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Simplified Algorithms for Removal of the Effect of
Exponentially Decaying DC-Offset on the Fourier

Algorithm
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Abstract—The impact of exponentially decaying direct com-
ponent on the Fourier algorithm is theoretically investigated first
in this paper. A new algorithm to eliminate the error caused
by this decaying component in the Fourier algorithm has been
proposed. Furthermore, three simplified methods are proposed to
alleviate the computation burden. The performance of the Fourier
algorithm improved with these methods along with the least error
squares algorithm is evaluated using a simple network and a
real power system modeled by EMTP. The evaluation results are
presented and discussed.

Index Terms—Digital relaying, Fourier algorithm, least error
squares algorithm, suppression of exponentially decaying DC
offset effects.

I. INTRODUCTION

T HE Fourier algorithm is one of the most popular algo-
rithms used for variety of measurements in control and

protection applications [1]. It is used to accurately extract the
harmonic components if the following assumptions are satis-
fied.

• The highest frequency of input signal is less than ,
where N is the number of sampling points per fundamental
frequency cycle.

• There is no exponentially decaying direct component.
In practice, one can use a well-designed low-pass filter to

meet the requirement of assumption 1, but for assumption 2, it
is not likely to be satisfied in fault condition. The exponentially
decaying dc offset in some of the signals introduces fairly large
errors [2]. The calculated amplitude may deviate from the real
value more than 15% in the worst case [3]. For a high perfor-
mance digital relay, such a large relative error cannot be toler-
ated.

If both a constant and an exponentially decaying dc offset
are present in the input signals, an algorithm on how to apply
full-cycle discrete Fourier transformer for one cycle plus two
samples to calculate and compensate for the dc offset is pro-
posed [4]. Half cycle plus two samples are needed to remove
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the dc offset if there are no even harmonics in the input signals.
The proposed algorithms demand a lot of calculation to remove
the dc offset. The data window and amount of calculation are of
concern when using this algorithm for the real-time application.
Benmouyal proposed a digital mimic filter to suppress the ef-
fect of an exponentially decaying component over a broad range
of time constants (0.5 to five cycles and more) [1]. This filter
achieves the best performance once the time constant of this ex-
ponentially decaying component is equal to the time constant
of the mimic filter. Another approach is to take the decaying dc
component into account without knowing its time constant. In
this case, the first two terms of the Taylor series expansion are
used to represent the decaying direct component, then the least
error squares (LES) curve fitting technique can be applied to es-
timate the fundamental and other harmonics [5]. The recursive
least squares curve fitting algorithm can be introduced to reduce
the computation burden [6], [7]. Another method was proposed
to recognize the magnitude and time constant of the decaying
dc offset term in [2]. In this method, the residual terms caused
by some harmonics are ignored in the estimation procedure. The
assumption that these residual terms are negligible should not be
taken for granted, and needs to be investigated further. The per-
formance of Kalman filters is evaluated in [1]. It was concluded
that the third-order Kalman filters is sensitive to variations of
the dc offset time constant. A Kalman filter should only be su-
perior in removing a dc-offset if its time constant is the same as
the one modeled in the state, transition matrix.

This paper presents a method to eliminate the influence of
exponentially decaying direct component on the Fourier algo-
rithm. Three simplified algorithms are proposed to alleviate the
computation burden. The performance evaluation will focus on
their immunity to dc-offset.

II. I MPACT OFEXPONENTIALLY DECAYING DC OFFSET ON THE

FOURIER ALGORITHM

Several papers discuss the problem of how large the error
caused by the exponentially decaying dc offset could be [1]–[3];
however, there is no consistent conclusion regarding this error.
The different models and incompatible simulation results con-
tribute to this inconsistency. The ideal network is widely used
to reveal how a large decaying dc offset can cause the estimated
magnitude of the Fourier algorithm to deviate from the real mag-
nitude. In this paper, a theoretical investigation of this error is
carried out for an ideal network shown in Fig. 1. The impact of
different sampling rates on this error is also studied.
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Fig. 1. Ideal network for Fourier algorithm error estimation.

In this ideal network, the equivalent source impedance will
change with the power system operating condition, and the fault
resistance is a variable as well. Consequently, the time constant

has to be considered as a variable.
Assume the switch K is closed at , then the fault current

can be solved as

(1)

where , , and
. Before switch K is closed, the current is zero.

That yields

(2)

Now we try to find a specific set of and which causes
the occurrence of the maximum amplitude error of the Fourier
algorithm. Assume the sampling interval of a digital relay is

, here , is the period of the power system fundamental
frequency , and N is the number of sampled points per funda-
mental frequency cycle.

Uniformly sampling every , we obtain a
set of discrete values over a fundamental fre-
quency cycle

(3)

where .
The fundamental frequency components and can be

obtained as follows after applying the Fourier algorithm to

(4)

(5)

By substituting expression (3) into above equations, we can
attain two concise formulas as follows:

(6)

(7)

The amplitude deviation of the Fourier algorithm can be ob-
served from

(8)

TABLE I
PEAK VALUE OF THE FOURIER ALGORITHM

By using the result from the Appendix and expression (2), the
above equations can be simplified as

(9)

A numerical method is used to find the peak values of
. At first, fix the sampling rate at 16 points a cycle,

then change from 1 to 360 , and from 0.1 to 10 .
It is found that the peak value of the Fourier algorithm occurs
around four points

• at , ;
• at , ;
• at , ;
• at , .

From this result, we find out that the maximum deviation is
with the minimum peak, which did not draw as much attention
as the maximum peak did from the researchers in the past. The
deviation of the minimum peak from the real amplitude is almost
twice the one of the maximum peak in this case.

The maximum error is less than 10%, which is smaller than
the 15% found in [1] and [3]. This is because the maximum
and minimum value here are calculated from the first cycle of
fault current. When the data window moves on, the calculated
amplitude will vary with this window as well [3]. Sampling rate
is another factor affecting the peak value and time at which the
peak value occurs. The most commonly used sampling rates in
digital relays are investigated here. For a specific, and ,
we will find out the peak values in the result from the Fourier
algorithm for the first data window after the fault occurs.
The study results are listed in Table I.

From this table, it can be observed that the peak value changes
a little for different sampling rates. The position where the peak
occurs will change with different, , and the data window
position, although the variation of the peak value itself is very
small.

From the evaluation using the ideal network, we can draw
conclusion that the dc offset may have drastic impact on the
Fourier algorithm. If no measurement correction is adopted, the
relative error of the amplitude from the Fourier algorithm may
reach 20%, which is purely caused by this decaying dc offset.

III. I MPROVED FOURIER ALGORITHM

In this paper, a new algorithm is proposed to eliminate the
exponentially decaying direct component from the Fourier algo-
rithm. The first assumption given in Section I as well as the as-
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sumption that there is no subharmonics in the input signal
need to be satisfied.

Based on these assumptions, we can express the input signal
as

(10)

where
magnitude of the dc offset;
time constant of the decaying component;
amplitude of the m-th ac component;
initial angle of the m-th ac component.

Uniformly sampling every , we obtain
a set of discrete values in a fundamental fre-
quency cycle. That is

(11)

In the above equation, , and .
Phadke,et al. used two partial sums to estimate and

[2]. However, a residual term exists in the partial sums, and this
residual term may cause an error in the estimation ofand .
In this paper, we define a new partial sum term as follows:

(12)

From simple trigonometric relationship, we know that

(13)

Accordingly

(14)

Similarly, we define another partial sum as

(15)

From (14) and (15), we can solve theand as

(16)

(17)

Once and are obtained, the set of sampled values can be
modified as

(18)

This new set of sampled values no longer contains the expo-
nentially decaying component. Applying the Fourier algorithm
to this new set of samples, we can accurately extract the i-th har-
monic component.

Denote the cosine and sine part of the new algorithm as
and , respectively, then

(19)

(20)

where and are the cosine and sine parts of the Fourier
algorithm for the unmodified sampled set. By using the deriva-
tion in the Appendix and substituting

into (19) and (20), finally a compact expression of
and is obtained

(21)

(22)

Actually, it is not necessary to calculate and every
iteration. Once is estimated, and are two constants
for this specific decaying waveform’s time constant. Substi-
tuting these two constants to the next iteration will make the
calculation for eliminating dc offset very simple. and
can be calculated in a recursive fashion

(23)

(24)

where superscript stands for the data window for the set
of samples , and stands for the previous
window. The improved algorithm can also be implemented in a
recursive fashion by combining the recursive Fourier algorithm
with above formulas.

The above algorithm can totally eliminate the exponentially
decaying component if the input signal can be described by (10).
Even though every effort has been made to reduce the computa-
tional burden, it is still very difficult to accurately calculate the

and for the microprocessor without the floating-point
operation instruction. How to make a compromise between the
calculation burden and accuracy is always a challenge for dig-
ital relay designer. A tradeoff has been made in the following
three simplified algorithms.
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IV. SIMPLIFIED ALGORITHMS

A. Simplified Algorithm 1

At first, a straight line is used to approximate the exponen-
tially decaying dc offset. This straight line is determined by the
first order Taylor-series expansion at over interval [0,

]. That is

(25)

After this approximation, the two partial sums become

(26)

(27)

From these two equations, we solve

(28)

Since the Fourier algorithm has the ability to filter out the
nondecaying direct component, it is not necessary to subtract

from the sampled values. Therefore, the set of samples can
be modified as

(29)

After the Fourier algorithm is applied to this new value, a
compact form of this simplified algorithm is obtained

(30)

(31)

Obviously, there is no modification for , and the constant
can be precalculated. Also,

calculation can be implemented in a recursive fashion

(32)

B. Simplified Algorithm 2

It is expected that a higher accuracy in the approximation
can be achieved by expanding into the second order
Taylor series at over interval [0, ]. That is

(33)

This quadratic fit needs one more equation to solve for,
, and . A new partial sum is defined as

(34)

Similarly, three linear equations can be obtained, and we can
solve

(35)

(36)

By modifying the set of sampled values with

(37)

and after applying the Fourier algorithm to this new value, the
following concise formulas are derived:

(38)

(39)

can be simplified as . The modification
term of can be implemented in a recursive fashion to re-
duce the computational burden.

C. Simplified Algorithm 3

The above two simplified algorithms based on the Taylor
expansion are a good approximation only around expansion
point, and the error may be large over the whole interval [0,

]. The problem of approximating a continuous function by a
finite linear combination of given functions can be approached
in various ways. For the purpose of representing arbitrary con-
tinuous functions by elementary functions (e.g. polynomials),
it is natural to use the maximum deviation of the approximation
as a measure of the quality of approximation [8]. To make this
approximation feasible, the best uniform approximation linear
polynomial is used here, and it is defined as

(40)

where is the subset of arbitrary polynomials whose order is
less than or equal to 1, and the elementin the subset can
be expressed as

(41)

where and are arbitrary real numbers. In other words, the
best uniform approximation polynomial in is the
one whose deviation is the smallest one of any linear polynomial
approximations of for over interval
[0, ].

The continuous function is the exponential function
, and its second derivative does not change sign over

interval [0, ]. In this case, a three point alternant is given
by , where is chosen so that

. Then, the best uniform
approximation linear polynomial is

(42)

Fig. 2 shows the solution of the best uniform approximation
linear polynomial .



GUO et al.: ALGORITHMS FOR REMOVAL OF EXPONENTIALLY DECAYING DC-OFFSET ON THE FOURIER ALGORITHM 715

Fig. 2. Best uniform approximation method.

Since , therefore

(43)

The new algorithm can be obtained after modifying the set of
sampled values like the simplified algorithm 1

(44)

(45)

It is of interest to note that the cosine part is exactly
the same one as in . That means has the ability to
eliminate the second order polynomial component, and we ex-
pect that the second order polynomial can approximate function

more accurately.

V. PERFORMANCEEVALUATION OF THE SIMPLIFIED

ALGORITHMS USING THE IDEAL NETWORK

In this section, the ideal network is used to evaluate the per-
formance of the three simplified algorithms and LES algorithm.
Two performance indices are proposed in our study.

The first index is used to find the peak value of an algo-
rithm over a range of time constants from 0.5 to five cycles. This
index demonstrates the worst case an algorithm may encounter
in service, and it corresponds to particular values of the dc offset
time constants and . The value of is determined by the fault
inception angle, and the time constantis also a variable, which
depends upon the system configuration and fault resistance.

The second index is introduced to evaluate the algorithm
over the same range of time constants. It is defined as follows:
for every time constant, an algorithm can reach its peak (min-
imum and maximum value) at a particular. By averaging the
whole set of these peak values, we get the second index
which indicates the average minimum and maximum value of
the algorithm over the above range.

These two indices are very similar to the indices proposed
in [1]. The Fourier algorithm performance is also evaluated by
using these two indices. To do so, we can use the Fourier al-
gorithm performance index as a bridge to compare the perfor-
mance of the three simplified algorithms with the performance
of other algorithms which have been studied in detail in [1].

The evaluation results for sampling rate are listed
in Table II, whereFou stands for the Fourier algorithm,Sim

TABLE II
ALGORITHM AMPLITUDE INDICES OVER 0.5TO FIVE CYCLES

TABLE III
ALGORITHM AMPLITUDE INDICES OVER 0.1TO FIVE CYCLES

for the simplified algorithm, andLESfor the least error squares
algorithm.

From the simulation results, we observe that

• Simplified algorithm 1 narrows the amplitude deviation.
Specially for maximum peak, it reduces the overshoot
from 1.161 09 to 1.001 27.

• Simplified algorithm 2 is the best algorithm among these
five algorithms. Its peak deviation is limited to 1.732% of
the real amplitude.

• Simplified algorithm 3 has almost the same performance
as the simplified algorithm 1 and LES algorithm. The
overshoot of the simplified algorithm 2 is the largest one
when compared to the simplified algorithms and LES al-
gorithm. In this sense, to use the index as the only in-
dication in the performance evaluation is not fair, since we
are dealing with nonlinear peak-value solution problem
with multiple variables.

• From the index , we can see that the simplified algo-
rithm 2 is the best algorithm among these five algorithms,
and its deviation is less than 0.15%.

As it was pointed out earlier, the results presented in Table II
are evaluated over the range of time constants from 0.5 to five
cycles. If this interval extends from 0.1 to five cycles, the min-
imum value of the Fourier algorithm will be exactly the same
as the result shown in Table I. The data window is moving
from the first fault cycle to 1.5 cycles, so the maximum value
in the Fourier algorithm can be found. Reference [3] points out
that such period (1 to 1.25 cycles after the occurrence of the
dc offset) can be used to find out the maximum and minimum
error for the Fourier algorithm. The study results are shown in
Table III after the time constants range is extended from [0.5, 5]
cycles to [0.l, 5] cycles.

We can see that the performance of the simplified algorithms
and LES algorithm deteriorates very dramatically aschanges
over the period 0.1 to 0.5 cycles. In this period, the dc offset
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Fig. 3. Filter input waveform ofI .

decays very fast. It is very hard to compensate it, not to men-
tion the calculation error for this compensation in a real digital
relay implementation. The overshoot of the simplified algorithm
2 is quite large over this period. The index indicates an im-
proved performance in the simplified algorithms and LES al-
gorithm over the Fourier algorithm. The simplified algorithms
1 and 3 as well as the LES algorithm have very similar per-
formance in this case. The simplified algorithms 1 and 3 are
computationally less demanding than the LES algorithm. For

, the simplified algorithm 3 needs 9 multiplication and
28 addition/subtraction operation to calculate and .
For LES algorithm, 17 multiplication and 31 addition/subtrac-
tion operation are needed to obtain and . Obvi-
ously, a significant computation reduction is achieved for the
simplified algorithm 3 over the LES algorithm.

VI. TRANSIENT PERFORMANCEEVALUATION

The ideal network evaluation method focuses on the error
purely caused by the exponentially decaying dc offset. In a real
power system, the transient signals may contain not only the
decaying component, but also high frequency components and
other noise. In this study, a real power system (a section from
CenterPoint Energy Company’s 345-kV transmission system) is
modeled to generate waveforms for transient performance eval-
uation.

The short transmission line (10.14 mi) between NBELT and
KING modeled by EMTP is used for the transient performance
evaluation [9]. A three phase fault is applied at the middle of
this transmission line. Simulation results show that there is no
significant exponentially decaying dc offset in voltage signals.
As expected, quite large exponentially decaying dc offset does
exist in some current signals as shown in Fig. 3 for the KING
side current in phase A.

In this study, 960-Hz sampling rate is used (i.e. 16 samples per
cycle) [the output frequency of EMTP waveform is

Hz]. A fifth-order active low-pass Butterworth filter with
cutoff frequency 360 Hz at 20 dB is employed here.

Determination of the magnitude variation for different mea-
surement algorithms is of most concern during a disturbance.
The steady state magnitude calculation for a fault current (ten
cycles after the fault happens) is used as a reference to measure
the variation of the magnitude calculation. As the data window
advances, the magnitude computed by an algorithm will oscil-
late around the steady state magnitude. The oscillation in

TABLE IV
AMPLITUDE VARIATION OF DIFFERENTALGORITHMS BASED ON THESAMPLES

TAKEN AFTER THEFILTERS

the results caused by the exponentially decaying dc component
and other noise fades out and finally the results settle down to the
steady state magnitude. The calculated maximum and minimum
magnitude ( and ) occur between the first and second
cycle of sampled data following the fault inception. Based on
this observation, we define two indices for performance evalu-
ation as

(46)

Obviously, the smaller the difference between these two
values, the better the performance of an algorithm.

The decaying dc offset and high frequency components play
a major role in the transient performance evaluation for different
algorithms. The low-pass filter reduces the high frequency com-
ponents more than 20 dB before the signal reaches the A/D con-
verter of the digital relay. The simulation result listed in Table IV
shows the impact of the decaying dc offset for the algorithms
under evaluation.

In this table, the subscript 2 represents the KING side signal,
andImp stands for the improved algorithm defined by (21) and
(22). From these simulation results, we can conclude that

• There is a large error in the Fourier algorithm. That means
the impact of the decaying dc offset on the Fourier algo-
rithm cannot be ignored.

• For the Fourier algorithm, the maximum magnitude de-
viation is with , which has a large decaying dc offset
shown in Fig. 3. In this case, all the proposed algorithms
have a better performance than the Fourier algorithm.

• Not surprisingly, the overshoot of simplified algorithm 2
is the largest one. The undershoot of simplified algorithm
2 is also the largest one, which is not seen in the evaluation
using the ideal network.

• The simplified algorithm 1 is very susceptible to the high
frequency components. If the sampled data ofbefore
the low-pass filter is applied to this algorithm, the devia-
tion becomes 0.9422 1.0521. That also happens to the
improved algorithm: the deviation is 0.9294 1.0683.
The simplified algorithm 3 has almost the same perfor-
mance in this case: the deviation is 0.98441.0122.

• The performance difference among the simplified algo-
rithm 1, 3 and LES algorithm is negligible (the deviation is
0.9837 1.0199, 0.9821 1.0119 and 0.9823 1.0127,
respectively).
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• The good performance of the simplified algorithm 3
comes from its ability to suppress not only the decaying
dc component, but also the high frequency harmonics.
Another advantage of the simplified algorithm 3 is that the
modification is very simple: only one multiplication and
one subtraction are needed, and no recursive computation
is involved.

• The improved algorithm has the best performance among
these six algorithms. Its deviation varies only from 0.9952
to 1.0162. However, this algorithm is computationally
quite demanding and may not be suitable for real-time
applications.

VII. CONCLUSION

• Exponentially decaying dc offset has a significant impact
on the Fourier algorithm. An ideal network consisting of
the lumped R-L circuits is used to reveal this impact. In
the worst case, the deviation may be over 20% of the real
magnitude.

• An improved algorithm by using a partial summation tech-
nique is proposed to eliminate the influence of the de-
caying dc offset on the Fourier algorithm.

• Three simplified algorithms are proposed to compromise
between the computational burden and accuracy.

• The simplified algorithm performance evaluation based on
the current signals from the ideal network demonstrates
the significant performance improvement over the Fourier
algorithm.

• A transmission line in a 345-kV power system modeled
by EMTP is utilized to evaluate the algorithm transient
performance. Surprisingly, the simplified algorithm 2 has
the worst performance under this study.

• The performance of the improved algorithm is very im-
pressive if the signal fits into the assumed model,other-
wise its performance degrades. The tradeoff is that this al-
gorithm is computationally quite demanding.

• The simplified algorithms 1, 3 and LES algorithm have
almost the same performance using the ideal and actual
network evaluation. By comparing the modification sim-
plicity and improved performance over the Fourier algo-
rithm, the simplified algorithm 3 is considered to be the
best candidate to replace the Fourier algorithm for the pro-
cessing of the current signal.

APPENDIX

That is
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