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An accurate fault location algorithm using synchronized sampling

M. Kezunovi¢ and J. Mrkic

Texas A&M University, College Station. TX 77843, L'SA

B. Perunici¢
Lamar University, Beaumont, TX 77710, USA
(Received November 5, 1993)

Abstract

This paper introduces new fault location algorithms based on synchronized sampling. A time domain model of a transmission line
is used as a basis for the algorithm development. Samples of voltages and currents at the ends of a transmission line are taken
synchronously and used to calculate fault location. The paper discusses two different algorithm forms utilizing two line models.
A number of tests are performed using EMTP simulations of faults. The algorithm results show high accuracy while the

computational burden is moderate.
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Introduction

Fault location on transmission lines is a very well-
known problem which has been studied for a long time
[1-3]}. Introduction of microprocessors to the field of
power system monitoring and control has initiated ex-
tensive research on digital algorithms for fault location.
As a result, a variety of different approaches have been
introduced [4-15). The main differences between vari-
ous algorithms defined so far are in the models used,
data required and errors introduced when calculating
fault location.

In the past, the most common approach was to
model transmission lines using phasors. This approach
is based on calculation of the apparent line im-
pedance using data from either one or all transmission
line ends. If data from only one end are used, then the
number of unknowns is larger than the number
of equations. This problem was solved by making
various assumptions such as: the fault resistance is zero
[4]; the fault resistance has a real part only [5, 6]; the
ratio of the fault currents from two line ends is a real
number [6]; the ratio of the fault currents is determined
using knowledge about source impedances [6]. When
the measurements from two ends are available, the
number of equations is sufficient to find the location of
the fault. When the sampling at two ends is synchro-
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nized, the calculations are rather simple [7, 8]. If the
sampling is not synchronized, then nonlinear equa-
tions have to be solved and increased computational
burden is introduced [8,9). The phasor approach is
quite attractive as long as all of the algorithm assump-
tions are met and the phasor quantities are estimated
accurately.

Another approach is based on the use of the Laplace
and the Fourier transforms [10, 11]. This technique is
based on the superposition theorem and again intro-
duces several assumptions regarding fault resistance
and current ratios. Here also, the results obtained are
quite accurate as long as the assumptions are
satisfied.

The traveling wave approach was also.studied [12-
15). This approach is based either on the travel time
measurements using correlation techniques [12] or on
the reconstruction of voltages and currents at the fault
location [13-15]). The traveling wave techniques offer
some advantages but the computational complexity is
increased.

Finally, a time domain representation of a transmis-
sion line model has also been considered [16]. The
model is obtained using Laplace and Z transforms.
Data samples are considered as being available from
one end only. The voltage ai the other end is estimated
using prefault data.
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The time domain approach to fault location is uti-
lized in this paper to achieve extreme accuracies by
using samples at both ends of a transmission line. Two
different algorithm forms are developed for short and
long transmission line applications. Since the synchro-
nized sampling technology is becoming affordable and
reliable [17-19). it is demonstrated that this new ap-
proach has some important advantages over those in-
troduced so far.

The main advantage of the new approach is its
rather simple requirement that only the line model and
the samples at the two ends of a transmission line need
to be known for algorithm implementation. Model
characteristics and operating conditions in the rest of
the system do not need to be known. Operating condi-
tions on the line of interest can also be highly unbal-
anced, even including conditions where some of the
phases are deenergized. An inductive component of
fault inductance many be present and the fault resis-
tance may be variable in time. Fault waveforms may be
arbitrary, containing any number of nonfundamental
frequency components. Data sampling requirements are
almost arbitrary, only requiring samples to be synchro-
nized and taken at a sufficiently high sampling rate to
provide adequate approximation of the derivatives.
Line transposition does not significantly affect the re-
sults. The influence of mutual coupling can be taken
into account if synchronized samples from the corre-
sponding ends of the parallel lines are made available.
Finally, the new algorithms provide very reliable fault
detection and fault classification, which may be useful
in some more elaborate fault analysis applications.
Last, but not least, the new approach provides very
good accuracy, as good as in some of the ‘best’ ap-
proaches proposed so far, and in many instances even
better. All of the mentioned advantages indicate that
the new approach provides fault location that is indeed
robust and, as such, may be more practical than some
of the other schemes proposed so far.

Theoretical background

The principles of the technique using the synchro-
nized phase voltage and current samples at both ends of
the transmission line to calculate the location of the
fault on any line are presented in this section.

Consider the arbitrary unfaulted three-phase system
depicted in Fig. 1. The two ends of the transmission line
of interest are labeled S and R. The transmission line
connects two parts of the system, labeled subsystem |
and subsystem 2. The vectors of the phase voltages and
currents at the two ends of the transmission line are v,
is. and vg. ix. respectively. The length of the line is d.
At any location X along the given line, the instanta-
neous values of the phase voltages and currents are
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Fig. 1. Unfaulted three-phase system.

related through the linear partial differential equations:
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where r. 1, g. and ¢ are matrices of line parameters per
unit length, that is, resistance, inductance, conductance,
and capacitance, respectively. x is the distance between
the point X and the end S of the transmission line. vx
and iy are vectors of the instantaneous phase voltages
and currents at point X of the line, defined as

vy = o(x, 1) = [u,(x. 1), vy (X, 2), ve(x, 1)) (2)
iy = (v, 1) = [L,(x, 1), By(x. 1), B.(x, )] (3)

In the case of a homogenecous line (constant line
parameters per unit length), the solution of the system
of equations (1) relates the phase voltages and currents
of any two points along the line. Thus, the voltages and
currents at the end S can be expressed in terms of the
voltages and currents at the end R (and vice versa) as

ve = L'{rs.ds, d} (4
ig = L'{rs. is, d} (5)

v, is. and oy, iz are vectors defined in the same manner
as vy. ix (eqns. (2) and (3)). L* and L' are linear
operators with respect to the vectors of voltages v and
currents i.

The relations between voltages and currents at any
two points on the transmission line (eqns. (4) and (5))
are not influenced by the configuration nor the parame-
ters of the rest of the system of which the line is a part.
On the other hand, these relations depend on the unit
length line parameters (r,1, g, ¢), and the line length
(d): this dependence is not necessarily linear. The par-
ticular form of the operators L* and L’ depends on the
transmission line parameters and its electrical length.

Now. consider the faulted three-phase transmission
line depicted in Fig. 2. The fault point is denoted as F,
and is at a distance x from the line end R.
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Fig. 2. Faulted three-phase transmission line
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Due to a fault occurrence at the point F, the trans-
mission line is divided into two homogeneous parts: one
is between the end S and the fault point F, and the
other one is between the end R and F. At any point on
the line between S and F the voltages can be expressed
in terms of the end S voltages and currents only.
Similarly, at any point on the line between R and F the
voltages can be expressed in terms of the end R voltages
and currents only. Therefore, the point F on the faulted
line is the unique location at which the phase voltages
ve can be expressed in terms of both line ends’ voltages
and currents (eqns. (4) and (5)).

The phase voltages at the fault point F are related to
both line ends’ phase voltages and currents (eqn. (4)):

v =L vs, is,d — x} (6)
vg = L*{vg, ig, x} (7

where ve is the vector of instantaneous phase voltages
defined in the same way as vy (eqn. (2)), and d — x is
the distance between end S and the fault point F.

Because of the continuity of the voltage along the
transmission line, eqns. (6) and (7) can be combined,
leading to

Lt{vg,ig, d —x} = L*{vg, ig, x} (8)

Finally, consider a hypothetical unfaulted three-
phase transmission line having the same characteristics
as the faulted one. This line is depicted in Fig. 3. The
point F on this hypothetical unfaulted line is at the
same location as the fault point F on the faulted line
(Fig. 2). The vectors of phase voltages and currents of
the hypothetical line are defined as for the case of the
faulted line.

Let us assume that the vectors of voltages and
currents at the end S of the hypothetical line are exactly
the same as the corresponding ones og and ig on the
actual faulted line. Therefore, at the point F on the
hypothetical line the voltages are the same as the corre-
sponding ones on the faulted line. Since the hypotheti-
cal line is unfaulted, it is homogeneous over its whole
length. Therefore, the end R voltages and currents on
the hypothetical line can be expressed, using eqgns. (4)
and (95), as

ﬁRsz{vs,is, d} (9)
i = L'{vg. i, d) (10)

The parts of the hypothetical line between the end S
and F and the end R and F are also homogeneous.
Thus, for the point F, expression (8) becomes

Livg ig,d —x} = L"[bg . ig. X} (1

Due to the assumption that the end S voltages and
currents are the same on both the faulted and hypothet-
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Fig. 3. Hypothetical three-phase transmission line.

ical lines, eqns. (8) and (11) can be combined, leading
to

L{vg, ig, x} — L{dg.lg,x} =0 (12)

The linearity of operators L* and L‘ with respect to the
vectors of voltages and currents enables expression (12)
to be rewritten as

L*{Avg, Aig, x} =0 (13)
where Avg and Aiy are defined as

Avg = vg — bR

Aig =ig ~ ﬁz

Equation (13) is the generic fault location equation. It
relates the unknown distance x to the fault point F and
the mismatch of the phase voltages and currents, Avg
and Aix . The mismatches Avg and Aiz contain both line
ends’ voltage and current values. While vg and ig are
the measured vectors at one end, 5, and iy are the
calculated ones. The vectors ©x and iy are calculated
using the measured values of the other line end, vg and
is (eqns. (9) and (10)). Therefore, the generic equation
(13) implicitly relates the unknown distance x to the
fault point F, and both line ends’ instantaneous phase
voltages and currents, vg, is and vg, ig.

For a particular transmission line, the generic equa-
tion (13) has a unique form that determines the way it
can be solved for an unknown fault location. Here, the
derivation of the explicit fault location equation in the
case of a short line will be given first. Then, the
derivation and the indirect way of solving the generic
equation (13) in the case of a long line will be pre-
sented. The short-line model is suitable when the con-
ductance and capacitance to earth may be neglected.
The long-line model is adequate for lines with low
losses having very small resistance and conductance.
Most of the published literature considers short lines as
being up to 50 miles long and long lines as over 150
miles.

Short-line application

This section presents the derivation of the fault
location equation for the short transmission line, start-
ing from the generic equation (13). Consider the short
three-phase transmission line depicted in Fig. 4. The
parts of the system connected to the ends of the line are
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amitted ia this Figure, The fault point F is al & distance
x from the line end R, and o is the total line length.
I the case of the short transmission ling, the line 15
commonly represented as the serial conmection of an
imductance and a resistance since the paraliel line capac-
itance and conduclance are negligible. 11 is assumed
that the line is homogensous over its whole length, and
that it has constant parameters per unit length {Fig. 4
sell [ phase) mesisiance: F,, Fabs Fa
mitual PEsiSIAnCe Fy, P The
self { phase) inductance: L, f. iy
mutual inductance; L. Lo N
Mo other assumplions aboul the transmission bne are
meeded.
For such a irapsmission line, the generic fault lo-
cation equation [13) becomes a system of three equa-
tiqns:

: digir}
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Since the phase voltage and current at both ends of
ihe line are avalable in the sampled form, the system of
fault bocation equations [ 14) can be rewritien in discrete
Torm as

A (k) + B_(kix =0 i 15)

where A_(k) and E_(k) for m=a,bc and &=
1.2, ..., N are defined as

A k) = gk = ramik)

Tom &
= .n'r_ JEH L [{rw + i"-;)r,.;ﬂ']

—r:":.' Il.—lil] { 16}

&, Kezonoiic & @ fElaree Paser Froimi Résiach, 30 g redal Jar- rse

I,
B iky= ¥ {{rw+;)11,k:kr+rl,5|i:r|
p=a.be

—'rﬁ{ir..ll = 1} + iyghk — |:||} {17}

In eqns. (160 and (17), cogif) and ropik) are phase
{m = a, b c} voltage samples taken a1 the Lme instamt
fmk & (k=1,2,....N5) at the line ends 5 and R,
respectively. Sumilarly, | (k) and i, (k) are phase cur-
rent samples taken a1 the time F = & Ar at the line ends
5 and R. Ar is the sampling step and N is the total
number of samples considered.

The sysiem of faull location equations given by
capression {15} is overspecified since 1t has just one
unknown varable, distance x to the faull poinl. There-
fore, the unknown distamce x is determined using the
fpasi-square estimare for all three phases of the line
1egether:

s E i ""n-u':]'sn[k]
¥ = _---.u.-:l-l. HSJ

b3 E B_ (k)

W= bok=]

Expression {18) is the faull location equation that
defines the laul kcation algorithm for the short three-
phase transmision line. This expression & simple and
valid for any system operating conditions. Also, i doss
pot depend on the fvpe of faull, nos onm the fawli
respslance.

Lonp-Tine applicatian

This section deseribes an algonthm for solving the
generic fault location equation {13} in the case of a long
transmission fpe. For the shorl transmission line, the
generic faull Bocation expression has the form that
enables explicit calculation of the distance ¥ to the fault
point {eqn. (15)) In the case of a long trandmission
line, the system of equations {1} has a solution that
does ned allow the derivation of an explear faule loca-
tion equalion.

The hine comsidered 15 o lossbess single-phase long
rransmissicn line, Then, the system of differential equa-
thens (| becomes a pair of parial differential equa-
LI TS

a1

L] filv, ¢
: = === ] (19
Y it

LT ]

drly, I celx. 1)

i = e (20)
X it

Using the travchng wawve approach, the solution of
egns. (19) and (20) has the Torm of Besgeron's ogua-
tions [ Appendis AL Thus. eqns, (4) and {5} thal relate
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the voltages and currents of the two ends of the homo-
geneous line become

R (1) =%[is(’ 1) —ix(t + 1)} - % [tx(t — 1) +v5(r + 7))
21

ig()=— 5 fis(t — 1) +ig(t +1)] —-;]:[L'S(l —1) —vg(t + 7))
] (22)

where vg and i correspond to end R of the line, and
vs(f) and is(r) correspond to end S of the line. = is the
surge impedance of the line and t is the surge traveling
time, defined as

Z=(1/(‘)l‘: (23)
t=d(lc)'* (24)

It can be seen that in eqns. (21) and (22) the distance
does not appear explicitly: it is hidden in the surge
traveling time r. Furthermore. © does not appear as the
variable of eqns. (21) and (22). but as the value on
which the voltage and current depend. Physically, eqns.
(21) and (22) have the following meaning: to calculate
the voltage and current at any point of the line, the
‘forward" and ‘backward’ waveforms of the current and
voltage of the other point are needed, and they are a
function of the distance. Therefore, an explicit fault
location equation for the long transmission line cannot
be derived from the generic equation (13). Instead, an
indirect method is used to solve the fault location
equation in this case.

Above, the traveling wave approach was briefly in-
troduced for the case of the long single-phase line. In
the case of the three-phase line. the modal transform
(Appendix A) is applied to decouple the system of
equations (1). This enables the traveling wave proce-
dure to be applied on each of the three modes, leading
to Bergeron’s equations for the three-phase line. In
defining the algorithm for the long transmission line,
only mode-1 signals are considered.

The generic fault location equation (13) combined
with the long-line equations (21) and (22) leads to the
expression

L*{Avg, Aig, x} = = [Aig (1 — vx) — Aig (t + vx))

N w

1
+ 3 [Avg(t —vx) + Avg(t +vx)] =0

(25)

where = (/c)'>.
The following is a discrete version of eqn. (25):

L*{Arg,. Aig,, X} = Z[Alg y_p = Nir_p )

[STNE}

1
+ 3 [Atg w ~ AR 4. ] =0
(26)
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where
Aig, = Aig(n Al
Arg, = Arg(n Ar)

m At =rx
m, n = integer

Equation (26) is available for each sample. Since
there is only one unknown x, the system of equations is
again overspecified. The best estimate may be found
based on the minimum least-square estimate technique.

In this particular case, the criterion to be minimized
is

N
j(x) = [L‘( Aanv Aian ’")]: (27)
n=0
Since the criterion is not linearly dependent on m, the
search for a minimum has to be performed in an
approximate way. First, several tentative values of m
are selected using the short-line algorithm. The value of
the criterion defined by eqn. (27) is calculated for these
tentative values of m. The calculated values are used to
make an approximation of the criterion function using
a parabola. The minimum of this parabola determines
the final value of m for which the corresponding fault

location is determined.

The algorithm for the long transmission line involves
some additional computations when compared with
that for the short line. Nevertheless, it is again valid for
any line operating conditions, and it does not depend
on the type of fault, nor the fault resistance.

Performance evaluation

The performances of both the short- and long-line
algorithms were evaluated using EMTP generated data
[20]. Two test systems were modeled using the EMTP,
one for testing the short-line algorithm, the other for
testing the long-line algorithm. Both test systems are
models of actual power systems. Test system 1| is a
161 kV power system with a short transmission line
used for testing the short-line fault location algorithm.
The transmission line considered is fully transposed and
13.35 miles long. The one-line diagram of system 1 is
shown in Fig. 5; the transmission line of interest is that
between buses 2 and 3. Data for the EMTP model of
system | are given in Appendix B. .

The other test system (system 2) is 345kV with a
long transmission line considered for testing the fault
location algorithm for the long lines. The transmission
line of interest is untransposed and 195 miles long. The
one-line diagram of system 2 is shown in Fig. 6; the
transmission line of interest is between buses | and 2.
Data for the EMTP model of system 2 are also given in
Appendix B.

It is interesting to note that the lines used for simula-
tion have one unusual feature: the short line is trans-
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posed and the long one is not. This should not affect
the importance of the results since the algorithms have
been developed for untransposed lines.

A number of EMTP simulations of various fault
events were performed for testing the proposed al-
gorithms. The initial studies have shown that the al-
gorithms perform best for the largest number of
samples. Since the sample window is limited, the largest
number of samples is obtained by increasing the sam-
pling frequency. The total time of the simulation was
T, = 0.032s. The data window used in the calculations
contained two cycles of postfault data, starting from
the fault inception.

The test cases were generated by varying the follow-
ing four parameters of the fault event: fault location,
type of fault, fault resistance, and incidence angle of the
fault occurrence.

Each of these simulation parameters was varied
within the range of its lower and upper physically
meaningful boundaries to provide for the extensive
coverage of possible real fault events. Three values for
the fault location were considered: 0.1. 0.5, and 0.8.
where location 1.0 corresponds to the whole length of
the transmission line. Four typical fault types were
simulated: single-line to ground (phase a to ground),
two-phase (phase b to phase c). two-phase to ground
(phase b to phase ¢ to ground), and three-phase to
ground. For the fault resistance, values of Ry =3 Q and
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R,=50Q were considered, while for the incidence
angle, values of 0" and 90" were used.

The error of the fault location algorithms was ob-
served for a variety of fault cases. The error (°4) of the
fault location algorithm is defined as

error (%)

_Jactual fault loc. — calculated fault loc.|
B total line length

x 100

The results of the test are given in Tables 1-8; the
first four tables correspond to the short-line fault loca-
tion algorithm, the other four to the long-line al-
gorithm. They are organized by the type of fault.

Comparing the error entries related to Ry, it can be
seen that the variation in the error is very small. As
expected, the algorithms are not affected by the value of
the fault resistance R;. Also, the variation in the inci-
dence angle does not have much influence on the error.

TABLE |
Error (") of the short-line fault location algorithm for a phase a to
ground fault

Location

of fault 0.1 0.5 0.8

Incidence

angle (deg) 0 90 0 90 0 90
Ri=3Q 04344 04346 02901 02093 0.0388 0.0390
R =500 04576 0.4549 02237 0.2229 0.0464 0.0472
TABLE 2

Error (%) of the short-line fault location algorithm for a three-phase
to ground fault

Location

of fault 0.1 0.5 0.8
Incidence

angle (deg) 0 9 0 90 0 90

Ri=3Q 0.7084 0.7084 0.3658 0.3658 0.1066 0.1066
Ri=50Q 0.7084 0.6991 0.3658 0.3612 0.1066 0.1052

TABLE 3
Error (%) of the short-line fault location algorithm for a phase b to
phase ¢ fault

Location

of fault 01 0.5 038

Incidence

angle (deg)y 0 90 0 90 0 90

R, =13Q 07075 0.7166 03658 03707  0.1075  0.1091

R =50Q 07428 07283 0.3915 03855 0.1241 0.1262
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However, for wvanous faull dypes, the corresponding
entries of different tubdes show & variation in the error
magnitude. These observations are equally valid for
both the short and the long ines,

When the bocaiion of fhe Maolt = consmdered, 1l was
nivicad thil the error vanes less for the long hine than
for the shorl one. Further studses are meeded o explain
thes behavior.

Frnally, the results indicate thar the error is rather
small lor all cases. as i never execesds §.75%. Moreover,
tvpical eryors @re 005% for the most common fault tvpe,
aamely, the line to groord favlt, Sech a small error s
achieved under varying Taull characteristics, which
confirms the robusiness of 1he algorithms

Tt should also be noted that the computational com-
plexily of the time-domam approach is moderate. Al-
though speed 15 nol & majes fequitement for the fault
locatwen algonthm. it is an impartani property. The
initial studics have shown thas the same algorithm can
be used for detection and dassfication of the faull as
well, Thus, there are indications thal the algorithms
could be implemented as a part of a protection device,
In that case, the speed of the algonthm becomes very
imporlant.

Conclusions

The following conclusions are based on the resulls
presented in this paper.

# The error lor the time domain approach presented
in almost imvariant for the vanous Taoli conditions and
hence the alposithm provides a robust solution Lo Lhe
Fault location problem.

#» The mew approach improves the accuracy while the
computational burden & stll kept relanvely low.

& The synchromzed nmp'ling I:-b:hniqu! reg wired for
1his approach 13 :m::ging as & rehable and cost-effective
prisclice.
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Appendix A

Bergeron’s equations
. 1 . 1
is(t—1)+-tst —1) = —ig (1) + = vr(1) (Al)

1 1
—is(0) + Zvstn) =gt — 1) + Zvr(t — 7) (A2)
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Modal transform

When the system of coupled wave equations for a
three-phase line is written as

gLQ - Si(x, 1)

= = (A3)
cxX ct
5i(;r. 0 - e So(x, 1) (Ad)
éx ét
then the modal transform, defined as
v(x, 1) = Se!™edN(x, 1) (A5)
i(x. 1) = Qi'™49(x, 1) (A6)
leads to the decoupled modal equations
(:v(mo.de(x‘ 1 — _pmoder c*i(modj)(_‘,. ,) (A7)
éx ét
(’i““"‘i"(x. t) = _ c(mode Gotmode x, 1) (A8)
éx ét

where M%) and ¢(™>4 are now diagonal matrices.

Appendix B

TABLE Bl .
Source impedances (system 1)

Bus name Per unit value () Real value (Q)
1 Z, 0.58 + j6.32 1.503 + j16.382
z, 0.58 +j11.41 1.503 + j29.576
2 zZ, 0.07 +1.07 0.181 +j2.774
Z, 0.04 +j0.73 1.104 + j1.892
3 Z, 0.75 + j4.07 1.944 +j10.550
z, 0.31 +j3.04 0.804 + j7.880
TABLE B2

System equivalents (system 1)

Bus name Per unit value (£2) Real value (Q2)
1-3 z, 119.69 +188.93 310.248 + j489.725
z, 1.80 +j11.44 4.666 + j29.654
1-2 Zy x o
zZ, 12.58 + j74.00 32.609 + ;191.815
2-3 Z, 39.79 + j100.63 103.140 + j260.843
Z, 2.75+j18.32 7.128 + j47.487
Sm O _47mi_____ 0
- T )
i i pel
1 ' i
: 28:m| 28:rm
R I
1 I < '
+4mi : 176mi
' 1 1
L] L] |

Fig. Bl. Long transmission line configuration (system 2).
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TABLE B3 TABLE B4
Self impedances of transmission lines (system 1) Long transmission line parameters (system 2)
Bus name Per unit value (Q) Real value (Q) Conductors Parameters
1-3(#1) Z, 894 +j28.34 23.1734 + j73.4601 DC resistance Outside Skin effect
Z, 1.52 +j9.06 3.9400 +j23.4844 (Qimile) diameter D correction
1-3(#2) Z, 8.52+j29.23 22.0847 +75.7671 (inches) factor
Z, 1.38 +)8.80 3.5771 +)76.1300
1-3(#3) Z, 8.40 +j29.37 21.7736 +)76.1300 0 3.4400 0.495 0.5000
Z, 1.34 +)8.73 3.4734 +22.6290 1 0.0740 1.345 0.2498
1-2 Zy 8.42 +j26.74 21.8255 + j69.3128 2 0.0740 1.345 0.2498
z, 1.50 +j8.47 3.8882 +321.9551 3 0.0740 1.345 0.2498
2-3 Z, 3.67 +j12.38 9.5130 + j32.0902

Z, 0.67 +3.92 1.7367 +j10.1610




