFig. 3 corresponds to the one listed in formula (3).
When the maximum fitness value approaches a specified
threshold, GA iteration is stopped. Therefore, using maxi-
mum fitness value as a stop criterion may be a choice. How-
ever, sometimes it is difficult to determine the threshold.

3.5.2. Using average fitness value as the iteration stop
criterion

Average fitness value refers to the average of all
populations’ fitness values among a specific generation.
Fig. 4shows that average fitness value gradually approaches
the maximum fitness value with the number of iterations
increasing.Note:The fitness value here corresponds to for-
mula (9). This property can be utilized. When the relative
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error between the average fitness value and the maximum
meet a specific threshold or a relative ratio of maximum
fitness value to average fitness value, the iteration stops.

According to the above analysis, the second criterion
is suggested. It may require longer computation time than
when only using a fixed generation number as the stop
criterion. An alternative is to limit the search range using
other information and then continue by using GA optimal
method to find out exact final solution. For example, using
the post-fault breaker status or SOE records as well as the
oscillography produced by protection relays located in dif-
ferent substations, one can estimate the fault location.

4. Implementation

4.1. Architecture of fault location software

The overall architecture of the fault location solution is
shown inFig. 5. Two commercial software packages, rep-
resented by dotted lines inFig. 5, are utilized. One is DFR
Assistant[14]. It analyzes field-recorded fault waveforms
as well as relay breaker and communication channel status
based on an expert system. It also converts the DFR raw data
into COMTRADE format[15]. DFR Assistant can generate
an analysis report including identification of the fault type
and a suspected faulted line. Another is PTI Power System
Simulator (PSS/E)[12]. It can calculate the power flow and
carry out the short circuit study. The main modules of the
software are discussed next.

4.2. Data requirement

The data requirement includes: static power system
model, fault data, substation interpretation data, and fault
information entered by the user.

The static system model refers to the saved data case of
PSS/E. It should contain the power flow raw data, sequence
impedance data, and system topology. The model only re-
flects a specific system operating condition.

Fault data refers to the data captured by digital fault
recorders (DFRs) and data file should be in the COMTRADE
format since the software is designed to read fault data pro-
vided in that format.

The substation interpretation data contains information
that relates the channel index numbers to the monitored
signals and represents correspondence between the moni-
tored circuits and PSS/E numbering scheme. Each substa-
tion should have one interpretation file. The interpretation
file needs to be modified to reflect the DFR configuration or
the system model changes.

The data provided by the user includes necessary fault
information, matching options, and selected fault data. The
necessary fault information relates to the estimated fault type
and faulted circuit that can help in limiting the GA search
range. The matching options are used for specifying cur-
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Fig. 5. The flowchart of fault location software.

rents through the circuits or voltages at buses for phasor
matching. Selected fault data refers to a choice in the use of
different combinations of DFR records under the situation
where multiple DFRs are triggered.

4.3. Calculation of phasors from recorded data

Considering that phasors are needed to represent during-
fault conditions, two processing steps are taken. A specified
low-pass filter is utilized to remove high-frequency noises.
An improved Fourier algorithm is implemented to effec-
tively remove decaying dc-offset component and obtain the
pre-fault and during-fault phasors of voltages and currents
[11].

The pre-fault phasor can be calculated using the first cy-
cle of the recorded phasor. The during-fault phasor can be
calculated using any fault cycle following the fault incep-



174 S. Luo et al. / Electric Power Systems Research 71 (2004) 169–177

tion and prior to fault clearance. Therefore, identification of
the moment of fault inception is required before calculating
the during-fault phasors. The fault cycle is determined from
the waveforms recorded by DFR.

It is possible to select different fault cycle to calculate
the during-fault phasors from the different DFR recordings.
This may introduce fault location error, especially for the
arcing faults during which the fault resistance is chang-
ing. Under this situation, selecting different fault cycles
means experiencing different impacts of fault resistance. An
alternative is that the user checks the waveforms manu-
ally and specifies the same matching fault cycles across all
recordings.

4.4. Synchronization of phasor

It is well known that the phase angle of a selected signal
in a three-phase system, calculated by a Fourier algorithm,
may be constant or it may rotate 360/N (N is sample times
per cycle) degrees with each new sample depending upon
selection of the time reference. For a specific fault occurring
in a power system, several DFRs may be triggered. Phasors
calculated by using waveforms recorded in different substa-
tions may lack synchronization since the time reference in
different substation may not be the same. This will intro-
duce phase angle difference among phasors calculated using
waveforms from the substation where DFRs are triggered.
This factor will introduce an error in calculating the fault
location using during-fault phasor. The synchronization of
the phasors obtained from different DFR recordings is nec-
essary.

The PSS/E load flow study based on the modified sys-
tem model, described inSection 4.5, is carried out to ob-
tain the pre-fault simulated phasors. The phasors calculated
from each DFR recording are angle-synchronized by rotat-
ing them in reference to the phasors obtained by the load
flow study. As a result, each recorded pre-fault phasor has
the same phase angle as the corresponding one obtained
through simulation. It is assumed that the angle difference
between the pre- and during-fault phasor, for the corre-
sponding recorded current or voltage, is fixed. Hence, the
during-fault phasor should also be rotated for the same an-
gle. All recorded pre- and post-fault phasors are synchro-
nized using the same reference.

4.5. Model tuning

A given static system model topology, used in simulation
studies, may not reflect the prevailing system topology when
the fault occurs. To match the phasors extracted from DFR
recordings and those obtained from simulation studies, the
model used in the study should be updated by utilizing the
topology information captured close to the moment when
the fault occurs. Tuning of the system model may include
updating the topology as well as generation and load data
of the system. The pre-fault data, including the pre-fault

phasors and breaker status, contained in DFR records, may
be used for the tuning process.

4.5.1. Topology modification
Based on the pre-fault breaker status and current magni-

tudes of the monitored branches derived from the pre-fault
data recorded by DFR, the service status (saved in the PSS/E
file) of the branches will be updated. A zero (or smaller than
a pre-set value) magnitude of the current through a moni-
tored branch indicates an out-of-service status of the branch.
If both the current and breaker status of a branch are avail-
able, the current measurement will be used instead of the
breaker status for the topology update.

The topology modification is realized using the IPLAN
language, which is part of the PSS/E package[12]. The
user is able to program a sequence to modify the system
topology, control the load flow and short circuit studies, and
control the reporting of the results of the PSS/E activities.
The IPLAN language also facilitates interaction between the
PSS/E activities and C++ program used to implement the
fault location algorithm.

4.5.2. Scaling the generator and load power
There are two ways to update the generator and load data.

When additional data such as power for generators and loads
in a specific area are available, this can be utilized to tune
the static system model. When additional field data are not
available, the fault location software will use the probing
method to produce updated models and finally pick the best
one. For each model, the load and generator scaling fea-
ture, SCAL, which enables the user to uniformly increase
or decrease any or all quantities for a selected grouping of
buses, loads and machines, is utilized. The following rule
is applied in determining the individual bus, load, or ma-
chine power: adjust the power such that the ratio of indi-
vidual bus, load, or machine power to the respective total
power of all buses, loads, or machines being processed re-
mains unchanged. The activity SCAL can be invoked with
the suffix, such as “ALL”,“AREA” and ”ZONE” indicat-
ing if the whole system or only a subsystem is to be con-
sidered. In our study, we use “AREA” to limit the tuning
range.

Based on pre-set strategy, a series of updated models are
produced. For each model, the simulated load flow is calcu-
lated and then the recorded load flow is matched with simu-
lated load flow. The matching criterion is similar to (1) and
(2). The difference is as follows:

Vks andVkr should be the pre-fault voltage phasors ob-
tained from the short circuit simulation studies and
recorded waveforms, respectively;

Iks andIkr should be the pre-fault current phasors obtained
from the short circuit simulation studies and recorded
waveforms, respectively.

Based on the matching criterion, the updated model is
determined before running the fault location software by
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Fig. 6. Illustration of the building of the initial faulted branch candidates.

changing the generator power in the whole network or some
specific areas. This is done based on real time measurements
obtained half an hour or even closer in time before the fault
occurs. Then the activity “SCAL” is executed in PSS/E. The
total change of the load data should equal to the total change
of the generator data. The updated system model replaces
the static system model and PSS/E uses the updated one to
simulate faults.

4.6. Determination of branch candidates

Based on DFR records and fault information obtained
from digital relays (such as estimated fault section and fault
type), a list of faulted branch candidates is produced for
the purpose of posing faults.Fig. 6 is used to illustrate the
approach.

Suppose that DFRs located at substation A and B are trig-
gered by a fault on the line 2. Then a list of possible faulted
branch candidates based on each DFR location can be ob-
tained. In order to do so, the depth of the search layers needs
to be specified. The lines directly connected to the triggered
DFR are considered belonging to the first search layer. The
lines connected to the other side of the lines selected in the
first search layer are considered as the second layer. For
example, the first search layer starting from substation A
consists of lines 1 and 7 and the second layer consists of
lines 3 and 2. If the search layer is the third, a list of possi-
ble faulted branches can be obtained based on each DFR as
shown below.

List 1 (from A):1, 7, 2, 3, 4, 5;
List 2 (from B):5, 4, 3, 6, 1, 2.

To produce a list of faulted branch candidates, two set
operators may be used: union and intersection.

Union: 1, 2, 3, 4, 5, 6, 7;
Intersection:1, 2, 3, 4, 5.

4.7. User interface

The information that may be provided by the user is shown
in Fig. 7.

Main information inFig. 7 includes

• DFR data interpretation;
• Fault type;

Fig. 7. Illustration of the building of the initial faulted branch candidates.

• Possible faulted circuit, search depth, and the set opera-
tors;

• Quantities used for matching.

5. Test results

This section presents test results. CenterPoint Energy pro-
vided detailed description of fault cases. The version of the
utilized PSS/E is 28.0. In the new version, information on
tapped transmission lines is included. The system has 5437
buses, 5544 lines, 528 generators, 3263 loads, and 1068
transformers. Over 30 DFRs are installed in the system. The
results presented here go well beyond the initial tests results
provided when the concept was first introduced[16,17].

Fig. 8 shows one-line diagram in which three DFRs, lo-
cated at the SRB, Cedar Bayou and South Channel substa-
tion, respectively, were triggered when the fault occurred.
The fault occurred on 138 kV system. The actual fault loca-
tion, determined and provided by CenterPoint Energy, is on

Fig. 8. Section of CenterPoint Energy Transmission for case I.
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Table 1
Sensitivity study results for case I

DFR utilized Fault location |Error| (%) Quantities marched

Event 316 40570–41450, 37.2% from 40570 1.8 Current of Ckt. 03 in SRB
Event 316, Event 318 40570–41450, 39.3% from 40570 0.3 All recorded currents and voltages in SRB and Cedar Bayou
All three 40570–41450, 39.6% from 40570 0.6 All recorded currents and voltages

Table 2
The calculation result

Case # Number of DFR triggered Fault type Actual fault location Estimated fault location Error

1 2 BG 48402–40590 48402–40590 0.3
3.32 miles 3.63 miles

2 3 BG 40570–41405 40570–41405 0.0
2.50 miles 2.47 miles

3 1 AB 46570–48412 46570–48412 0.9
1 mile 0.1 mile

4 1 AG 5915–9073 5915–9073 1.0
66.0 miles 66.9 miles

5 3 BG 40620–48295 40620–48295 0.2
2.36 miles 2.13 miles

6 2 CG 46020–3390 46020–3390 0.7
7.77 miles 7.09 miles

Exxon Ckt. 03, 2.5 miles from SRB 138. No line taps are
located in between DFR and fault location.

According to the analysis report of DFR Assistant, the
fault type is B to ground; the affected circuit based on SRB
data is Exxon Ckt. 03; based on South Channel data, it is
Tenneco poly Ckt. 06; and based on Cedar Bayou data, it is
Exxon Ckt. 83.

Based on the information, we select different combina-
tions of the DFR files and quantities for matching shown in
Table 1to estimate the fault location. Whatever DFR files
are selected, the estimated results are close to the actual fault
location provided by CenterPoint Energy. The estimated er-
rors are smaller than 0.1 mile. In this case, the choice of
particular quantities selected for matching does not affect
the result.

More fault cases were tested. The detailed results are listed
in Table 2.

6. Conclusion

The paper presents a new fault location approach using
“phasor matching” based on genetic algorithm. The biggest
advantage is to utilize the sparse data to locate fault without
necessarily a need for additional recording device or more
monitored data. It is suitable for the situation in which the
conventional algorithms cannot be applied. The approach
does not refer to a specific section or line; it is based on a
system view. However, a system model including the static
parameters and topology is required.

The recently improved software package has been tested
using some fault cases in the CenterPoint Energy system.

The test results show that the approach is quite promising
as illustrated by the test cases given in the paper.
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Appendix A. List of symbols

Cmax maximumfc(x, Rf ) value in the current
population

Cmult number of expected copies desired for the
best population member

f raw fitness function
f′ scaled value off
favg average of the fitness values for a specific

generation
fc(x, Rf ) defined cost function using either both

phasor angle and magnitude or magnitude
only for matching

ff (x, Rf ) fitness function using phasor
magnitude for matching

fmax maximum of all fiteness values for a
specific generation

Iks andIkr during-fault current phasors obtained
from short circuit studies and recorded
phasors, respectively

Iks andIkr pre-fault current phasors obtained
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from short circuit studies and recorded
waveforms, respectively

k index of the voltage or current phasors
match

l binary string of length
Nv andNi total number of voltage and current

phasors to be matched, respectively
round( ) nearest integer of the argument
rkv andrki weights for the errors of the voltages

and currents, respectively
Rf fault resistance
Vks andVkr during-fault voltage phasors obtained

from the short circuit simulation studies
and recorded phasors, respectively

Vks andVkr pre-fault voltage phasors obtained from
short circuit simulation studies and
recorded waveforms, respectively

x fault location
xb and [ ]b binary number
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