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Abstract-- This paper introduces a predictive method for 

distribution feeder vegetation management based on a risk 

framework. The state of risk is calculated for each feeder section 

using a variety of factors extracted from network parameters and 

historical outage data, historical weather data and weather 

forecasts, and a variety of vegetation indices. The framework 

implements the spatiotemporal correlation of all the collected 

data. The prediction model used is the Gaussian Conditional 

Random Field, which takes into account spatial interdependencies 

between different feeder sections. This enables better prediction 

accuracy, and also offers the capability to deal with missing and 

bad data. Based on the calculated risk, the dynamic optimal tree 

trimming schedule, which minimizes the overall risk for the system 

under a given predetermined budget, is developed. Results 

obtained on a real utility network show that optimal tree trimming 

based on the developed risk framework for vegetation 

management could significantly decrease the overall risk of the 

feeder outages without increasing the budget. 

 
Index Terms—Asset management, big data, data mining, 

geographic information system, meteorology, prediction methods, 

power distribution, risk analysis, smart grid, vegetation mapping. 

I.  INTRODUCTION 

he most common cause of outages in electric power 

systems is a combination of vegetation activity and severe 

weather impacts [1]. Thus, vegetation management is of the 

upmost importance for assuring high levels of network 

resilience. In addition, good vegetation management practices 

ensure safety for field workers and the public. Utilities spend 

millions of dollars on vegetation management every year [2], 

which makes it one of the highest costs in distribution asset 

management [3]. Every year several billions of dollars are spent 

on vegetation management in the U.S.A. [5]. Efficient 

automated vegetation management could significantly decrease 

the costs associated with tree trimming [4].  

Efforts to automate vegetation management have employed 

multiple techniques in the last few decades. Work in [6] used a 

Markov model to find the optimal inspection frequency while 

finding a compromise between the reliability of the system and 

the cost of distribution feeder inspection. In [7] the optimal tree 

trimming schedule was developed based on a hybrid genetic 

algorithm consisting of simulated annealing, genetic 

algorithms, and tabu search. Vegetation-related failure rates 

were predicted using four different algorithms in [3]: linear 

regression, exponential regression, linear multivariable 
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regression, and an artificial neural network. The developed 

predictors used historical outage data and some of the weather 

parameters, but vegetation indices were not considered. In the 

listed literature, when the weather impact was considered, only 

a few variables of interest were included and their impact was 

averaged over time. Two models, negative binomial 

generalized linear model and a Poisson generalized linear 

mixed model, were used in [8] to evaluate the impact of tree 

trimming on the rate of vegetation caused outages in 

distribution. The data used in this study were limited to the 

utility collected data, without insight into weather and 

vegetation indices. In [9],[10] satellite imagery was used to 

identify dangerous trees around the transmission lines. While 

the use of high resolution imagery did show the potential in 

transmission vegetation management, its use in distribution was 

not discussed. Work in [4], [11] developed a reliability-centered 

vegetation management while looking closely into the electrical 

characteristics of vegetation-related outages. The work in [12] 

demonstrated the potential of spatial correlation of big data for 

improvements in distribution vegetation management but did 

not provide related data analytics. 

This work provides several contributions:  

1) To improve risk predictions, a variety of data sources 

are used: the historical weather and weather forecast 

data, various vegetation indices and high resolution 

imagery data, and historical utility records about 

outages and maintenance. Their integration and 

correlation is novel.  

2) A spatiotemporal model for correlating a variety of data 

in time and space is developed, which provides real-

time generation of predictive risk maps for assessment 

of the vegetation around the distribution feeders.  

3) Analytical approach is introduced for vegetation risk 

management based on a Gaussian Conditional Random 

Field (GCRF), which takes into account both the spatial 

and the temporal configuration of the network and past 

events to improve the prediction performances.  

4) An optimized, cost-effective dynamic tree trimming 

scheduler is developed to minimize the overall risk of 

the network while maintaining the economic 

investment in periodic tree trimming. The unique 

benefits of this approach are demonstrated on an actual 

utility distribution network. 

The background about vegetation management is provided 
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in Sec. II. Spatiotemporal correlation of big data is described in 

Sec. III. Sec. IV defines the vegetation risk management, while 

the optimal tree-trimming schedule is introduced in Sec. V. The 

results are presented in Sec. VI, and conclusions in Sec. VII. 

II.  BACKGROUND 

This section describes the mechanisms of weather and 

vegetation impacts on vegetation caused outages, and current 

vegetation management practices implemented by the utilities. 

As presented in Fig. 1, there are two major classes of 

vegetation-related feeder outages in distribution systems. They 

are differentiated by the tree coming in contact with feeders due 

to 1) overgrowing the feeder height, and 2) being forced into a 

contact with the feeder due to wind or some other similar 

weather impacts. 

A.  Vegetation Impact 

Starting from the most recent tree trimming performed, the 

vegetation-caused failure probability is constantly increasing 

[6]. For predicting the potential of vegetation to cause faults 

subsequent to the last tree trimming, the most important factor 

is the vegetation canopy growth rate. There are two types of 

models for estimating the canopy growth dynamics [3]: 1) 

process-based models that aim at defining the processes that 

cause tree growth [13], and 2) empirical data-based models 

[14]. The maximum tree crown spread represents the maximum 

width of the tree crown (branches, leaves) along any axis. It is 

affected by the tree’s age, last tree trimming date, application 

of herbicides or growth regulators, and weather impacts 

(primarily temperature and precipitation) [3]. 

The measured electrical behavior and physical processes and 

effects surrounding the vegetation-related faults were described 

in detail in [4], [11]. It was concluded from the experimental 

results that while the initial current during the tree contact can 

be quite low (~1A), after a complete carbonization path in the 

tree branch is formed, the current magnitude quickly increases 

to a high level.  

B.  Weather Impact 

The weather parameters that can affect vegetation-related 

outages are wind speed, direction, and gusts, precipitation, 

temperature, humidity, pressure, and lightning, as listed in Fig. 

1. The impact of high speed wind and heavy precipitation may 

cause trees to come into contact with distribution feeders due to 

the following reasons: a) branches break off and fly into lines, 

and b) complete trees topple when moved by wind [12]. The 

temperature, precipitation level, and humidity have impacts on 

the tree growth rate. In combination with the type of soil, they 

are the main factors dictating a tree’s growth rate. 

C.  Vegetation Maintenance  

Vegetation maintenance staff are in charge of maintaining 

the feeder clearance to the surrounding vegetation. This 

includes trimming and the removal of trees around the 

distribution poles and lines. Distribution lines are often placed 

near the surrounding vegetation due to relaxed right-of-way 

requirements. Due to the high expenses of trimming large areas 

populated by many distribution feeders, it is not economical to 

have all trees securely trimmed at all times, so a more 

economical trimming schedule is used. 

In most cases, the process of tree trimming is applied by 

utilities based on a predetermined periodic schedule. Each 

feeder section is given a tree trimming frequency, e.g. three or 

five years, based on the operating voltage and required 

clearance, leading to the standard fixed interval schedule [7]. 

The only other occasion when the schedule would be changed 

is as a reactive measure to a vegetation-caused outage, shown 

in Fig. 1. There are two types of reactive measures that can be 

distinguished: 1) only the faulted area is maintained, and 2) the 

entire tree trimming zone is trimmed. In addition to tree 

trimming, some utilities inject growth-retarding chemicals into 

trees (tree-growth regulators) or apply herbicides [7]. 

The current maintenance practice relies on a visual 

inspection by helicopters, airplanes, ground vehicles, or people 

walking up to the lines [16]. Because of the high cost of this 

practice, it is of economic benefit to develop visual inspection 

methods that can provide automatic identification of dangerous 

zones, as it will be described in Sec. III B. 

III.  SPATIOTEMPORAL CORRELATION OF DATA 

This section describes the data processing that starts from the 

raw data and prepares the processed inputs for the predictive 

risk analysis and optimal tree trimming scheduler described in 

the next two sections respectively. All of the data has to be 

spatiotemporally correlated. All of the spatial processing of the 

data is done using ESRI ArcGIS [17]. Temporal data processing 

is done using Python [18] datetime library [19]. 

A.  Data Preprocessing 

Raw data are processed to remove unused components. All 

the data that has a geographical reference is placed into a 

geodatabase during the preprocessing. Table I lists all the 

extracted parameters needed for the prediction model, and the 

associated temporal and spatial references.  

Data come with different spatial and temporal resolutions. 

Historical weather data from ASOS land stations [20] has the 

highest temporal resolution (up to 1 min); however, the spatial 

resolution of data is low, including only a few weather stations 

in the network service area. Vegetation data has a low temporal 

resolution (collected once per year or two years) but has a high 

spatial resolution (up to 50 cm). The rate of data collection 

varies not only between different data sets, but also it can vary 
 

Fig. 1.  Environmental impact on vegetation management [15] 
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within a single data set. For example, weather data is collected 

by land-based weather stations with a maximum rate of one data 

point per minute, but the rate can go down to one data point per 

hour. In some rare cases, the rate may go as low as one point 

within several hours. After preprocessing, the dataset is still not 

ready for the input into the predictive risk model. All the 

parameters need to be spatially and temporally correlated, as is 

described in Sec. III.C and III.D. 

B.  Vegetation Data Processing 

Image data is used to extract the location of vegetation 

surrounding the network. The imagery is collected from the 

Texas Natural Resources Information System (TNRIS) 

database [21]. The following orthoimagery datasets are used in 

the study:  

 National Agriculture Imagery Program 1m NC\CIR for 

years 2010, 2012, 2014, and 2016; 

 Texas Orthoimagery Program 50cm NC\CIR for 2015. 

The datasets are loaded into the geodatabase as raster files. 

First, to reduce the amount of data for processing, imagery 

raster files are clipped to a 20 m buffer around the distribution 

lines. Then unsupervised image classification [22] is applied. 

The iso-cluster is set to 40 classes in all datasets. In the next 

step the classes are reclassified to “vegetation class” and “non-

vegetation class”, and converted into a polygon shapefile. The 

vegetation class is transferred to the next step (spatial 

correlation), and the rest is discarded. In Fig. 2 we provide 

examples of the unsupervised classification (a), and the 

resulting map after reclassifying (c). Map (b) is in Fig. 2 for 

visual reference.  

The result of image processing is a set of historical maps 

with vegetation locations. These maps are then spatially joined 

with the Ecological Mapping System of Texas (EMST) 

developed by the Texas Parks and Wildlife Department [23]. 

The EMST data contains the classification by vegetation type 

into 398 distinct classes, out of which 49 classes are present at 

the network location of interest. The average canopy height for 

49 vegetation classes in the network area is then added to the 

vegetation dataset as a parameter. 

C.  Spatial Correlation of Data 

The purpose of the spatial correlation module is to provide 

spatial links between different data sets. For example, for every 

historical outage we want to know the weather conditions at that 

specific location, the distance between the line and the closest 

tree, the location of areas that were trimmed, etc.  

The spatial correlation module is presented in Fig. 3. We 

distinguish three parts of the spatial processing module:  

 Weather data processing encompasses creating the 

weather data grid that is overlaid on the utility network 

and has a spatial resolution of 1 km. The weather 

parameters in each grid cell are calculated from the 

weather station values using linear interpolation. 

 Vegetation data processing extracts the vegetation 

indices, such as distance between the lines and 

vegetation and growth rate, using spatial links between 

multiple preprocessed vegetation files. All the calculated 

parameters are stored as attributes in the final vegetation 

polyline shapefile. 

TABLE I 

Parameters Extracted in Preprocessing 

 Historical 
Outage Data 

Periodic Tree 
Trimming 

Reactive Tree 
Trimming 

Poles Lines Vegetation  Weather 

Spatial Point 
shapefile  

Polyline 
shapefile 

Polyline 
shapefile  

Point shapefile  Polyline shapefile  Raster  

 Polygon 
shapefiles  

 Points  

 Polygon shapefiles  

Temporal Start and end 
time 

Year quarter Date Static Static Year 1 min to 3 hours 

Other 
parameters 

 Num. of 
customers 

 Cause code 

 Trim period 

 Num. of 
customers 

 Cost 

 Cost  Material/class 

 Height 

 Conductor size 

 Conductor count 

 Conductor 
material 

 Nominal voltage 

 Imagery 

 Vegetation 
classes 

 Wind (speed, gust, 
direction) 

 Temperature 

 Precipitation 

 Humidity 

 Pressure 

 Forecast indices  

 

   
                              a)                                                                   b)                                                                    c) 

Fig. 2. Example of vegetation extraction: a) 40 classes, b) imagery for reference, and c) reclassified (vegetation highlighted) 
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 Utility data processing converts the historical tables to 

the shapefiles identifying the locations of points and 

polylines based on the line section codes and/or 

addresses provided in the utility’s CSV files. In addition, 

every reactive tree trimming action is correlated with the 

outage that lead to it. 

To deal with different spatial resolutions of data we used 

multiple approaches all included in Fig. 3. We used spatial 

interpolation where weather data was extracted for every 

location in the network based on the original weather station 

data with sparse locations. In other instances, data was 

projected to a nearby location using a spatial join. For example, 

the distance between the line and vegetation is projected to the 

line using a spatial join based on distance. 

D.  Temporal Correlation of Data 

The temporal correlation module has five historical input 

datasets (weather, vegetation, outage, periodic tree trimming, 

and reactive tree trimming), and real-time weather forecast 

input. Each dataset contains a variety of parameters (attributes) 

from Table I, and is stored as a GIS shapefile. Static datasets 

(network feeders and poles) are assumed not to change over the 

observed period, and do not require any temporal correlation. 

Fig. 4 presents an overview of the temporal correlation module 

 
Fig. 3. Spatial correlation of data 

 
Fig. 4. Temporal correlation of data 
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containing two major parts: 1) historical data processing, and 2) 

real-time data processing. The final product of historical data 

processing is a training list for the prediction algorithm. The 

real-time data processing generates input data for the real-time 

risk maps by generating the data for hazard, vulnerability, and 

economic impact that feeds the dynamic tree trimming 

scheduler, which will be described in the following sections. 

The temporal resolution is guided by the occurrence of 

outages. For every outage we want to extract, all the relevant 

information is included as presented in Fig. 4. For each outage, 

the data points that are closest in time are chosen from each set 

individually. For example, in the case of historical weather data, 

the closest data points were within one minute of outage. On the 

other hand, the closest vegetation maps could be up to several 

weeks apart. 

IV.  VEGETATION RISK MANAGEMENT 

Fig. 5 presents an overview of the predictive spatiotemporal 

risk model.  For every moment of time, each network 

component is assigned a state of risk value. To enable 

spatiotemporal analysis, the state of risk R is defined as follows 

[24]:  

𝑅(𝐺, 𝑡) = 𝑃[𝑇(𝐺, 𝑡)] ∙ 𝑃[𝐶(𝐺, 𝑡)|𝑇(𝐺, 𝑡)] (1) 

where G represents the longitude and latitude of a single 

element, and t represents the moment in time for which the 

observation is made. A unique state of risk value is assigned to 

each distribution feeder section. T(G,t) represents the threat 

intensity. Threat intensity is defined as a qualitative metric of 

the weather condition severity. The first term in (1) marked 

P[T(G,t)] is a hazard probability. Hazard represents the 

probability of occurrence of a severe weather condition with the 

selected threat intensity. The details on how the Hazard is 

calculated are provided in Sec. IV A. The second term marked 

P[C(G,t)|T(G,t)] is network vulnerability, where C(G,t) is an 

occurrence of a consequence. Vulnerability is a conditional 

probability of the consequence (vegetation-caused outage) in 

the distribution network if and when severe weather is present. 

The details on how the Vulnerability is calculated are provided 

in Sec. IV B. The risk definition presented here is an adaptation 

of definition in [25] where the last part of the risk-economic 

impact is not included. In this paper, the economic impact is 

calculated separately and included in the optimal tree trimming 

scheduler as one of the optimization constrains. The details of 

how the economic impact is combined with the risk framework 

are described in Sec. V.  

A.  Hazard 

In eq. 1, P[T(G,t)] is a hazard, calculated based on the 

weather forecast data for a specific time and location. The data 

from the National Digital Forecast Database (NDFD) [26] is 

used. The database contains the forecast up to 7 days in the 

future with time resolution of 3 hours. The updated forecast is 

provided every 3 hours. The spatial resolution of the weather 

forecast data is 5 km.  Because the weather forecast data is 

updated every 3 hours with maximum resolution of 3 hours, the 

risk maps are generated with the same 3 hours resolution.  

The following parameters are observed: wind speed, 

direction, and gust, temperature, relative humidity, convective 

hazard outlook, probability of critical fire, probability of dry 

lightning, hail probability, tornado probability, probability of 

severe thunderstorms, damaging thunderstorm wind 

probability, extreme hail probability. Based on the values of the 

observed parameters, the threat level is classified into 6 groups 

from 0 to 5, where 0 represents normal weather conditions 

without any potentially severe elements, and 5 represents 

extremely severe weather conditions. The k-means clustering 

[27] was used for classification into 6 groups. The k-means 

clustering enables the construction of hazard consequence 

levels from the individual weather parameters. This way, 

multiple different parameters are combined into a single 

parameter Threat Intensity with 6 different states. The 

clustering is done using historical weather data, where different 

configurations of weather parameters are associated with their 

measured impact on the outage occurrence. Then the Hazard is 

constructed as a heat map in Table II, where each threat level 

has an assigned probability of occurrence determined based on 

weather forecast. The construction of heat map is based on the 

reference [28], where heat maps are constructed following two 

steps: 1) constructing the probability matrix as in Table III, and 

2) constructing the threat intensity matrix as in Table IV. The 

Hazard value ranges from extremely low marked as the green 

color in Table II to extremely high marked as the red color in 

Table II.  

B.  Vulnerability  

A GCRF is used for the prediction of network vulnerability 

[29]. The GCRF model uses a weighted graph as a data 

structure, which enables the exploitation of spatial similarities 

between the nodes for the improved prediction capability. The 

data are processed in sequential order created during the 

temporal correlation of data. The algorithm is capable of 

processing partially observed data [30], which is of benefit 

since within the collected data, several historical outage 

instances are missing some of the weather parameters. 

The GCRF predicts the state of vegetation impact, denoted 

y, based on historical measurements in the input vector x. The 

GCRF expresses the conditional distribution as:  

 
Fig. 5.  Spatiotemporal Prediction Model, [15] 
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𝑃(y|x) =
1

𝑍
exp (− ∑ ∑ 𝛼𝑘(𝑦𝑖 − 𝑅𝑘(x))

2
−

𝐾

𝑘=1

𝑁

𝑖=1

 

− ∑ ∑ 𝛽𝑙𝑒𝑖𝑗
(𝑙)

𝑆𝑖𝑗
(𝑙)(x)(𝑦𝑖 − 𝑦𝑗)

2
𝐿

𝑙=1𝑖,𝑗

) 

(2) 

where Z is a normalization constant,  x is a set of input variables 

coming from historical measurements, y is a set of output 

variables, N is a total number of nodes (line sections) in the 

network graph, Rk are unstructured models where k is the 

number of predictors, Sij represent similarities between outputs 

at nodes i and j determined based on their geographical 

distance, L is a number of branches, α are parameters of the 

association, and β are the interaction potentials.  

The following historical measurements are stored in the 

input vector x: wind speed, wind direction, wind gust, 

precipitation, temperature, humidity, pressure, vegetation 

distance to the line section, vegetation spread, vegetation 

growth rate, vegetation health index, pole height, tree trimming 

period, time since last tree trimming, outage duration, number 

of customers affected. The output y of the algorithm is the 

predicted state of vegetation impact on the feeder section.  

The parameters α and β from the Eq. 2 can be estimated by 

maximizing the conditional log-likelihood from our training 

set, (3) and (4), and applying the gradient descent optimization 

algorithm:  

𝐿(𝛼, 𝛽) = ∑ log 𝑃(y|x) (3) 

(α,β) = arg max
𝛼,𝛽

(𝐿(α,β)) (4) 

The historical outages are an integral part of the 

Vulnerability. The prediction of future vulnerability is done 

based on the knowledge collected from the previous outages. 

As listed in Table I, the historical outage data contains 

information about the duration of the outage and the number of 

customers affected by it. This information guides the prediction 

algorithm to generate higher vulnerability levels in the cases 

where more customers were affected by the outage and for the 

greater duration. 

V.  OPTIMAL TREE TRIMMING SCHEDULER 

There are two types of costs associated with the tree 

trimming: 

 Periodic tree trimming has a preset cost since it follows 

a predetermined schedule.  

 Reactive tree trimming includes two types of actions: a) 

only the faulted area is trimmed, and b) an entire circuit 

is trimmed. Reactive tree trimming cost varies 

depending on the events in the network.  

The goal of the optimization model is to minimize the overall 

risk of the system while maintaining the budget allocated for 

the periodic tree trimming. To achieve that, the quarterly 

periodic tree trimming schedule is designed based on the risk 

prediction for the next 3 months. The time instances when the 

risk map is created are every three hours during a three-month 

period. A total of T time instances is created each quarter. The 

risk is calculated for each of the N feeder sections. An optimized 

tree trimming schedule is determined by solving the following 

optimization problem:  

𝑚𝑎𝑥 {𝑅 = ∑
1

𝑁
∑ ∆𝑅𝑛,𝑡 ∙ 𝐹𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=1

} 

𝐹𝑛,𝑡 = {
0,    section n not trimmed at time t
1,    section  n   is trimmed at time t

 

(5) 

where ∆𝑅𝑛,𝜃 = 𝑅𝑛,(𝜃−1) − 𝑅𝑛,𝜃 is the difference in risk value 

for feeder n before and after the tree trimming is performed. 

The following constraints are enforced: 

∑ ∑ 𝐹𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=1

∙ 𝑃𝐶𝑛,𝑡 ≤ 𝑃𝐴 (6) 

For t=1,…,T, ∑ 𝐹𝑛,𝑡
𝑁
𝑛=1 ≤ 1 (7) 

where R is a total reduction in risk, PCn,t is the cost of tree 

trimming of section n in the time instance t; and PA is a total 

budget allocated for the periodic tree trimming during the 

observed quarter. The optimization problem is nonlinear, and it 

is solved using the enhanced linear programming relaxation 

with the Lagrangean relaxation plus heuristic method described 

in detail in [31]. 

TABLE II  
Hazard Classification 

Probability 

[%] 

Threat Intensity 

0 1 2 3 4 5 

0-20       

20-40       

40-60       

60-80       

80-100       

TABLE III  

Probability of Threat Level Occurrence  

Probability Range [%] Description 

0-20 Extremely Unlikely 

20-40 Highly Unlikely 

40-60 Doubtful 

60-80 Somewhat Likely 

80-100 Very Likely 

TABLE IV  
Threat Intensity Levels 

Category Description Example 

0 None No impact on the network 

1 Minor Minor service interruptions, no restauration 
needed 

2 Moderate Some outages in the network, some 

restauration needed 

3 Low Severe Moderate number of outages in the 
network, restauration delays may occur, 

e.g. rainy weather 

4 High Severe Multiple outages in the network with longer 

restauration duration, e.g. thunderstorm 

5 Catastrophic The whole network or very large parts of 

the network under the disconnected – large 

blackouts, e.g. Hurricane  
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While a reduction in reactive tree trimming cost is not an 

explicit goal of the optimization problem, it is still calculated to 

check the impact of risk reduction on the reduction in reactive 

tree trimming cost. To do that, the reactive tree trimming orders 

are iterated and for each one it was checked if the developed 

tree trimming scheduler recommended trimming of the area 

prior to the outage.  If an area is part of the recommended tree 

trimming schedule in a time frame before the reactive tree 

trimming was performed, the reactive tree trimming cost is 

deducted from the total.   

VI.  RESULTS 

The observed utility distribution network has an area of 

~2,000 km2. It contains ~200,000 poles, and ~120,000 lines. 

The historical outage and weather data were collected for the 

period from January of 2011 up to the end of April of 2016. 

Over this period, 505 weather-related outages have been 

observed in the area, where a total of 331 outages were 

vegetation-caused (Fig 6). The training set for a prediction 

algorithm consists of the first 300 historical outages in temporal 

order. The remaining 31 outages that occurred at the end of 

2015 and beginning of 2016 are used as testing set. 

A.  Risk Maps 

The example of the predicted Hazard and Vulnerability map 

for an outage event that occurred on February 23, 2016 is 

presented in Fig. 7 and Fig. 8 respectively. The weather hazard 

is presented as a grid covering the area of the network, while 

the vulnerability is assigned to each line section individually. 

The resulting predicted risk map for the observed date is 

presented in Fig. 9. As it can be seen in the upper right corner 

the predicted risk value on the faulted section for the outage in 

the Fig. 9 that occurred on 02/23/2016 was 84%.  

The predicted risk values for all 31 test outages are presented 

in Fig. 10. The minimum risk value during an outage is 64%. 

There are 6 instances for which the risk probability was less 

than 75%, all of which occur during the days with a low weather 

hazard. The authors would like to speculate that in the absence 

of weather hazard information, when the algorithm is limited to 

predicting the risk based only on vegetation indices, 

performance is limited. Further investigation could be 

conducted with the larger dataset to test the hypothesis. 

B.  Tree Trimming Scheduler 

An example of the developed tree trimming schedule for one 

quarter is presented in Fig. 11. The zones with different colors 

(not black) represent the areas of the network that need to be 

trimmed in the selected quarter. These zones change every 

quarter. The areas that need to be trimmed sooner are 

represented with red while the areas that need to be trimmed 

later are represented with green color.  

Overall outage risk for the selected quarter is calculated as 

follows: 

𝑅 = ∑
1

𝑁
∑ 𝑅𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=1

 (8) 

The optimal tree trimming schedule reduced the overall 

outage risk of the network for the period of three months by 

32.85%. In addition, the reactive tree trimming total cost 

described in Sec. V was predicted to be decreased by 27.2%.  

VII.  CONCLUSIONS 

The presented research differentiates itself by the use of an 

extensive set of data. We correlated different datasets and 

developed a predictive risk model that utilizes spatiotemporal 

data to produce real-time risk maps for the distribution network. 

The prediction algorithm, based on a GCRF model, leverages 

the spatial similarities between different feeder sections to 

ensure better prediction performance and compensate for 

missing data. The resulting risk model allows the 

implementation of a dynamically changing trimming scheduler 

that optimizes the tree trimming process. It is shown that the 

 
Fig. 6. Distribution of historical vegetation caused outages 

 
Fig 7. Hazard Map for 02/23/2016 
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achieved reduction in risk has the potential of reducing the cost 

of reactive tree trimming. The method was applied to a real 

distribution network and utility data. The testing confirms that 

the outages occurred in the zones with risk predicted to be 

greater than 64%, which suggests a new predictive paradigm 

for vegetation management strategies.   
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