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The  connection  of  wind  generators  with  electric  power  system  influences  the  system  stability  and  nodal
voltages.  This  paper  performs  uncertainty  analysis  to investigate  the  impact  of  wind  generation  variation
on the  small  disturbance  voltage  stability.  The  probabilistic  collocation  method  (PCM)  is  presented  as
a computationally  efficient  method  to  conduct  the  uncertainty  analysis.  It has  been  implemented  in
a  simple  system  to  demonstrate  its applicability  in  analyzing  wind  generation  uncertainty.  More  case
studies  on  a larger  system  are  conducted  to  obtain  a deeper  understanding  of  how  the  system  voltage
stability  is  affected  by  the  integration  of  DFIG-based  wind  farms.  As compared  with  the traditional  Monte
mall disturbance
CM
ncertainty
ind generation

oltage stability
igenvalue
robability density function

Carlo simulation  method,  the  collocation  method  could  provide  a quite  accurate  approximation  for  the
eigenvalue  probabilistic  distribution  with  fewer  simulation  runs.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

As wind generation continues to expand in size and penetration
evel, a deeper understanding of its dynamic behavior and impact
n system stability becomes necessary. Since the wind farm pro-
uction is primarily determined by wind speed and thus fluctuating
onstantly, one of the most important studies is to investi-
ate the dynamic phenomena induced by the variation of wind
eneration.

Historically power system stability has been associated with
he generator rotor angle dynamics. Stimulated by several major
oltage collapses, the framework of power system voltage stabil-
ty as defined in [1] was originated around 1980s [2,3] and had
een extensively studied in 1990s [4,5]. Voltage stability can be
urther classified into small disturbance and large disturbance cate-
ories. The small disturbance voltage stability refers to the system’s
bility to maintain steady voltage levels following small distur-
ances experienced through continuous changes in load [6–8].

rom this view the small disturbance voltage stability is pre-
ominantly load stability. With the recent rapid growth of wind
eneration, operational uncertainty will extend from demand side

∗ Corresponding author. Tel.: +1 979 595 8859; fax: +1 979 845 9887.
E-mail addresses: zhengce@neo.tamu.edu (C. Zheng), kezunov@ece.tamu.edu
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378-7796/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2011.10.001
variability to a significant portion of the supply side variability as
well, which will impact system dynamic performance and cause
voltage deviations. As a result, it is imperative to take into account
the stochastic nature of wind farm output in voltage stability
study.

From the end of the last century, the wind generators based
on fixed-speed wind turbines have been included in stability
studies [9–11]. Later, the grid stability enhancement of the new
variable-speed wind generators, especially the Doubly-Fed Induc-
tion Generators (DFIG), has been reported in several publications
[12–14]. Recently, research efforts to study how further large scale
integration of variable-speed wind generators will influence the
power system stability and electricity market have been proposed
[15].

While such studies are important in their own  right, the impor-
tant issue of how the system small disturbance voltage stability
may  be influenced by the constantly changing wind generation has
not been fully explored yet.

A review of literature reveals that several studies have been
reported in the related area. Refs. [16,17] conducted modal and
eigenvalue sensitivity analysis on grid-connected DFIGs. The work
reported in [18] explored the relationship between uncertain wind

generation and system probabilistic small-signal stability analysis
via Monte Carlo simulation method.

As very few tools are available to analyze the parameter uncer-
tainties in time-domain simulations, Tatang et al. developed the

dx.doi.org/10.1016/j.epsr.2011.10.001
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
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robabilistic collocation method (PCM) to mathematically describe
he system response in terms of uncertain parameters [19]. This

ethod has been successfully applied to time-domain simulation
tudies in the area of global climate change [20]. Later in [21],
ockenberry et al. have introduced the probabilistic collocation
ethod in power system dynamic analysis and discussed its appli-

ability in load uncertainty analysis. More studies have been
eported to evaluate the advantage of PCM over other uncertainty
nalysis techniques in the time-domain analysis of power system
oad parameter uncertainties [22].

Normally the uncertainty analysis is performed under one of the
ollowing situations:

1) The relationship between the uncertain parameter and the out-
put of interest is known analytically;

2) The above relationship is unknown. A model of the “black box”
needs to be approximated first.

The PCM is designed to address the second situation. This
pproach allows the use of nonlinear models and evaluation of
omplicated output functions. It is particularly appealing because
t requires a much smaller number of simulations to reach an accu-
ate approximation which may  take hours or days for the traditional
echniques.

This paper studies how wind generation variation will impact
oltage stability under the new energy transfer scenario where
raditional generators are supplanted by variable-speed wind gen-
rators. Since the relationship between uncertain wind generation
nd system small disturbance voltage stability is not analytically
lear, the PCM is introduced to address the problem. It begins
ith the mathematical definitions of the collocation method. Then,

he wind-connected power system dynamic modeling and small
isturbance analysis procedures are provided in Section 3. Sec-
ions 4 and 5 constitute the key aspects of the paper. First,

 simple system is established to explore the applicability of
mplementing PCM in the wind generation uncertainty analy-
is. Next, a more complicated 23-bus power system is presented.
eeper understanding is obtained by monitoring the eigenvalue
ovement and voltage instability induced by the variation of
ind farm output. The computation efficiency of PCM has been
emonstrated by comparing it with traditional simulation based
pproaches.

. Probabilistic collocation method

The basic idea of PCM is to approximate the relationship
etween uncertain parameters of the system and the outputs
f interest through polynomial models. Based on the probabil-
ty density function of the uncertain parameters, the concepts
f orthogonal polynomials and Gaussian Quadrature Integration
re incorporated to solve for polynomial approximation functions.
nce the polynomials are obtained, collocation methods are gen-
rated to solve for the model coefficients. One major advantage of
CM is that only a handful of simulations are needed to determine
he approximation model.

.1. PCM with multiple inputs

To be general, let x1, x2,. . .,  xn be the uncertain parameters. Sup-
ose a system is represented by a complex, high-ordered, or even

black-box” model. Its response in terms of the uncertain parame-
ers is expressed as:

 = P(x1, x2, . . . , xn) (1)
 Systems Research 84 (2012) 10– 19 11

where U is the output of interest (system response). The objective
of PCM is to find the following approximation of U:

Û = C0 +
n∑

i=1

[Ci1pi1(xi) + Ci2pi2(xi) + · · · + Cimpim(xi)]

+
n∑

i=1

n∑
j = 1

j /= i

[Ckpi1(xi)pj1(xj)] (2)

where Û is an approximation of U, m is the order of this polyno-
mial model, C0, Ci1,. . .,  Cim, Ck are model coefficients, and pi1(xi),
pi2(xi),. . .,  pim(xi) are polynomial functions in terms of each uncer-
tain parameter xi.

2.2. Solving for polynomials

What we need then is to find the set of polynomials and coeffi-
cients listed in (2).  The polynomials could be derived by deploying
the concept of orthogonal polynomials [23]. The definition of
orthogonal polynomials is:∫

x

P(x)Hi(x)Hj(x)dx =
{

1, if i = j

0, if i /= j
(3)

where P(x) is user-defined weighting function of x, Hi(x) and Hj(x)
are orthogonal polynomials of x with the order of i and j (i, j = 0,
1,. . .).  Eq. (3) suggests that the inner product of any two orthogonal
polynomials of different order is always zero.

Assume the probability density function of the ith uncertain
parameter is f(xi). By substituting the weight function P(x) with
f(xi), and using the following definition:

H−1(x) = 0, H0(x) = 1 (4)

the remaining higher-order orthogonal polynomials can be derived
one by one. Fitting the derived orthogonal polynomials to pi1(xi),
pi2(xi),. . .,  pim(xi) of (2),  only the coefficients are left to be solved.

2.3. Solving for coefficients

As long as the polynomial functions in (2) are known, the model
coefficients can be calculated by feeding different inputs into the
system and recording corresponding system response. Suppose the
system has n uncertain parameters, and we are using a PCM model
with the order of m,  the sets of inputs that are needed will be:

1 + n × m +
(

n

2

)
(5)

Take the linear PCM model with single uncertain parameter x as
an example, Eq. (2) could be rewritten as:

Û = C0 + C1p1(x) (6)

What we need next is to feed the real system with two differ-
ent values of parameter x, and substitute Û with the real system
response U of each run. Thus the coefficients C0 and C1 in (6) could
be solved.

In the above linear model example, the two  different input
values are also called collocation points. It should be noted that
the selection of collocation points has significant impact on the
accuracy of model approximation. In order to find a good approx-

imation for the PCM model with smallest number of model runs,
the Gaussian Quadrature Integration [23] approach is deployed:
while selecting the collocation points, the points for the model runs
from the roots of the next higher order orthogonal polynomial will
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Fig. 1. PCM approximation used for voltage stability analysis.

e selected for each uncertain parameter. This approach enables
he collocation points spanning the high probability regions of
heir distribution and capturing as much of the behavior of system
esponse as possible.

The whole idea of applying PCM in power system uncer-
ainty analysis is demonstrated in Fig. 1. Selected set of uncertain
arameters is fed into the full dynamic model of a power system
nd corresponding output of interest is recorded. The relation-
hip between uncertain parameters and system response is then
pproximated through PCM once sufficient tests are conducted. In
his work, our output of interest is the ‘voltage stability indicator’,
hich essentially monitors the stability of system voltage follow-

ng small disturbances experienced through continuous changes in
ind farm production. An eigenvalue-based indicator is defined in

he follow-up sections.

. Small disturbance voltage stability

Voltage stability has long been evaluated by both static and
ynamic approaches while it essentially has dynamic nature. This
aper investigates the small disturbance (SD) voltage stability
roblem caused by fluctuation in wind generation from the view-
oint of its dynamical mechanism.

In a power system, on-load tap changing transformers and ther-
al  units in charge of load frequency control are working slowly

n a time frame of minutes, while generators, automatic voltage
egulators, governors and induction motor loads respond much
aster. Therefore, the power system can be approximated by two
implified systems: slow and fast response subsystems [4,5]. Their
ynamic behavior can be described by a set of differential equa-
ions:

˙ S = fS(xF , V, u) (7)

˙ F = fF (xS, xF , V, y, z, u, load) (8)

here xS and xF represents system slow and fast response state
ariables respectively, u represents the controllable variables, load
epresents uncontrollable variable vector which governs load con-
umption, V is the bus voltage vector, y is the node specification
ector in load flow equation, and z is the dependent variable vector.
qs. (7) and (8) stand for all the dynamic characteristics existing in
he whole system. The static relationships in loads and generating
nits, etc., are usually described by a set of algebraic equations:

 = gF (xS, xF , V, y, z, u, load) (9)

 = gN(xS, xF , V, u) (10)
A common approach to evaluate the voltage stability of a fast
ubsystem is through linearization of its differential equations and
igenvalue analysis. Slow variables xS are treated as constant. Fixing
Fig. 2. DFIG frequency (top) and reactive power (bottom) controllers.

u and load, Eqs. (8)–(10) are linearized around system equilibrium
point by eliminating both y and z:[

�ẋF

0

]
=

[
HF HV

YF JN − YV

] [
�xF

�V

]
(11)

The state-space matrices HF, HV, YF, JN and YV are defined in [4].
By eliminating �V, the linearized fast response subsystem could be
presented as:

�ẋF = [HF − HV (JN − YV )−1YF ]�xF = AFF �xF (12)

The matrix AFF is formulated from system differential algebraic
equations (DAE), which are detailed by dynamic modeling of each
network component.

3.1. DAE of doubly fed induction generator

Dynamic modeling of the DFIG-based wind generator is real-
ized by modeling of its several components: wind turbine, shaft,
generator, converter, and control system [9].  While there is a gen-
eral acceptance of models for wind turbine, drive train (shaft), and
induction generator, a variety of modeling schemes for the fre-
quency and VAR controllers are being used nowadays. The DFIG
frequency and VAR controllers adopted in this work are represented
in Fig. 2 [9]:

The differential equations to describe the dynamic behavior of
a DFIG are derived and listed in (13) and (14):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ė
′
q = − 1

T
′
0

[
E

′
q + (Xs − X

′
s)Ids

]
+

[
ωs

Xm

Xr
Vdr − (ωs − ωr)E

′
d

]
E

′
d

= − 1
T

′
0

[
E

′
d + (Xs − X

′
s)Iqs

]
+

[
−ωs

Xm

Xr
Vqr + (ωs − ωr)E

′
q

]
ω̇r = ωs

2H
(Tm − E

′
dIds − E

′
qIqs)

(13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṁ1 = KI3[Qref − (Qr + Qs)]

ṁ2 = KI4{KP3[Qref − (Qr + Qs)] + m1 − Idr}
ṁ3 = KI1[Pref − (Pr + Ps)]

ṁ4 = KI2{KP1[Pref − (Pr + Ps)] + m3 − Iqr}

(14)

In (14), m1–m4 are state variables associated with the reactive
power and frequency PI controllers. The definition of the state vari-
ables and constants included in (13) and (14) could be found in
[9,17].  The algebraic equations of DFIG are derived in Appendix A.

3.2. DAE of electric grid
Using the dynamic modeling process described in [4,6], the
DAEs for the remaining components of the electric network, includ-
ing synchronous machines, other types of generators, induction
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Table 1
1st to 6th order orthogonal polynomials for standard Gaussian distribution ı.

Order Orthogonal polynomials Roots

1st ı {0}
2nd ı2 − 1 {−1, 1}
3rd ı3 − 3ı {−1.7321, 0, 1.7321}
4th  ı4 − 6ı2 + 3 {−2.3344, −0.7420, 0.7420, 2.3344}

5 3
Fig. 3. Four-bus test system with a local wind farm at Bus 3.

otors, FACTs devices, load and tap-changing transformers are for-
ulated. By combining the network DAE with the set of DFIG DAE,

he overall set of state variables xF, as well as matrices HF, HV, YF,
N, YV and AFF in (11) and (12) can be determined.

.3. Small disturbance voltage stability evaluation

The SD voltage stability analysis essentially monitors the eigen-
alue trajectory of the matrix AFF in (12). For a given wind
eneration level, using the DAEs formulated in the previous steps,

 system state matrix AFF can be uniquely decided. Calculating the
igenvalues of AFF at each operating point, the system SD voltage
tability can be evaluated by checking if all the eigenvalues are
ocated in the left hand half of the complex plane. The fast response
ubsystem is losing voltage stability when one of the real parts of
he eigenvalues of AFF vanishes. The critical voltage stability point
s identified when one of the eigenvalues reaches imaginary axis.

Note that although the above treatment is generally accepted
nd widely used, there is still a lack of mathematical validation
f the treatment. However, rigorous numerical simulation studies
ave demonstrated that the singularity or sign change of determi-
ant of system Jacobian matrix always indicates the loss of voltage
tability [3–5]. Hence the above eigenvalue monitoring approach
eems valid when studying the voltage problems in a power system.
o verify the above treatment, a linear voltage stability indica-
or detailed in [24,25] will be used to compare the results of the
roposed eigenvalue-based indicator.

. Implementation of PCM in a simple system

In this section, the collocation method will be applied in the
ncertainty analysis of a simple four-bus system to demonstrate

ts validity. The system one-line diagram is illustrated in Fig. 3, in
hich the DFIG-based wind farm is connected at Bus 3.

.1. Parameter specification

It is necessary to determine the uncertain parameters and corre-
ponding output of interest in Fig. 1 before conducting uncertainty
nalysis. In the test system, the wind speed vwind is selected as the
ingle uncertain parameter. As discussed earlier, the real part of
he critical eigenvalues Eigreal of matrix AFF is able to indicate the
D voltage stability. Hence it is selected as the output of interest.
he relationship between vwind and Eigreal is analytically clear. The
ime-varying wind speed will constantly change the nodal injection
f the wind farm at its point of common coupling (PCC), which has
ignificant impact on the system load flow and oscillation modes.

herefore the variation of wind speed will influence the distribution
f critical eigenvalues on the complex plane.

The DFIG dynamic model presented in the previous section is
dopted, with the rated power, cut-in, cut-out and rated wind
5th ı − 10ı + 15ı  {−2.8570, −1.3556, 0, 1.3556, 2.8570}
6th  ı6 − 15ı4 + 45ı2 − 15 {−3.9694, −3.4839, −j3.5908, j3.5908,

3.4839, 3.9694}

speeds specified as 3.6 MW,  4 m/s, 20.9 m/s  and 12.9 m/s  respec-
tively.

Also, the probability density function (PDF) of the uncertain
parameter needs to be specified beforehand. In our research, the
wind speed with a Gaussian distribution is assumed first. This is
only for the purpose of illustrating the calculation process of PCM,
although it may  not be realistic. A more widely used Weibull distri-
bution will be adopted and examined in the next section. With the
combination of energy storage, the wind farm injection instead of
the wind speed will be taken as the input parameter for PCM. Under
this situation, PDFs other than the Weibull distribution, such as the
normal distribution, need to be considered.

The PDF of a Gaussian distribution is:

f  (vwind) =

⎧⎨⎩
1√

2��2
e−((vwind−�)2/2�2), vwind ≥ 0

0, vwind < 0

(15)

When vwind ≥ 0, a mean of � = 9 and a standard deviation of � = 2
are assumed.

4.2. Polynomial approximation

What we need then is to approximate the relationship between
the uncertain parameter vwind and system response Eigreal based on
the PDF of wind speed. A “variable transformation” is applied in
PCM: the random variable X with any kind of Gaussian distribution
will be represented by the following transformation:

X = � + �[p1(ı)] (16)

where p1(ı) is the first order orthogonal polynomial of the standard
normal distribution ı, which has a mean value of �ı = 0 and a stan-
dard deviation of �ı = 1. The advantage of this transformation lies
in the convenience of using same orthogonal polynomials to stand
for any Gaussian distribution [19,20].

The Hermite Polynomials designed for standard normal distri-
bution are deployed to derive orthogonal polynomials. The first to
sixth order polynomial expressions and their respective roots are
listed in Table 1. The roots of the involved polynomials are listed
for the Gaussian Quadrature Integration method to generate collo-
cation points.

Eq. (2) will be solved using the generated collocation points and
corresponding system responses. Note that for the case of a sin-
gle uncertain parameter and mth order PCM model, the number of
required collocation points, according to (5),  is m + 1.

The algorithm steps and pseudocode to obtain the polynomial
model between the uncertain parameter vwind and system response
Eigreal are summarized in Table 2 (description of how to calculate
SSR for model error evaluation will be introduced later).

4.3. Discussion
Although the nodal injection power of a wind farm is primar-
ily determined by the on-site wind speed, several other factors may
influence its value in normal practice. For example, wind generation
may  vary along with the real time electricity prices. The setting of
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Table 2
Algorithm steps: polynomial approximation between vwind and Eigreal .

1. Choose threshold ε
2.  Specify the PDF of vwind: f (vwind)

Perform variable transformation (e.g. Eq. (16)) if needed
3. Substitute into Eqs. (3) and (4):∫

x
f (vwind)H1(x)(1)dx = 0,

∫
x

f (vwind)H2(x)H1(x)dx = 0,

4. Solve for the orthogonal polynomials: H1(x), H2(x),. . .,  HN(x)
5. Repeat:

for k = 1 → N do
find the roots of Hk+1(x): R1, R2,. . .,  Rk+1

run model on collocation points R1, R2,. . .,  Rk+1

substitute Û in Eq. (2) with the model output Eigreal

solve the coefficients of Eq. (2): C0, C1,. . .,  Ck+1

end for
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SSR ≤ ε (SSR calculated from Eq. (19))
6. Use approximation for uncertainty analysis

ind turbine controllers may  be switched between terminal volt-
ge control mode and power factor control mode. System operators
ay  request the wind farm to adjust its output level according to

he frequency control requirements. In addition, the system voltage
tability is dependent on a number of stochastic system parame-
ers such as load fluctuations and equipment outages. Under these
ituations, the problem is more complicated and system response
s harder to predict. However, it is still possible for PCM to approx-
mate the relationship by taking into account multiple uncertain
arameters. The polynomial model will be expanded according to
qs. (1) and (2) described in Section 2.1.

Suppose we are considering two uncertain parameters, that is,
oad total active power demand PL and wind power injection Pwind.
he new PCM expansion will be:

= C0 + C1H1(PL) + C2H1(Pwind) + C3H2(PL) + C4H2(Pwind)

+ · · · +  CnH1(PL)H1(Pwind) (17)

As shown in (17), for a model which is second-order or higher,
 cross-product term is added to the end of the expansion for
igher approximation accuracy. In the above example, the collo-
ation points (roots) will be derived for PL and Pwind separately.
ifferent pairs of roots will be formed using different combina-

ions. The ranking of the combinations is arranged according to the
robability of the involved roots. The first pair will always be the
ighest probability root for each parameter, which is the so-called
anchor point”. Also, one more input pair is needed correspond-
ng to the cross-product term. For this we use the second-highest
robability root of PL and Pwind respectively.
Nevertheless, the wind speed is chosen as the single uncertain
arameter in this research for the purpose of not adding complex-

ty to the problem. The merit of doing this is that the relationship
etween vwind and Eigreal could be clearly identified. Further, the

able 3
ollocation points, critical eigenvalues, and calculated coefficients for 1st to 4th order mo

Order Collocation points Corresponding wind speed (m/s) 

1st
−1 7 

1  11 

2nd
−1.7321  5.5358 

0  9 

1.7321 12.4642 

3rd

−2.3344  4.3312 

−0.7420 7.5160 

0.7420 10.4840 

2.3344 13.6688 

4th

−2.8570  3.2860 

−1.3556 6.2888 

0  9 

1.3556 11.7112 

2.8570 14.7140 
 Systems Research 84 (2012) 10– 19

power factor control for all DFIGs in a wind farm is assumed, which
complies with the grid code of most power systems in the United
States.

The incorporation of energy storage units help address uncer-
tainty in wind generation and modern forecasting technique is
sufficiently mature that wind speed could be predicted with accept-
able accuracy. This helps to relieve the stochastic nature of wind
farm output, yet it does not contradict with the proposed method:

• The supply side variability introduced by renewable generations
shall not be overlooked. Energy storage system compensates
uncertainty; however it does not eliminate the variation. Opera-
tional constraints such as limited capacity of storage units limit
the maximum generation commitment that can be met  reliably
by a wind farm;

• Knowing exactly how much power will be generated can actually
help to take advantage of the PCM technique, that is, the PDF of
wind farm output will be less dependent on the on-site historical
data but can be extracted from the forecasted values;

• The proposed method is able to establish a computationally less
expensive link between the wind farm output and system SD
voltage stability. As engineers try to capture more detail and
complexity of the power system dynamic processes, the mod-
els become more complex to run. This simplification makes the
proposed method particularly appealing.

We will next discuss the difference of the PCM model when
wind speed falls in different zones divided by the DFIG cut-in speed
vin, cut-out speed vout and rated wind speed vrated. The mechanical
power extracted from the wind turbine is given as:

Pm =

⎧⎪⎨⎪⎩
0

g(vwind)

Prated

vwind < vin; vout ≤ vwind

vin ≤ vwind < vrated

vrated ≤ vwind < vout

(18)

where g(vwind) = 1/2�AwtCp(	, 
)v3
wind

, in which � is the air den-
sity, Awt is the wind turbine swept area, and Cp is function of tip
speed ratio 	 and pitch angle 
 [4].  An observation of (18) is that
the system response should be discussed differently as the way the
mechanical power is divided. This means although the PDF of wind
speed is continuous, the system may  respond in a discrete man-
ner. So the relationship between vwind and Eigreal should be treated
carefully in PCM. The system response Eigreal should be modeled
as: ⎧

Eigreal =

⎪⎨⎪⎩
1 wind wind in out wind

P2(vwind) S2 : vin < vwind < vrated

P3(vwind) S3 : vrated < vwind < vout

(19)

del under the second situation S2.

Real part of critical eigenvalues Re{	(AFF)} Calculated coefficients

0.08200 C0 = −0.0697
−0.22130 C1 = −0.1517

0.39060 C0 = −0.0521
−0.10702 C1 = −0.1920
−0.27450 C2 = 0.0551

0.60692 C0 = −0.0694
0.01757 C1 = −0.1715

−0.20061 C2 = 0.0492
−0.30839 C3 = −0.0100

0.82942 C0 = −0.0544
0.18819 C1 = −0.1835

−0.10702 C2 = 0.0473
−0.24875 C3 = −0.0040
−0.33729 C4 = −0.0018



C. Zheng, M. Kezunovic / Electric Power Systems Research 84 (2012) 10– 19 15

Table  4
Error evaluation for 1st to 3rd order PCM approximation under the situation of S2.

Order Expected Ŷ SSR
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Fig. 4. Comparison of the linear VCI and the PCM model.

Table 5
PCM approximation for situations S1 and S3.

Situation Critical eigenvalues PCM model

S1 (cut out) 1.1376 ± j5.0616 Û = 1.1376
ˆ

1st −0.0697 0.0602
2nd  −0.0521 0.0274
3rd  −0.0694 0.0075

here P1, P2 and P3 are PCM models under the situations of S1, S2
nd S3 respectively.

The formulation for first to third order models under the situ-
tion of S2 is given in Table 3. The dominant state variables of the
ritical eigenvalues are speed deviation ωSG and angle deviation 
SG
f the synchronous generator at Bus 2. It can be observed that in
rd and 4th order models, sometimes we need to obtain Eigreal even
hen vwind is out of the interval of S2. In such cases, we  still assume

hat the wind generation keeps increasing/decreasing even if the
ind speed goes beyond the rated speed or drop below the cut-out

peed. This makes sure the model approximation could accurately
eflect the system dynamic behavior within S2.

.4. Error evaluation

By feeding the generated collocation points into the test system,
he corresponding critical eigenvalues are obtained. The coeffi-
ients of the PCM model could then be solved by substituting into
2). The calculated coefficients are also listed in Table 3.

Last but not least, the approximation error should be evaluated
o guarantee the model accuracy. In this work, the Sum-Square-
oot (SSR) error is calculated:

SR =

√∑j
i=1[(Ŷi − Yi)

2 × f (ıi)]

f (ı̂) × j
(20)

here Y is the real system response and Ŷ is the PCM approxi-
ation, j is the number of collocation points generated for error

valuation, f(ıi) is the PDF at the value of ıi, and ı̂ is the collocation
oint with highest probability.

To check the error, the collocation points derived from the next
igher order orthogonal polynomials are used to run the model
everal more times. The error evaluation results for 1st to 3rd order
odels are shown in Table 4.
A larger SSR indicates a larger deviation of PCM model approx-

mation from real system behavior and vice versa. In this case
n error criterion of 1 × 10−2 is assumed. From Table 4 it can be
oncluded that the linear and quadratic models have poor approxi-
ations and should not be deployed. The third order model, with an

cceptably small SSR, is able to represent the relationship between
wind and Eigreal more accurately.

.5. Comparison with linear voltage collapse indicator

The above obtained PCM model will be compared with a lin-
ar Voltage Collapse Indicator (VCI) first reported in [24,25]. The
est system has been simplified to a two-bus system: the Thevenin
quivalent is derived for the network to the left of Bus 3; the wind
arm, treated as negative load, is combined with the load at Bus 4.
reliminary results are shown in Fig. 4. Note that while the abscissa
or PCM model is wind speed, we use the wind farm MW injection
s input for VCI.

It can be concluded from Fig. 4 that with the decrease of wind
peed (hence the wind farm injection), there is an agreement of the

wo indicators to their voltage instability point (0 for the eigenvalue
ndicator and 1 for VCI). We  can also observe that compared with
he linear VCI, the third-order PCM model exhibits a non-linear
haracteristic.
S3 (rated) −0.2916 ± j7.6980 U = −0.2916

For situations S1 and S3, it is easy to obtain their PCM models
because however the wind speed varies under these two scenarios,
the wind generator output will be kept constant. Thus the sys-
tem structure will stay unchanged and so will the system critical
eigenvalues. The corresponding results are shown in Table 5.

Until now, the system response in terms of an uncertain input
has been modeled by means of PCM approximation. The obtained
third order model is in a discontinuity form induced by the three
different wind speed conditions.

5. Case study using a larger system

Now that its applicability has been verified in a simple system,
the PCM-based uncertainty analysis will be conducted in this sec-
tion for a larger system. A deeper understanding will be obtained
by applying it to the SD voltage stability analysis.

5.1. System description

A 6-machine 23-bus system to be examined has the single-line
diagram shown in Fig. 5. This network contains six generator buses
(Bus 1 to Bus 6), and six load buses (Bus 7 to Bus 12). The system
raw data is originally provided by the commercial software PSS/E
[26].

The SD voltage stability of this system is explored when the gen-
erator buses are replaced by the collector of wind generators one
by one. The wind generator model used is the GE 3.6 MW DFIG-
based WTG. The technical specifications of this model can be found
in [27]. In the simulation, to replace the original Bus i generators
with the capacity of Pi, a wind farm equipped with N (=Pi/3.6) DFIGs
is assumed.

To make the application more realistic and representative, a
Weibull distribution shown in Fig. 6 is applied to describe the wind

speed probability distribution. (Note that if the proposed method is
applied to an actual system, the local historical data should be used
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Fig. 5. Single-line diagram of the 6-machine 23-bus system.
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Fig. 7. Flow chart of the PSDVS calculation process.
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Fig. 6. Wind speed represented by Weibull distribution.

o specify the PDF of wind speed.) The PDF of a Weibull distribution
s:

 (x; 	, k) =
{

k

	

(
x

	

)k−1
e−(x/	)k

, x ≥ 0

0, x < 0
(21)

Weibull curves with different 	 and k are shown in Fig. 6. The
istribution with k = 2.2, 	 = 10.5 is adopted.

.2. PSDVS calculation

In [18,28],  the system probabilistic small-signal stability is
alculated as a stability index. Similarly, the system SD voltage
tability could be evaluated in a probabilistic manner, and the prob-
bilistic collocation method is an efficient tool to conduct this task.

In our research, the PCM is implemented to obtain the prob-
bility of small disturbance voltage stability (PSDVS). Computer
rograms are developed to calculate the PSDVS, which is illustrated

n the flow chart of Fig. 7.
We will replace the Bus 1 generator with DFIG-based wind

enerators to demonstrate the calculation of PSDVS. First, the
rthogonal polynomials need to be derived. For vwind with
eibull distribution, the Associated Laguerre Polynomials [29] are
eployed to derive the orthogonal polynomials. The derivation
f orthogonal polynomials for Weibull distribution is detailed in
ppendix B.
Fig. 8. Trajectory of Eigreal with the variation of vwind under the situation of S2 using
third-order PCM model.

The polynomial approximation for Eigreal is then obtained
by means of the previously illustrated algorithm steps: Eigreal ={

S1 : 0.4936
S2 : C0 = −0.454, C1 = −0.179, C2 = 0.051, C3 = −0.011
S3 : −0.7150
According to the above PCM model, the trajectory of Eigreal with

the variation of vwind under the situation of S2 is plotted in Fig. 8.
From the discussion in Section 3, the voltage instability is possible
depending whether or not the above eigenvalue passes the origin,
which is also described in [4,5] as the dynamic bifurcation point.

It could be observed that Eigreal has been represented by a mono-
tonic function of vwind within S2. Given the PDF of random variable
vwind as fX(vwind), and the PCM monotonic model Eigreal = P2(vwind),
the PDF of Eigreal could be calculated using the following equation
[30]:

fY (y) =
∣∣∣∣ 1

P
′ (P−1(y))

∣∣∣∣ × fX (P−1
2 (y)) (22)
where fY(y) is the PDF of Eigreal, P−1
2 denotes the inverse function,

and P2
′ denotes the derivative. The meaning of this equation could

be interpreted as follows: If the PDF of a random variable X is known
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Table  6
Comparative results using PCM and Monte Carlo method.

Bus No. E(Ŷ) PSDVS Dominant states

PCM MC 5000 MC  10,000

1 −0.4544 87.5% 85.8% 87.9% E
′
q4, ω5, 
5

2 0.0347 42.3% 43.4% 42.6% E
′
q3, ω3, 
3

3 −0.0354 57.5% 56.2% 57.7% E
′
q2, 
2, E

′
q5

4 −0.3219 81.6% 76.9% 80.1% E
′
q2, E

′
q3

5 1.3822 0 0 0 E
′
d2

, E
′
d3

6 0.0101 49.0% 47.8% 48.1% E
′
q4

a
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Fig. 9. PDF of Eigreal under the situation of S2 using third-order PCM model.

s fX(x), it is possible to calculate the PDF of some variable Y = g(X).
his is also called a “change of variable” and is in practice used
o generate a random variable of arbitrary shape fg(X) = fY using a
nown random number generator.

Implementing the above equation, the probability distribution
f Eigreal is calculated and shown in Fig. 9.

Area 1 in Fig. 9 indicates the voltage is SD stable. The integral
f Area 1 gives PSDVS under the situation of S2. From the analysis
f previous section as well as simulation results, all Eigreal under S3
aturally falls on the stable side of the plane and all Eigreal under
1 are located on the unstable side. Two approaches could be used
hen to obtain the total PSDVS. One is the analytical method. Define
(U) as the probability of Eigreal at the value of U:

SDVS =
∫ U<0

S1

f (U)dU +
∫ U<0

S2

f (U)dU +
∫ U<0

S3

f (U)dU

=
(∫ U<0

S2

f (U)dU +
∫

S3

f (U)dU

)
× 100% (23)

The other approach approximates the PDF of Eigreal via a suf-
cient number of model simulations. Assuming that m out of n
ample points are located on the stable side, then the PSDVS is
epresented as the ratio of m over n.

.3. Numerical results

The PSDVS could be viewed as a voltage security index to reflect
ow the system would be SD stable if the traditional generators are
eplaced by wind generators at one particular bus. Table 6 gives the
alculated PSDVS of each of the six generator buses in the 23-bus

ystem. Meanwhile, using participation factors [6],  the dominant
tate variables associated with each mode are obtained and listed
n Table 6. Ed

′ and Eq
′ are the direct and quadrature axis components

f the voltage behind the transient reactance, ı is the rotor angular
Fig. 10. Calculated probabilistic distribution of Eigreal under the situation of S2 using
PCM and Monte Carlo method.

displacement, and ω is the rotor angular velocity. The subscript
numbers stand for the most relevant generators in each mode.

The results shown in Table 6 provide useful information to be
considered by the system designers while determining the opti-
mum  wind farm locations. Further, based on the calculation results,
VAR arrangement strategy could be made for wind farm to adjust
the reactive power output of DFIGs as well as the other reactive
power compensators (SVC, STATCOM, etc.), and thus improve the
voltage stability of the overall system.

Also listed in Table 6 are the numerical results obtained from
traditional Monte Carlo method. This simulation-based approach is
applied using 5000 samples and 10000 samples respectively. Sim-
ulation results are shown in Fig. 10 to compare with the results
obtained by third order PCM model.

If the uncertainty analysis is conducted using the Monte Carlo
approach from the beginning, thousands of simulations are needed
to get the PDF of Eigreal. In comparison, with the ability to obtain
the probabilistic distribution of Eigreal with similar accuracy, the
third-order polynomial approximation method needs only four
simulations for model derivation and a few more simulations for
error evaluation. This could save a huge amount of time and compu-
tational resources. The PCM technique has exhibited great potential
in the uncertainty analysis for wind generation.

6. Conclusions

In this paper, the issue of small disturbance voltage stability con-
sidering the nodal injection uncertainty of grid-connected DFIGs
has been investigated and the following conclusions are reached:

• The probabilistic collocation method is introduced to perform the

uncertainty analysis for wind generation. A classification of sit-
uations derived from the wind turbine cut-in, cut-out and rated
wind speed is required. With the three situations specified, the
PCM is applicable for small disturbance voltage stability analysis.
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Error evaluation is necessary for PCM to accurately represent the
relationship between uncertain parameters and the outputs of
interest. The PCM model with lower deviation from the real sys-
tem enables a better approximation.
The PCM is applied to a larger system. Simulation results indicate
that the variation of wind farm output has considerable impact on
the distribution of system critical eigenvalues. A deeper under-
standing could be obtained through the calculation of voltage
security index PSDVS.
As compared with the traditional simulation based approaches,
the collocation method could provide quite an accurate approxi-
mation for the probabilistic distribution of system response with
a much smaller number of model runs.

ppendix A. Derivation of DFIG algebraic equations is
rovided below

Stator algebraic equations:

Vqs = E
′
q − RsIqs − X

′
sIds

Vds = E
′
d

− RsIds − X
′
sIqs

Ps = VdsIds + VqsIqs

Qs = VqsIds − VdsIqs

Rotor algebraic equations:⎧⎪⎨⎪⎩
Vqr = KP2[KP1(Pref − P) + m3 − Iqr] + m4
Vdr = KP4[KP3(Qref − Q ) + m1 − Idr] + m2
Pr = VdrIdr + VqrIqr

Qr = VqrIdr − VdrIqr

Other algebraic equations:

Idr = Xm

Xr
Ids + E

′
q

Xm

Iqr = Xm

Xr
Iqs − E

′
q

Xm
P = Pr + Ps

Q = Qr + Qs

ppendix B. Derivation of orthogonal polynomials for
eibull distribution

The Associated Laguerre Polynomials are orthogonal over [0,∞)
ith respect to the measure with weighting function xae−x:

∞

0

xae−xL(a)
n (x)L(a)

m (x)dx = 0 (n /=  m)

Compare with the orthogonal polynomials with “Weibull”
eighting function:

∞

0

(
x

	

)k−1
e−(x/	)k

Hn(x)Hm(x)dx = 0, (n /= m)

It can be seen that variable transformation needs to be per-
ormed. Similar to that of Gaussian distribution, we  assume:

 =
(

x

	

)k
Substitute into the equation above, we have

∞

0

Y (k−1)/ke−Y Hn(Y)Hm(Y)dY = 0, (n /= m)
[
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Hence the associated Laguerre polynomials could be used con-
sidering the following:⎧⎨⎩ x = 	Y

1
k

a = k − 1
k

The associated Laguerre polynomial of degree n is:

L(a)
n (x) =

n∑
i=0

(−1)i

(
n + a
n − i

)
xi

i!

In our case:

a  = k − 1
k

= 0.545

The first few orthogonal polynomials and collocation points are
derived as follows:

H0(Y) = 1
H1(Y) = −Y + 1.545

H2(Y) = 1
2

Y2 − 2.545Y + 1.966

H3(Y) = −1
6

Y3 + 1.773Y2 − 4.511Y + 2.323

Note that Y is an intermediate variable. Once the collocation
points are determined, they will be transformed back to corre-
sponding wind speeds. The 1st to 5th order collocation points and
corresponding wind speeds are provided below:

Order Collocation points Corresponding wind speed
(m/s)

1st {1.5450} {12.7958}
2nd {0.9497, 4.1403} {10.2566, 20.0290}
3rd  {0.6899, 2.8437, 7.1044} {8.8697, 16.885, 25.6004}
4th {0.5426, 2.1938, 5.1911,

10.2525}
{7.9524, 15.0065, 22.1977,
30.2453}

5th {0.4474, 1.7913, 4.1501,
7.8057, 13.5305}

{7.2848, 13.6857, 20.0505,
26.7197, 34.3102}
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