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I. INTRODUCTION

With the increased use of sensitive electronic circuitry,
customers become more concerned about the electric
power quality (PQ). In the new open-access and
competitive power market, electricity consumers are in a
unique position to demand a higher quality of service.
The utilities or other power providers have to ensure a
high quality of their service to remain competitive and
retain/attract the customers. Efficient power quality
assessment tools are needed to help achieve this goal
[IEEE (1), Bollen (2), Kezunovic (3)].

PQ assessment is a complex subject and may include
diverse aspects such as power system and equipment
modeling, PQ problem mitigation and optimization, and
data analysis [3]. In most cases, automated PQ
assessment is desirable because manual analysis may be
difficult to carry out due to lack of time and special
expertise. Specialized software tools can make use of
intelligent techniques to automate the PQ assessment for
improved accuracy and efficiency. Among various PQ
phenomena, PQ disturbances like voltage sags, swells,
and switching transients are of particular interest. This
paper is focusing on automated assessment of PQ
disturbances that may facilitate the overall PQ
assessment. Specifically, this paper is focusing on: a.)
developing better tools for automated detection,
classification and characterization of PQ disturbances,
b.) carrying out system and equipment modeling studies
to better understand the PQ disturbances, and c.) finding
the fault location if the disturbance is identified as a sag
caused by a fault. Intelligent techniques like fuzzy logic,
expert system and genetic algorithm, as well as signal
processing techniques like Fourier transform and
wavelet analysis have been utilized for developing the
tools. When carrying out these studies, various
assumptions made will be illustrated where appropriate.

The paper is organized as follows. First, an automated
system for detecting, classifying and characterizing
various types of PQ disturbances is presented. Then,
study on the effects of a specific disturbance on the
equipment behavior is illustrated. Next, the location of
the disturbance source is pinpointed for the case where
the  disturbance  is  a sag  caused by a short circuit fault.

After that, the application of the developed tools is
illustrated by utilizing the voltage sag disturbance as
examples. Three steps of the analysis are performed.
The first one is related to automated detection,
classification and characterization of the disturbance.
The second one explains how the developed tools can be
used to perform equipment sensitivity study. The last
step demonstrates the location of the fault that has led to
the sag disturbance utilizing a genetic algorithm based
optimization approach. Field data provided by the
funding utilities are used in the study. It will be shown
that using both recorded and simulated data is conducive
to efficient PQ analysis.

II. POWER QUALITY DISTURBANCE
DETECTION, CLASSIFICATION AND
CHARACTERIZATION

This section presents advanced techniques for
automated detection, classification and characterization
of various types of power quality disturbances [1, 3].
Disturbance records in the form of sampled data are
assumed to be available for this purpose.

A. Power Quality Event Detection and
Classification

The flowchart of the proposed solution is shown in Fig.
1.

Fig. 1. Detection and classification flowchart

The sub-module “Data Format Conversion” converts the
inputs from a specific recording device or simulation
package format into a common data format
comprehensible to other modules of the software. The
“Fourier and Wavelet-transform Based Feature
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specific events and “Fuzzy Expert System for Detection
and Classification” module reaches a decision regarding
detection and classification, as discussed next [3].

FFT   and   wavelet-analysis   based   feature
extraction. A number of power quality events of various
types have been simulated and corresponding
waveforms obtained. The following eight distinct
features inherent to different types of power quality
events have been identified: the Fundamental
Component ( nV ), Phase Angle Shift ( n� ), Total

Harmonic Distortion ( nTHD ), Number of Peaks of the

Wavelet Coefficients ( nN ), Energy of the Wavelet

Coefficients ( nEW ), Oscillation Number of the Missing

Voltage ( nOS ), Lower Harmonic Distortion ( nTS ), and

Oscillation Number of the rms Variations ( RN ). The
formulae for computing these features are referred to in
[3].

Next, the statistical properties of the parameters for
various power quality events can be obtained. Extensive
studies have evinced that the extracted parameters
display distinctive patterns under different types of
events. Based on these distinctive patterns, appropriate
fuzzy rules can be established for distinguishing
between different types of events as shown below.

A Fuzzy expert system for detection and
classification. The core of the rule set of the
implemented fuzzy expert system is illustrated as
follows [Yen and Langari (4)].

a) Detection: For detection, one rule is used as follows
Rule 1: if 2n AisTHD  or 2n BisPS  or 3n CisV or

1n CisV  then DETECT=1

b) Classification: fifteen rules are used as follows
Rule 1: 41n AisV

�
 and 1n FisN  and 1n GisOS then

IMPULSE=1
Rule 2: 1n AisV  or 11n AisV

�
 then INTERRUPTION

=1
Rule 3: 6n AisV or 61n AisV

�
 then SWELL=1

Rule 4: 5n AisV  and 1n CisPS  and 11n CisPS
�

 and

11n DisEW
�

 and  { 21n HisTS
�

 or [ 41n HisTS
�

 &

12n HisTS
�

]} then SWELL=1

Rule 5: 51n AisV
�

 and { 2n CisPS  or 21n CisPS
�

}

then SWELL=1
Rule 6: 21n AisV

�
 then SAG=1

Rule 7: 31n AisV
�

and { 2n CisPS  or 21n CisPS
�

}

then SAG=1
Rule 8: 31n AisV

�
and { 1n CisPS  and 11n CisPS

�
}

and { 11n BisTHD
�

 or [ 21n BisTHD
�

 and

41n GisOS
�

]} then SAG=1

Rule 9: 31n AisV
�

 and 1n CisPS  and 11n CisPS
�

 and

2n GisOS  and 21n BisTHD
�

 and 22n BisTHD
�

 and

23n BisTHD
�

 then NOTCH=1

Rule 10: 31n AisV
�

 and 2n FisN  and 2n GisOS  then

NOTCH=1
Rule 11: 41n AisV

�
 and 1n CisPS  and 11n CisPS

�

and 3n BisTHD  and 13n BisTHD
�

 and { 4n GisOS  or

41n GisOS
�

} then TRANSIENT=1

Rule 12: 41n AisV
�

 and 31n HisTS
�

 and 32n HisTS
�

and 33n HisTS
�

 and 41n GisOS
�

 then HARMONIC=1

Rule 13: 41n BisTHD
�

 and 42n BisTHD
�

 and

43n BisTHD
�

 and 42n GisOS
�

 then HARMONIC=1

Rule 14: 41n HisTS
�

and 42n HisTS
�

 and

43n HisTS
�

and 42n GisOS
�

 then HARMONIC=1

Rule 15: If  1KisRN  then FLICKER=1

In the above rules, i,i,i,i,i,i,i,i KandHGFDCBA  are

the membership functions for the input patterns, where
the common trapezoidal and triangular functions are
used.

The fuzzy partitions and the corresponding membership
functions can be obtained based on both the statistical
studies and the expert’s knowledge. Opinions from
operators can be conveniently incorporated into the
system in practical applications.

The output for the detection part is the variable “Detect”
whose value reflects the credibility that certain
disturbance exists. The outputs for the classification
parts are fuzzy variables “Flicker”, “Impulse”,
“Interruption”, “Swell”, “Sag”, “Notch”, “Transient”,
and “Harmonic” whose values represent the degree to
which the event belongs to each of these categories. The
type of the event selected will be the one with the largest
membership. In cases where two or more types of
disturbances have the same largest membership value,
all of them will be selected for further analysis.

Extensive evaluation studies have demonstrated that the
fuzzy DMS results in a correct identification rate of
99%, and that the proposed methods for feature
extraction and decision making are efficient and
feasible.

The next step for automated power quality monitoring is
the event characterization.

B. Power Quality Event Characterization

The characterization of power quality events is aimed at
extracting distinctive and pertinent parameters for
describing specific event waveforms [1-3]. These



parameters may be useful for system planning,
troubleshooting and system control. Particularly, these
parameters play an essential role in the equipment
sensitivity study that aims at improving the immunity or
ride-through ability of the loads sensitive to specific
types of power quality events, as will be illustrated in
the next section. Hence event characterization is an
important step for making a successful power quality
contract.

Because different types of event waveforms require
different parameters for description, the waveforms need
to be classified before characterization. The detection
and classification system presented above can be used
for accomplishing this task. After the type of the event is
identified, the corresponding characterization algorithms
can be selected for extracting more accurate and
pertinent parameters.

The overall structure of the proposed approach for event
characterization is depicted in Fig. 2. The inputs are the
voltage waveforms that have already been identified as
certain types by the detection and classification system
described above. The outputs are the waveform
parameters  pertinent to the input waveforms. The
"Fourier and Wavelet Analysis Based Characterization"
module is used to process the voltage waveforms
utilizing signal processing techniques to obtain the
waveform parameters of interest. The wavelet analysis is
used for better localizing the time related parameters,
while the Fourier transform is utilized for obtaining the
magnitude related parameters.

Fig. 2. Event characterization flowchart

III. EQUIPMENT SENSITIVITY STUDY

After a disturbance is detected and characterized, quite
often it may be needed to study how the disturbance
affects the behavior of the sensitive equipment of
interest [3]. This section presents an approach for
equipment sensitivity study. Examination of how sag
parameters affect the equipment behavior is emphasized
next. As well known, some customer loads may trip or
mis-operate due to the voltage sags. With the advent of
electronic devices, the trip or mis-operation may no
longer be just attributed to the sag magnitude and
duration. Instead, other factors like points-on-wave,
unbalance ratio, and phase angle shift may also play an
essential role in the behavior of the modern loads during
voltage sag events. Through equipment sensitivity study,

the software can explain why a specific load failed
during a sag event, or predict how well a load will
perform during an actual sag event.
The overall structure for evaluating the equipment
behavior under voltage sag events is depicted in Fig. 3.
The inputs are the voltage sag waveforms that can either
be recorded in the field or generated by specific
simulation packages. The outputs are the operating
characteristics of the equipment during the specified sag
events. The block “Voltage Sag Characterization”
computes various sag parameters. The block “Sag
Parameter Tuning” allows the user to tune or edit the sag
parameters, obtained from the block “Voltage Sag
Characterization”, to certain values. The “Recorded
Voltage Sag Waveforms” provide us with a set of initial
sag parameters based on which further tuning can be
made. The recorded waveforms are optional and if they
are unavailable, the user can input any desired initial sag
parameter and then tune them for testing. In either case,
by tuning the sag parameters such as the sag magnitude,
sag duration, phase angle shift, etc., the software allows
the user to observe and study how specific sag
parameters affect the operating characteristics of the
equipment under test. This is what we call the equipment
sensitivity study. The block “Voltage Sag Generator”
reconstructs the voltage sag waveforms based on the
selected sag parameters. The constructed voltage
waveforms serve as the voltage source for testing the
equipment. The voltage sources can either be one phase
or three phase depending on the equipment being
evaluated. The “Equipment Model” allows development
of mathematical models for the equipment. Equipment
sensitivity study during other types of disturbances can
be performed similarly.

Fig. 3. The overall structure for equipment behavior evaluation

IV. LOCATION OF THE DISTURBANCE
SOURCE

Prompt and accurate location of the disturbance source
is often an important step in solving the related
problems. This work focuses on locating the fault that
caused the sag disturbance. It is assumed that recorded
data coming from sparsely located recording devices are
available. To improve the accuracy for fault location,
the “waveform matching" based approach may be used.
In this approach, simulation studies are carried out to
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obtain simulated waveforms under specified fault
conditions [Kezunovic and Liao (5)]. The simulated
waveforms are then compared with the recorded ones.
By iteratively posing faults in the system, running
simulations, and comparing the simulated waveforms
with the recorded ones, an optimal estimate of the fault
location may be obtained. It may be determined as the
one specified in the simulation studies that allows
simulating the waveforms that best match the recorded
ones. The matching is made at the phasor level
presently. PSS/E software is utilized to carry out the
short circuit studies [PTI (6)].

The fault location estimation has been mathematically
formulated as an optimization problem of which the
fault location and fault resistances are unknown
variables. An efficient GA based searching scheme is
developed for obtaining the globally optimal solution
[Goldberg (7)]. The detailed method is referred to in our
earlier paper [5].

V. APPLICATION EXAMPLES

This section presents examples illustrating the
applications of the developed methodology and tool for
automated analysis.

Fig. 4. A sample power system

Fig. 4 depicts a portion of the 138 kV Reliant Energy
HL&P transmission system that is used here for
illustration purposes.

A short circuit fault has caused the voltage waveforms
as shown in Fig. 5. The waveforms were recorded at
Angleton substation. First, the sag disturbance captured
in the waveforms is identified using the fuzzy expert
system. Then the waveform parameters are extracted
using the proposed characterization approaches as listed
in Table 1.

Fig. 5. A recorded sag waveform

Table 1. Characterization results of the sag waveforms

Sag Parameters Phase A Phase B Phase C
Minimum rms value (p.u.) 0.981 0.929 0.932
Maximum rms value (p.u.) 1.0 1.001 1.0
Average rms value (p.u.) 0.991 0.972 0.973

Final rms magnitude (p.u.) 0.993 0.994 0.994
Peak value (p.u.) 1.418 1.411 1.430

Sag starting time (ms) 0 47.0 51.2
Sag end time (ms) 0 100.1 100.1
Sag duration (ms) 0 53.1 48.9

Sag initial angle(degrees) 0 335.1 303.7
Sag initial phase angle shift

(degrees)
0 -1.67 2.21

Sag initial phase angle shift
rate (degrees/sec.)

0 -87.51 127.51

Sag end angle(degrees) 0 28.13 270.0
Sag end phase angle shift

(degrees)
0 2.91 -2.23

Sag end phase angle shift
rate (degrees/sec.)

0 74.2 -87.5

Total harmonic distortion 0.015 0.027 0.044
Rms magnitude unbalance

ratio
0.064

Three-phase phase angle
difference deviation

(degrees)

3.92

Fig. 6. The testing diagram for the VSD

Then a variable speed drive modeled in MATLAB as
shown in Fig. 6 is subjected to the recorded waveforms
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and its operating characteristics can be obtained as listed
in Table 2 [MathWorks (8)]. In Fig. 6, the block “DFR”
imports the voltage waveforms from the recorded data
file. The block titled “Rectifier” provides the DC
voltage for the block titled “Variable Speed Drive”. The
scopes are used for examining quantities of interest.

Table 2. Changes of VSD parameters due to the sag disturbance

Parameters Normal
Value

During
Sag

Value

Change Percent
Change

Stator current in
rms (A)

12.8 12.3 -0.5 -3.9

Rotor current in
rms (A)

18.2 18.0 -0.2 -1.1

DC voltage (V) 352.0 311.4 -40.6 -11.5
Rotor speed

(rpm)
1785.5 1673.6 -111.9 -6.3

Electromagnetic
torque (N. m.)

23.2 19.8 -3.4 -14.7

It is seen from Table 2 that the largest drop of the rotor
speed is 6.3% of the normal speed. This is due to the DC
voltage drop caused by the sag. This study tells us that
the variable speed drive would have had a 6.3% speed
drop if it had been powered through bus 3. If the
maximum allowable speed drop is 5% for example, then
pre-cautions are needed for this drive.

The next step is to locate the short circuit fault using the
genetic algorithm based approach. The GA uses the
following parameters: population size: 30, crossover
probability: 0.85, mutation probability: 0.05, coding
binary string length for fault location: 9, and coding
binary string length for fault resistance: 8. Fault location
ranges from 0 to the sum of the length of all the lines, as
shown in Fig. 4. Fault resistance ranges from 0 to 0.4
p.u. The fault is found to be between bus 11 and bus 12
with error within 1 mile.

After the fault is located, additional short circuit studies
can be performed along the line between Angleton and
Webster with changing fault location, fault resistance,
fault type and fault clearing time, then the voltage
waveforms under these fault conditions can be
generated. The variable speed drive tested above can be
subjected to these simulated waveforms for testing.
Statistical testing results on the operating characteristics
can be obtained, and a general picture of how the drive
behaves under different fault conditions are thus
acquired. Better pre-caution measures can be taken to
prevent the mis-operation or trip of the drive during
various types of faults.

It is noted that all the results obtained such as those
shown in Table 1 and Table 2, and the fault location
result are saved in a database, and can be conveniently
retrieved and presented to the operator when needed.

VI. CONCLUSIONS

This paper presents recent developments related to
automated analysis of PQ disturbance. The proposed
approaches consist of several steps that may be closely
related to each other. The PQ disturbance is first
detected and classified by an automated system. After
the type of the disturbance is identified, the distinctive
features of the waveform are extracted using appropriate
modules. Then, the behavior of the equipment of interest
can be studied under this specific disturbance. If this
disturbance is identified as a sag caused by a fault, the
genetic algorithm based search approach is utilized to
locate the fault. Examples are presented to illustrate the
applications of the developed methodology and tools. It
is found that appropriate interaction between data
analysis and system modeling is an efficient way for
carrying out PQ studies. Both recorded and simulated
data have been evinced to be useful for PQ analysis.
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