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a  b  s  t  r  a  c  t

This  paper  proposes  a methodology  to  assess  the performance  of circuit  breaker  utilizing  its  control  circuit
data. Various  performance  indices  are  defined  to  assess  the  condition  of breaker  using  probability  distri-
butions.  Bayesian  updating  approach  is  implemented  to  update  these  indices  as  the  new  data  becomes
available.  An  approximation  in  implementing  the  Bayesian  approach  to deal  with  large  amounts  of data
on-line  is considered.  The  methodology  is applied  to data  recorded  at  different  times  during  both  open
and close  operations  on a  group  of similar  circuit  breakers.  The  methodology  can be used  to  quantify  the
eywords:
ayes procedures
ircuit breaker
ondition data
aintenance
ptimization

effect  of  maintenance  making  use  of  the  defined  performance  indices,  which  further  helps  in  developing
system  level  risk-based  decision  approaches  for maintenance  optimization.

© 2011 Elsevier B.V. All rights reserved.

occur within in manufacture specified tolerance bands to ensure
that the CB is functioning properly. The proposed methodology
defines performance indices using these time instants to reflect the
health/condition of various assemblies such as trip coil, close coil,

Control 
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Trip 
 Initiate 
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eliability

. Introduction

Trying to cut down the budget spent on maintenance every year,
tilities need to come up with optimized maintenance schedules
ith limited budget. This task involves quantifying maintenance

mpact, which is a bit challenging task. Existing system level main-
enance strategies such as RCM approach, Risk-Based approach etc.
eported in Refs. [1–6] require considering the effect of component
aintenance quantitatively through models such as probabilistic
aintenance models [7–10] and/or failure rate estimation mod-

ls. These models depend on condition-based data and history of
peration of power system equipment such as transmission lines,
ransformers or circuit breakers (CBs).

This paper proposes a probabilistic methodology to quantify the
ffect of device maintenance for circuit breakers. The proposed
ethodology utilizes the control circuit data of CB to define sev-

ral performance indices. Fig. 1 shows the electrical representation
f CB control circuit and the data consists of several voltage and

urrent wave forms measured across trip coil, close coil and auxil-
ary contacts captured when the CB operates (either open or close
peration). A sample representation of these signal waveforms
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measured during close operation of CB is shown in Fig. 2. The fig-
ure also shows several events (marked as Evt #1, Evt #2, etc.) which
needs to occur in that order for correct operation of the breaker. The
event definitions and the time instants (t1, t2, etc.) at which these
events occur are shown in Table 1. These timing instants should
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Fig. 1. Electrical representation of CB control circuit.
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is used in this work, as it allows assessment of the performance of
control circuit and the operating mechanism as well. A representa-
tion of control circuit is shown in Fig. 1. The condition monitoring
Fig. 2. CB control circuit signal waveforms during close operation.

uxiliary contacts etc. Whenever the CB operates, the control cir-
uit data is captured and the proposed methodology updates the
efined performance indices using Bayesian updating approach.
n initial methodology to achieve this task was proposed earlier

11] but it lacks the ability of updating the computed performance
ndices on-line. To overcome this inability, we introduced Sequen-
ial Bayesian approach to make the proposed methodology suitable
or practical applications so that it can be applied in real time using
eld condition-based data. The proposed methodology finds its use

n development of optimized, system level, risk-based maintenance
trategies. Though CB is considered in this work, the proposed
oncepts can be easily extended with few modifications to other
evices such as power transformers.

This paper is organized as follows. Section 2 presents a brief
ackground of the problem. The proposed methodology is pre-
ented in Section 3. Illustration of the methodology is presented in
ection 4. An approximate procedure in implementing the Bayesian
pdating approach is presented in Section 4.3.  Section 5 provides
onclusions about the whole approach.

. Background

A concept of “top–down” approach is introduced to summa-
ize various steps in power system planning and operation affected
y maintenance strategies. The flow of the process is shown in
ig. 3 and it links the operation decisions to condition-based data.
ltimately, the operator has to ensure required power flow while

aking into account decisions regarding asset management and
eliability constraints. Asset management policies and reliability
f power system can be greatly affected by selected system level
aintenance strategies [1–6]. This approach is summarized in the
eft side of the Fig. 3 and the quantification of maintenance is
chieved through failure rate estimation models and probabilis-
ic maintenance models [7–10]. A different approach may  be taken

able 1
ist of events and signal parameters [16].

Event Event description Signal parameter

1 Trip or close operation is initiated (trip or close
initiate signal changes from low to high)

t1

2 Trip coil current picks up t2

3 Trip coil current dips after saturation t3

4 Trip coil current drops off t4

5 B contact breaks or makes (a change of status
from low to high or vice versa)

t5

6 A contact breaks or makes t6

7 Phase current breaks or makes t7
Fig. 3. Top–down approach.

by developing probabilistic models as shown in the right side of
the Fig. 3. The quantification of maintenance is achieved through
a probabilistic methodology which converts the condition-based
data into performance indices. These indices can further be used in
developing risk-based decision approaches. The contribution of this
paper is to establish a link between the ‘condition-based data’ and
‘risk-based decision approach’ through the proposed probabilistic
methodology.

3. Proposed methodology

The proposed methodology is shown in Fig. 4, and has the fol-
lowing steps: (i) develop a history of CB control signals and extract
timings of each signal parameter using signal processing module
(ii) analyze the relationship between the parameters using scatter
plots and fit probability distribution to each parameter (iii) define
performance indices using these distributions to assess the con-
dition (health) of the breaker (iv) as the new data arrives, update
the distributions and performance indices using Bayesian updating
approach. The methodology is further discussed in the following
subsections.

3.1. Condition-based Data

According to a failure survey conducted by CIGRE working group
A3.12, majority of CB failures are due to malfunction of operating
mechanism and control circuit in that order compared to other CB
assemblies [12]. The condition-based data from the control circuit
techniques are relatively easy to develop since the secondary cir-

History of 
Control circuit signals

Extract timings of signal 
parameters and  
fit probability  
distributions 

Bayesian approach
to update 

distributions

Condition-
based CB 

Data

Define performance 
indices

Fig. 4. Model to assess the condition of breaker.
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contacts fails to operate properly,

pf (AB) = 1 − p(t5)p(t6) (3)

Close Coil 
Current (CC) 
Fig. 5. Probability distribution of parameter ‘t2’.

uit is readily accessible for on-line monitoring. There are portable
est devices available on the market to collect and display the
ontrol circuit signals which are analog and/or digital waveforms
13]. The collected waveforms represent a “signature” of the cir-
uit breaker and a sample representation is shown in Fig. 2. The
ist of events, corresponding definitions and timing parameters are
resented in Table 1. The timing parameters t2–t6 are considered

n this work. A low cost circuit breaker monitor (CBM) develop-
ent for acquisition and automated analysis of condition-based

ata both offline and online is reported in Refs. [14,15]. Signal pro-
essing and expert system modules are developed for extracting
he exact timings of the signal parameters for both open and close
perations [16,17].

.2. Probability distribution

Before fitting a distribution to each parameter, understanding
he dependency between the parameters is needed. This can be
one through scatter plot analysis [18]. One of the most com-
on  patterns is a linear relationship between the two  variables.

 simple linear regression model is appropriate to represent the
esponse variable Y in terms of X, such as Y = ˇ0 + ˇ1X + ε. Some
imes the response variable Y linearly depends on more than
ne variable, say X1 and X2. In this case, Y can be represented
s, Y = ˇ0 + ˇ1X1 + ˇ2X2 + ε. This situation can get complex if a co-
inearity exists between the predictive variables X1 and X2. Such
ases can be dealt by a technique called ‘Principle Component
nalysis’ (PCA) [18]. In simple terms, PCA orthogonally transforms
1, X2 into Z1, Z2, respectively such that there is no correlation
mong Z1 and Z2. Now Y can be expressed as Y = ˇ′

0 + ˇ′
1Z1 +

′
2Z2 + ε.

A normal distribution is assumed for all signal parameters for
he purpose of illustration. The probability distribution of signal
arameter t2 is shown in Fig. 5. To proceed with the methodology,
efine upper and lower limits for each timing parameter such that

f new value of ‘ti’ falls in this range, then those parts of the breaker
hich cause the occurrence of time instant ‘ti’, operate properly.

or example, if t2 falls out of the limits, it means that there is some
roblem associated with close coil. The shaded area between the

ower and upper limits is the probability that the breaker will oper-
te properly. These limits are specific to each circuit breaker and
an be determined from manuals supplied by the manufacturer.
t is likely that circuit breakers of same voltage level, type and

anufacturer will have same limits associated with each timing
arameter.
In general, probability that breaker operates correctly with
espect to ‘ti’ is defined as, p(ti) = Pr(li ≤ ti ≤ ui), where, li is the lower
imit and ui is the upper limit. These probabilities are used to define
erformance indices for various assemblies of circuit breaker.
Fig. 6. Trip coil current.

3.3. Condition assessment

3.3.1. Performance of trip and close coils
A sample representation of trip coil current and close coil cur-

rent is shown in Figs. 6 and 7, respectively. After the trip or close
initiate is active, the coil current makes a gradual transition to a
nonzero value at time ‘t2’. The time instant ‘t3’ corresponds the time
at which the operating mechanism starts moving with the help of
trip or close coil energy. The coil current starts dropping down to
zero at time ‘t4’. The trip and close coil current signals should be
fairly smooth except for the dips at the beginning and end of the
waveform.

Possible abnormalities associated with trip and close coil
include: pick up delayed, dip delayed, drop-off delayed, etc. In
worst case, these abnormalities may  result in not opening/closing
the breaker when it is supposed to. These abnormalities can be
addressed by probabilities p(t2), p(t3) and p(t4) corresponding to
the timing parameters, t2, t3 and t4. These time instants should
occur with in the tolerance limits to assure proper operation of trip
and close coils. The performance index related to trip coil is defined
as the probability that trip coil fails to operate properly,

pf (TC) = 1 − p(t2)p(t3)p(t4) (1)

Similarly, the probability that the close coil fails to operate cor-
rectly can be computed as,

pf (CC) = 1 − p(t2)p(t3)p(t4) (2)

3.3.2. Performance of auxiliary contacts
As the breaker opens or closes its main contacts, it also

changes the status of the auxiliary ‘a’ and ‘b’ contacts as shown
in Figs. 8 and 9. Some possible abnormalities associated with oper-
ation of “a” and “b” contacts are: delay in transition, premature
transition, unstable contacts, noise and contacts bounce. If the tim-
ings t5 and t6 fall with in their tolerance limits, we can say the
auxiliary contacts operate normally. The performance index related
to auxiliary contacts can be defined as, the probability that auxiliary
t2 t3 t4 Time 

Fig. 7. Close coil current.
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Table 2
Performance indices.

Operation Performance index Performance

Open

pf(TC) Trip coil
pf(AB) Auxiliary ‘a’ and ‘b’ contacts
pf(FT) Trip latch mechanism
pf(MT) Operating mechanism
pf(Br) Breaker as a whole

pf(CC) Close coil
pf(AB) Auxiliary ‘a’ and ‘b’ contacts
Time 6

Fig. 8. “a” and “b” contacts transition during open operation.

.3.3. Performance of operating mechanism
The time period between the instant at which the TC (CC) rises

t2) and the instant at which the dip occurs (t3) is the ‘free travel
ime’ that equals to |t3 − t2|. This free travel time reflects the per-
ormance of the trip (close) latch mechanism. The timings t2 and t3
eed to fall in the tolerance limits for the breaker to have normal

ree travel time. Any violation reflects an improper operation of trip
close) latch mechanism. The corresponding performance index is
efined as the probability that free travel time is abnormal,

f (FT) = 1 − p(t2)p(t3) (4)

Note that this index reflects the performance of trip (close) latch
echanism alone, where as indices pf (TC) and pf (CC) defined

arlier reflect performance of trip (close) coil operation and latch
echanism together.
The coil current also needs to correlate with the event of “a” or

b” contact. The time period between the dip and the operation of
a” for open operation (“b” for close operation) is the mechanism
ravel time which is equal to |t6 − t3| for open (|t5 − t3| for close)
peration [17]. For normal ‘mechanism travel time’, the timings t5
nd t6 need to fall in corresponding tolerance limits. Any violation
f these timings can be reported as abnormal operation of breaker.
he corresponding performance index is defined as the probability
hat the mechanism travel time is abnormal,

f (MT) = 1 − p(t3)p(t6) (Open) (5)

f (MT) = 1 − p(t3)p(t5) (Close) (6)

.3.4. Performance of breaker
In addition to the performance of individual components of

reaker, an over all performance of the breaker may be assessed.
f none of the timings (t2 − t6) is violated, we can say that breaker
perates properly. In other words, if any of these timings fall out
ide the corresponding tolerance limits, we can say that the breaker
ails to operate properly. This quantity can be defined as probability
hat the breaker does not operate properly and is estimated as,
f (Br) = 1 −
6∏

i=2

p(ti) (7)

Contact voltage 

Time 

b

a

t5 t6 

Fig. 9. “a” and “b” contacts transition during close operation.
Close pf(FT) Close latch mechanism
pf(MT) Operating mechanism
pf(Br) Breaker as a whole

This failure probability index is sensitive to the measured data such
that if this index is computed using the breaker operational (both
maintenance and failure) data measured over its lifetime, then
it converges to failure rate of the breaker which is measured as
number of failures per year. The advantage of the proposed fail-
ure probability index is that it gives insight into which component
of the breaker is causing the problem instead of just reporting the
failure rate (number of failures per year). A summary of all per-
formance indices for both open and close operation is given in
Table 2.

3.3.5. Bayesian updating approach
This section provides a brief discussion of the Bayesian approach

to update the performance indices as the new data arrives. Let
� denote parameter of interest and y denote observed data, the
posterior distribution due to Bayes’ theorem is expressed as [19]:

p( �
∣∣ y) = �(�)L( y| �)∫

�
�(�)L( y| �)d�

(8)

where �(�) is the prior distribution and L( y| �) is likelihood func-
tion. The denominator of the above equation is a constant for a
given ‘y’, and hence the equation can be written as:

p( �
∣∣ y) ∝ �(�)L( y| �) (9)

Efficient Markov Chain Monte Carlo (MCMC) algorithms such
as Gibbs Sampler can be used to draw samples from the poste-
rior distribution and any posterior inference can be based on the
samples-thus obtained. The likelihood in (9) is the joint likelihood
of entire data (y1. . .yn), as shown in Fig. 10.  In our problem, yi is a
vector of observed timing parameters (t2, t3, t4 and t5) and a total
of n such observations are available.

3.4. Sequential Bayesian approach

The Bayesian approach discussed in previous section is often
suited for offline analysis, i.e. entire observed data set (y1. . .yn) is
used in defining the likelihood to estimate posterior distribution.

Now, if a new observation yn+1 is made, it will be appended to the
already existing data set and the whole data set (y1. . .yn+1) is used
in constructing the joint likelihood L(Y) to estimate the posterior
distribution P(�|Y). This means that each time a new observation is

y1

P(θ|Y) 

π0

Data Posterior Prior  Likelihood 

yn

L(Y) 

Fig. 10. Flow chart of Bayesian approach.
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P (θ| y1)
π0
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y1 L(y1)
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y2 L(y2)
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Table 3
Tolerance limits for normal operation [17].

Event Lower (ms) Upper (ms)

t2 0 2
t3 13.6 18.6
t4 26.4 35.4

parameters and hence can be treated as independent. A linear rela-
Fig. 11. Sequential Bayesian approach.

vailable, it will be appended to the existing observations and the
ata set will be processed in carrying out MCMC  simulations. If the
ata set gets accumulated enough, it might demand extra process-

ng time in MCMC  simulations and storage capacity on computer.
his difficulty can be overcome by Sequential Bayesian approach
hown in Fig. 11.  In this approach, when an observation is made,
he likelihood will be formed with that observation alone, and
osterior of previous data set will become the current prior. For
xample, when the observation yn+1 is made, the likelihood L(yn+1)
s constructed with data point yn+1 alone to estimate the posterior
istribution P(�|yn+1). Hence for each MCMC  simulation, we will be
ealing with previous posterior distribution (which captures the

nformation of already measured observations) and current obser-
ation. This way one does not have to deal with huge data sets

nd computation time can be greatly improved. This approach is
est suited for analyzing the condition-based data by updating the
erformance indices online.

Fig. 12. Scatter plot analysis
t5 28.7 38.7
t6 22.4 32.4

4. Case studies

To illustrate the proposed methodology, a history of each signal
parameter is developed using the waveforms taken from control
circuit of similar circuit breakers over a period of time. The type of
breaker and manufacturer with corresponding signal timings are
listed in Appendix A. Two case studies are considered to demon-
strate the proposed methodology.

4.1. Case study I

The data set consists of 19 records taken during opening of
circuit breaker under consideration. The sequence of timing of
parameter changes during opening is: t2 − t3 − t6 − t4 − t5. The
parameters are renamed as, y1 − y5 in that order. The lower and
upper tolerance limits for each timing parameter are shown in
Table 3.

The scatter plot analysis of the parameters is shown in Fig. 12.
The off diagonal plots show the dependency of each parameter
with other parameters. It is observed from the figure that, param-
eters y1, y2 and y3 show no particular relationship with any other
tionship is observed between y3 and y4, and can be expressed
as, y4 = ˇ0 + ˇ1y3 + ε4. The parameter y5 is linearly dependent on
both y3 and y4 and can be represented by a multiple regres-

 of timing parameters.
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Fig. 13. Performance indices for CB opening.

Table 4
Summary of analysis.

Performance
index

Observations Maintenance
action required?

pf(TC) Abnormal behavior of trip coil current. Yes
pf(AB) Auxiliary contacts are operating

properly
No

pf(FT) Abnormal free travel times. Improper
operation of trip latch mechanism

Yes

pf(MT) Abnormal mechanism travel times.
Improper operation of operating
mechanism.

Yes

Xj = J, for j = 1, 2, 3, 4 (18)

X5 = [ J Y4 ] (19)

Table 5
Tolerance limits for normal operation [17].

Event Lower (ms) Upper (ms)

t 0 5.5
S. Natti, M. Kezunovic / Electric Powe

ion model. Since there is a linear dependency between y3 and
4, principle component analysis explained in Section 2 can be
sed to represent y5 and the modified representation is given by
5 = ˇ0 + ˇ1y3 + ˇ2y4 + ε5.

Model formulation. Let j = 1, 2, 3, 4, 5, be the index over param-
ter; n be the total number of observations; Y: (n × j) be the data
et; the likelihood function and covariates using multiple linear
egression set-up are given below.

j∼N(Xjˇj, �2
j I), for j = 1, 2, 3, 4, 5 (10)

j = J, for j = 1, 2, 3 (11)

4 = [ J Y3 ] (12)

5 = [ J Y3 Y4 ] (13)

here J = [1,.  . .,1]T of dimension (n × 1), ˇj is the parameter vector
f interest, �2

j
is the measurement variance. In a Bayesian frame

ork, all the unknown parameters are considered as random vari-
bles and the uncertainty in the parameters is expressed in terms
f prior distribution. For the sake of analytical tractability and
he computational efficiency, we elicit conjugate priors for all the
nknown parameters in, given by:

∼N(�, ˙)  (14)

1
�2

∼� (a, b) (15)

here �, ˙,  a and b are prior parameters that are assumed to be
nown or set in a way to express lack of knowledge about the
arameters of interest. A non informative prior for  ̌ and �2 with
arameters � = 0,  ̇ = �2I, a = b = 1, was assumed in this simula-
ion. The posterior conditional distributions required in the Gibbs
ampling stage are given below.

ˇ∣∣Y,�2,�,˙
∼N(	(XT Y�−2 +

∑−1
�), 	)  where,

	 = ((XT X)�−2 +
∑−1

)
−1

(16)

1
�2

∣∣∣

,ˇ,�,˙

∼� (a + (Y − Xˇ)T J, b + n) (17)

MCMC  simulation is carried out to estimate the posterior dis-
ribution of the parameters of interest. WinBUGS, an open source
latform is used for performing MCMC  simulations [20]. We  used
iagnostic tools available such as Gleman–Rubin statistic to moni-
or the convergence of the MCMC  chains. We  threw-away the first
housand samples as burn-in (during which MCMC  chains are still
n the process of converging), and thinned down the subsequent
amples by a factor of ten to reduce the correlation in the sam-
les. After burn-in and thinning, we obtained five thousand samples
ased on which all the posterior inferences were drawn.

The computed performance indices for each data point are
hown in Fig. 13.  It is observed that all indices follow decreasing
attern as the new data point comes in. The indices pf (TC), pf (FT)
nd pf (MT) have probabilities lying above 0.6, suggesting abnor-
al  behavior of respective assemblies. The mechanism travel time

s the difference between t6 and t3, in which the time instant t3
elated to trip coil current and time instant t6 related to auxiliary
a’ contact. So, it is necessary to check which timing parameter is
esponsible for high values of index pf (MT).

We have already seen the auxiliary contacts are functioning

ell, which means that t5 occurs with in the tolerance limits. Hence

he problem is with t3, because of improper operation of trip latch
echanism. The performance index pf (Br), which depicts the per-

ormance of breaker has probabilities above 0.6 due to the abnormal
pf(Br) Improper operation of breaker as a
whole

Yes

operation of trip coil, trip latch and operation mechanism. A sum-
mary of the analysis is shown in Table 4.

4.2. Case study II

The data set consists of 23 records taken during closing of
circuit breaker under consideration. The sequence of timing param-
eters occurrence during closing is: t2 − t3 − t4 − t5 − t6. Rename the
parameters as, y1 − y5. The lower and upper tolerance limits for
each timing parameter are shown in Table 5.

The scatter plot analysis of the parameters is shown in Fig. 14.
It is observed that, parameters y1, y2 y3 and y4 show no particular
relationship with any other parameters and hence can be treated
as independent. A linear relationship between y4 and y5 and, y5 can
be used to expressed as y5 = ˇ0 + ˇ1y4 + ε5.

Model formulation. The model formulation presented in earlier
section can be used for the data under consideration. The likelihood
is expressed by (10). The covariate matrix X in (10) changes as:
2

t3 9.8 16.4
t4 26 43.4
t5 49.9 67.5
t6 62 75.8
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Fig. 14. Scatter plot an

he prior distribution is given by (14) and (15), and the posterior
istribution is given by (16) and (17).

The computed performance indices for each data point are given
n Fig. 15.  It can be observed that the index pf (AB) lies below 0.5
xcept for one record which has a probability of 1. This situation can
e interpreted as follows. Due to the abnormal operation of auxil-

ary contracts at that instant, one of the quantities p(t5) and p(t6) are
ither zero or close to zero. Hence the index pf(AB) = 1 − p(t5)p(t6),
s either 1 or close to 1. Except that one observation, we  can say
hat the auxiliary contacts are working properly. Also, the index pf

AB) has very low probabilities compared to other indices which
re also shown in Fig. 14.

Fig. 15. Performance indices for CB closing.
 of timing parameters.

The other indices follow almost the same pattern and a decreas-
ing trend can be observed as more observations come in. The
indices lie in the range of 0.6–0.8 for most of the records suggest-
ing improper operation of close coil and close latch mechanism. The
performance index, pf (Br) also lies above 0.6 suggesting that the
breaker is not operating properly.

A summary of the analysis is shown in Table 6. The table also
suggests if any maintenance action is required.

4.3. Sequential Bayesian approach

The computed performance indices using Sequential Bayesian
approach for both case studies are shown in Figs. 16 and 17.  It
can be observed that all indices have almost similar probabil-
ity range as obtained using the Bayesian approach in Section 3,
and hence the obtained conclusions about the performance of
breaker can still hold. Such a sequential approach is very suitable
for on-line posterior-inferences as it makes use of the posterior

distribution already obtained instead of the previously obtained
data.

In order for this approach to be computationally attractive and
to be put in a recursive frame work (as shown in Fig. 11),  we

Table 6
Summary of analysis.

Performance
index

Observations Maintenance
action required?

pf(CC) Abnormal behavior of close coil current. Yes
pf(AB) Auxiliary contacts are operating properly No
pf(FT) Abnormal free travel times. Improper

operation of close latch mechanism
Yes

pf(MT) Abnormal mechanism travel times.
Improper operation of operating
mechanism.

Yes

pf(Br) Improper operation of breaker as a whole Yes
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Fig. 18. Comparison of index pf(Br) between Bayesian and Sequential Bayesian
approach for both open and close operation.
Fig. 16. Performance indices for CB opening.

equire that prior and posterior distribution be from the same fam-
ly of distributions such as normal distribution for mean parameters
nd inverse gamma  distribution for variances. In our analysis we
pproximate the marginal posterior distribution with a normal dis-
ribution. The accuracy of this approximation is given in Fig. 18.  The
pper subplot shows the index, pf(Br) for open operation. It can be
een that except for the last observation, both follows the same
attern and same values.

The lower subplot shows the same index for close operation. In
his case also, the index computed in both Bayesian approaches
ollows the same pattern and the index values lie above 0.6
or both cases. However, a slight variation in computed indices
an be observed especially for last few data points. This is due
o the fact that we have less number of observed data points.
t is anticipated that as the observed data increases, the accu-
acy of the proposed Sequential Bayesian approach also increases.
ased on the results for the data sets considered in this work,
equential Bayesian approach can be utilized as approximation
o the Bayesian approach, such that it can be used for comput-

ng performance indices online. Note that the proposed Sequential
ayesian approach is data driven and hence the accuracy of the
ethod.

Fig. 17. Performance indices for CB closing.
The proposed methodology can be used to quantify the effect of
maintenance. This quantification can be visualized in two aspects
(i) an immediate maintenance action can be suggested depend-
ing on which performance index has high probability and (ii) the
impact of such maintenance action by observing the reduction
in performance index probability. The procedure is to measure
the new data after a maintenance action. Then update the tim-
ing distributions and performance indices, and compare with that
of previously calculated indices. Any difference can be reported
as the direct result of that particular maintenance action. This
way, it is possible to quantify the effect of maintenance and
hence to develop system level optimized risk-based maintenance
strategies.

5. Conclusion

A probabilistic methodology has been developed to achieve
quantification of maintenance. The developed methodology relates
the condition-based data to health of the breaker in terms
of performance indices. These indices are defined based on
probability distributions of timing parameters of control cir-
cuit signals. Bayesian approach is utilized to update the indices
as the new data arrives. The methodology has the ability to
compute and update the indices on-line, as the field data
arrives. The indices may  be used to develop risk-based decision
approaches.
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Appendix A.

See Tables A and B.
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Table  A
Summary of test records taken during the open operation.

Manufacturer and type: GE VIB-15.5-20000-2

Date t2 (ms) t3 (ms) t4 (ms) t5 (ms) t6 (ms)

2/12/2002 2.257 17.708 31.076 36.111 30.382
2/13/2002 1.215 9.375 33.333 37.674 29.167
2/13/2002 1.389 14.062 32.639 35.764 27.257
2/19/2002 1.389 14.757 29.514 35.764 32.292
2/21/2002 1.042 15.625 30.382 36.632 28.125
2/21/2002 1.563 18.056 31.250 34.375 29.687
2/21/2002 0.868 16.840 30.382 33.507 28.299
3/05/2002 2.083 23.090 28.646 36.111 27.604
3/05/2002 1.910 15.972 29.687 32.986 27.604
3/05/2002 2.431 14.931 29.167 34.375 28.299
6/10/2002 1.389 10.590 29.861 35.243 27.778
6/10/2002 1.215 15.278 30.208 33.681 29.167
6/10/2002 1.389 15.104 30.035 32.986 27.083
6/10/2002 1.389 11.458 29.514 33.333 27.604
6/11/2002 1.042 15.278 28.993 33.681 27.257
6/11/2002 1.563 14.062 26.910 31.076 25.000
6/11/2002 0.694 11.111 31.944 33.854 27.431
6/11/2002 3.299 11.458 30.729 34.549 28.125
6/11/2002 1.910 12.153 30.903 35.764 28.646

Table B
Summary of test records taken during the close operation.

Manufacturer and type: GE VIB-15.5-20000-2

Date t2 (ms) t3 (ms) t4 (ms) t5 (ms) t6 (ms)

2/12/2002 1.2150 10.417 28.993 56.597 66.840
2/12/2002 0.8680 12.500 32.639 58.160 68.229
2/13/2002 1.0420 14.236 48.785 55.903 66.493
2/13/2002 1.7360 11.979 43.229 52.951 66.146
2/19/2002 1.3890 17.361 37.500 59.896 78.130
2/21/2002 3.8190 4.861 34.375 56.424 67.535
2/21/2002 0.6940 11.632 27.257 58.854 68.576
2/21/2002 0.5210 11.285 50.521 60.764 68.924
2/21/2002 0.6940 27.604 29.514 62.153 71.007
3/05/2002 2.2570 17.882 29.687 55.382 66.146
3/05/2002 0.8680 11.458 29.514 57.292 67.014
3/05/2002 0.8680 14.236 28.299 57.292 68.403
3/05/2002 1.2150 8.854 34.028 56.944 61.285
6/10/2002 0.5210 13.889 53.299 53.819 64.931
6/10/2002 8.6800 14.583 41.493 60.590 71.354
6/10/2002 2.6040 13.194 30.208 52.778 65.799
6/10/2002 1.7360 11.285 32.292 63.542 72.917
6/11/2002 0.8680 14.236 31.076 63.021 72.569
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6/11/2002 0.6940 10.243 32.465 60.590 70.833
6/11/2002 0.6940 13.889 32.639 61.458 70.486
6/11/2002 1.0420 11.111 48.958 57.118 68.056
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