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Exponentially Decaying DC-Offset on the Fourier
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Abstract—The impact of exponentially decaying direct com- the dc offset if there are no even harmonics in the input signals.
_pone_nt on the Fourier algorl_thm IS thepretlcally investigated first The proposed a|gorithms demand a lot of calculation to remove
in this paper. A new algorithm to eliminate the error caused o ¢ offset. The data window and amount of calculation are of

by this decaying component in the Fourier algorithm has been . . . . .
proposed. Furthermore, three simplified methods are proposed to CONCeM when using this algorithm for the real-time application.

alleviate the computation burden. The performance of the Fourier Benmouyal proposed a digital mimic filter to suppress the ef-
algorithm improved with these methods along with the least error  fect of an exponentially decaying component over a broad range
squares algorithm is evaluated using a simple network and a of time constants (0.5 to five cycles and more) [1]. This filter
real power system modeled by EMTP. The evaluation results are 5chjeves the best performance once the time constant of this ex-
presented and discussed. - ; . .
o _ _ _ ponentially decaying component is equal to the time constant
Index Terms—Digital relaying, Fourier algorithm, least error  of the mimic filter. Another approach is to take the decaying dc
squares algorithm, suppression of exponentially decaying DC ¢omponent into account without knowing its time constant. In
offset effects. . ) . .
this case, the first two terms of the Taylor series expansion are
used to represent the decaying direct component, then the least
I. INTRODUCTION error squares (LES) curve fitting technique can be applied to es-
timate the fundamental and other harmonics [5]. The recursive

HE Fourier algorithm is one of the most popular algo e . ;
T g Pop g East squares curve fitting algorithm can be introduced to reduce

rithms used for variety of measurements in control aA .
protection applications [1]. It is used to accurately extract tﬁ e computation burden [6], [7]. Another method was proposed

harmonic components if the following assumptions are sat% recognize the magnltu_de and time const_ant of the decaying
fied. c offset term in [2]. In this method, the residual terms caused

. . . : b h [ [ dinthe estimati dure. Th
 The highest frequency of input signal is less than2) /i, y some harmonics are ignored in the estimation procedure. The

here Nis th ber of i it fund assumption that these residual terms are negligible should not be
where V1S the number of sampling points pertundamentg o, for granted, and needs to be investigated further. The per-
frequency(f1) cycle.

There i dally d i direct ¢ formance of Kalman filters is evaluated in [1]. It was concluded
| erte_z 'S NO exponentiatly eﬁag/mg Ir?jcl componirﬂt " that the third-order Kalman filters is sensitive to variations of
N practice, one can use a weti-designed low-pass Titer fﬂe dc offset time constant. A Kalman filter should only be su-

meet t_he reqwremem .Of gssumpnon 1.'.bUt . assumptlop 2pgfrior in removing a dc-offset if its time constant is the same as
is not likely to be satisfied in fault condition. The exponent|all¥he one modeled in the state. transition matrix

decaying dc offset in some of the signals introduces fairly Iarge.l.his paper presents a method to eliminate the influence of

errors [2]. The calculated amplitude may deviate from the re&'(ponentially decaying direct component on the Fourier algo-
0h i i - . i . .

value more than 15% in the worst case [3]. For a high Ioerforrithm. Three simplified algorithms are proposed to alleviate the

mance digital relay, such a large relative error cannot be to'%rdmputation burden. The performance evaluation will focus on

ated. T :
. . their immunity to dc-offset.
If both a constant and an exponentially decaying dc offset y

are present in the input signals, an algorithm on how to apply
full-cycle discrete Fourier transformer for one cycle plus tWH'

samples to calculate and compensate for the dc offset is pro-

posed [4]. Half cycle plus two samples are needed to removeSeveral papers discuss the problem of how large the error
caused by the exponentially decaying dc offset could be [1]-[3];

however, there is no consistent conclusion regarding this error.
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R L TABLE |
NV EEEE PEAK VALUE OF THE FOURIER ALGORITHM
V=V, sin(@t +o) /) A N 8 12 16 20 | 24
Min | 0.7988 | 0.8017 | 0.8026 | 0.8030 | 0.8032
Max | 1.1548 | 1.1594 | 1.1631 | 1.1643 | 1.1648

Fig. 1. Ideal network for Fourier algorithm error estimation.

By using the result from the Appendix and expression (2), the

In this ideal network, the equivalent source impedance will . S
Rove equations can be simplified as

change with the power system operating condition, and the fad
resistance is a variable as well. Consequently, the time constant

(L/R) has to be considered as a variable. " 2rsin (37) (Y — 1) sin(B) ’
Assume the switch K is closed at= 0, then the fault current (r, N, ) = N 72— 2rcos (22) + 1 + cos(f9)
; N
i(t) can be solved as )
. . . . 9 1—72 rN—1 9
i(t) = Ape™ 7 + Ay sin(wt + 9) Q) +sin”(3) N 72— 2rcos (%) 1 +1 9)

wherer = (L/R), A1 = (vm//R% + (wL)?),andf = a — ) ) .
arctan(wL/R). Before switch K is closed, the current is zero. A numerical method is used to find the peak values of
That yields f(r,N,3). At first, fix the sampling rate at 16 points a cycle,

then change? from 1 to 360°, andr from 0.17; to 1073.
Ag = —Aqsin(f). (2) Itis found that the peak value of the Fourier algorithm occurs
around four points
* fmin = 0.8025 atr = 0.75(7 = 0.2171T}), § = 60°;
* frmin = 0.8025 atr = 0.75(7 = 0.217Ty), 8 = 240°;
* fmaz = 1.0982 atr = 0.93(7 = 0.86171), 8 = 139°;
* fmax = 1.0982 atr = 0.93(7 = 0.86177), 5 = 319°.
From this result, we find out that the maximum deviation is
with the minimum peak, which did not draw as much attention
as the maximum peak did from the researchers in the past. The
deviation of the minimum peak from the real amplitude is almost
twice the one of the maximum peak in this case.

The maximum error is less than 10%, which is smaller than
the 15% found in [1] and [3]. This is because the maximum
and minimum value here are calculated from the first cycle of
wherer = e~ (AT/7), fault current. When the data window moves on, the calculated

The fundamental frequency componekits andY.; can be amplitude will vary with this window as well [3]. Sampling rate
obtained as follows after applying the Fourier algorithni;to s another factor affecting the peak value and time at which the

N1 peak value occurs. The most commonly used sampling rates in
Yy = 2 Z i 8in <2—7rl<;> (4) digital relays are investigated here. For a specifiév and g3,
N — N we will find out the peak values in the result from the Fourier

N_1 algorithm for the firs{ NV /2) data window after the fault occurs.
o +in + 2 Z ir cos (Z—Wkﬂ . (5) The study results are listed in Table I.

b1 N From this table, it can be observed that the peak value changes
a little for different sampling rates. The position where the peak
88curs will change with different, 5, N and the data window
position, although the variation of the peak value itself is very

Now we try to find a specific set of and 3 which causes
the occurrence of the maximum amplitude error of the Fourier
algorithm. Assume the sampling interval of a digital relay is
(T1/N), hereTy, is the period of the power system fundamental
frequencyf,, and N is the number of sampled points per funda-
mental frequency cycle.

Uniformly samplingi(¢) everyAT = (Ty/N), we obtain a
set of discrete value§ig, iy, ...,iy} over a fundamental fre-
guency cycle

1
Ycl :N

By substituting expression (3) into above equations, we ¢
attain two concise formulas as follows:

N-1 small.
Ya :% Z Agr" sin <2N7rk> + Aj cos(f3) (6) From the evaluation using the ideal network, we can draw
k=1 conclusion that the dc offset may have drastic impact on the
1 N Nl k 1t Fourier algorithm. If no measurement correction is adopted, the
Yoo = N Ao + Aor™ +2 Z Agr” cos (W’Q relative error of the amplitude from the Fourier algorithm may
, k=1 reach 20%, which is purely caused by this decaying dc offset.
+ Ay sin(B). @)
The amplitude deviation of the Fourier algorithm can be ob- [ll. | MPROVED FOURIER ALGORITHM

served from In this paper, a new algorithm is proposed to eliminate the

VY2 +Y2 exponentially decaying direct component from the Fourier algo-
fr,N.B) = A, : (®) rithm. The first assumption given in Section | as well as the as-
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sumption that there is no subharmonics in the input sigt{a) This new set of sampled values no longer contains the expo-
need to be satisfied. nentially decaying component. Applying the Fourier algorithm

Based on these assumptions, we can express the input sigoéhis new set of samples, we can accurately extract the i-th har-
Y(t) as monic component.

Denote the cosine and sine part of the new algorithm as

. 2l Yii new @aNdYe; new, respectively, then
Y(t)=Aoe™" + Y Apsin(mwnrt + o) (10)
m=1
2 — 2
where SL_TLE’LU:N Z k_new sin ( ﬂLk)

Ao magnitude of the dc offset;

T time constant of the decaying component; 24 i

A,, amplitude of the m-th ac component; =Y, — TO Z ¥ sin <Wk> (19)
om initial angle of the m-th ac component. m=1

Uniformly samplingY (¢) every AT = (T1/N), we obtain it 271
a set of discrete valugdy, Y1, . .., Yy} in a fundamental fre- Yei-new = N Yo new YN new+2 D Vi new cos <Wk>
guency cycle. That is m=t

! :Yci

Ay
' . [ 27k N
Y, = Aor® + mZ:1 A, sin <Tm + (pm> . (11)

N-1
14+ +22r cos (—k)] (20)

whereY; andY,; are the cosine and sine parts of the Fourier
In the above equatiort;, = 0,1,..., N, andr = e~ (A7/7), algorithm for the unmodified sampled set. By using the deriva-
Phadke et al. used two partial sums to estimate andr tion in the Appendix and substitutingo = [(7* — 1) /(r(r" —
[2]. However, a residual term exists in the partial sums, and tHig)| ”S1 into (19) and (20), finally a compact expression of
residual term may cause an error in the estimatiod@andr.  Ysi_new @andY,;_,.., is obtained
In this paper, we define a new partial sum teffi; as follows:

2sin (%) r2—1
PSi=Y1+Ys+...+ Yy Yiinew =Yei + 27 PS5
y y N — 27 cos ( = ) +1
_ ZAorzi—l n Z =Y, +S(r)PS; (21)
1 ‘ 11—1r2 r2—1
= Yci_new :}/CL + = P} PSI
N 2(2i — 1) N 7 r2—2rcos (%) +1
X &Mleif—m+%J.(u) :%+CUW&. (22)

m=1
Actually, itis not necessary to calculatér) andC(r) every
iteration. Once- is estimatedS(r) andC(r) are two constants
NN . for this specific decaying waveform’s time constantSubsti-
Z Z A sin [27r(21 - 1)m + %l] —0. (13) tuting these two constants to the next iteration will make the
N calculation for eliminating dc offset very simpl2.S; andPS,

From simple trigonometric relationship, we know that

=1 m=1

can be calculated in a recursive fashion

Accordingly
r(rN —1
Py = 4,7 =1, 14) Psyew = psg (23)
new old
Similarly, we define another partial sum as P = PS4+ Y = V3 (24)
PSy =Y+ YV, +...4+Vxn where superscriptew stands for the data window for the set
r2(rN — 1) of sampleqY1,Ys, ..., Y41}, andold stands for the previous
= AOﬁ- (15)  window. The improved algorithm can also be implemented in a
recursive fashion by combining the recursive Fourier algorithm
From (14) and (15), we can solve th@nd 4, as with above formulas.
PS, The above algorithm can totally eliminate the exponentially
=== (16) decaying component if the input signal can be described by (10).
PSy
>4 Even though every effort has. b_een made to reduce the computa-
Ay = TN—PSL (17) tional burden, it is still very difficult to accurately calculate the
r(rt = 1) S(r)andC(r) for the microprocessor without the floating-point

Oncer and A, are obtained, the set of sampled values can B@eration instruction. How to make a compromise between the
modified as calculation burden and accuracy is always a challenge for dig-

ital relay designer. A tradeoff has been made in the following
Yi mew = Yi — Agr® k=0,1,...,N. (18) three simplified algorithms.
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IV. SIMPLIFIED ALGORITHMS Similarly, three linear equations can be obtained, and we can

A. Simplified Algorithm 1 solve

At first, a straight line is used to approximate the exponen- B;AT = L(PS2 — PSy) — (PSy — 2PS; + PSy)(35)
tially decaying dc offset. This straight line is determined by the N

) - . . 1
first order Taylor-series expansion @f; /2) over interval [0, ByAT? = —(PSy — 2PS; + PSy). (36)
. N
Ti]. That is
By modifying the set of sampled values with
i~ _ 1
Ape” =Co +Cr <t 2 ) Yinew = Yi — BiATk — By ATk 37)
= By + Bjt. (25) . . . .
and after applying the Fourier algorithm to this new value, the
After this approximation, the two partial sums become following concise formulas are derived:
£2 Y —Y--I—icoth i (PSy — PSy) (38)
PSy =" [By+ BIAT(2i — 1)] 2T TN N 2 0
=1 1 .
N N? Yeiio = Yei — — csc? <ﬂ> (PS, — 2PS; + PSp). (39)
=5 Bo+ - BIAT (26) N N
I PS5 — PS, can be simplified a3’y — Y,. The modification
PS, = Z[Bo + BiAT2i] term ofY,; » can be_z implemented in a recursive fashion to re-
p duce the computational burden.
= gBo + W&AT. (27) C. Simplified Algorithm 3

The above two simplified algorithms based on the Taylor
expansion are a good approximation only around expansion
point, and the error may be large over the whole interval [0,
T1]. The problem of approximating a continuous function by a
éinite linear combination of given functions can be approached
yarious ways. For the purpose of representing arbitrary con-

ous functions by elementary functions (e.g. polynomials),
it1s natural to use the maximum deviation of the approximation
as a measure of the quality of approximation [8]. To make this
Yi new = Yy — B1AT, k=0,1,...,N. (29) approximation feasible, the best uniform approximation linear

polynomiali = By + Byt is used here, and it is defined as
After the Fourier algorithm is applied to this new value, a

From these two equations, we solve
2
B1AT = N(PSQ — PSy). (28)

Since the Fourier algorithm has the ability to filter out th
nondecaying direct component, it is not necessary to subtrit
B, from the sampled values. Therefore, the set of samples
be modified as

compact form of this simplified algorithm is obtained max |Age” 7 — a’ = inf max |Age T — u‘ (40)
0<t<Ty ueH, 0<t<T}
2 i , , , .
Yoi1=Ys+ N coth <%> (PSy — PSy) (30) whereH; is the subset of arbitrary polynomials whose order is
less than or equal to 1, and the elemer the subsef; can
Yeior =Yei. be expressed as
Obviously, there is no modification faf.;_;, and the constant — Bo+ Bit 41
(2/N) coth((mi)/(N)) can be precalculated. Als#,S; — P.S, B o+ Pt 41
calculation can be implemented in a recursive fashion whereB,, andB; are arbitrary real numbers. In other words, the

best uniform approximation polynomial in= B, + B;t is the

one whose deviation is the smallest one of any linear polynomial
approximations oft = By + Bt for Age~*/™) over interval

B. Simplified Algorithm 2 [0, T1].

It is expected that a higher accuracy in the approximationThe continuous function is the exponential functif) =

can be achieved by expandinige~("/") into the second order Age~t/7), and its second derivative does not change sign over

Taylor series atT, /2) over interval [0.71]. That is interval [0, T1]. In this case, a three pom_t alternant is given
by 0 = t; < ty < tz3 = Ty, wheret, is chosen so that
Aoe™F 2 By + Byt + Bat?. (33) ['(t2) = (((ts) — f(t1))/(ts — t1)). Then, the best uniform
approximation linear polynomial is

PSy — PS)™" = Ynaq — Y] — (PSy — PS;)°. (32
+

This quadratic fit needs one more equation to solveHgr

By, andBs. A new partial sum is defined as S fUs) = f(h) [, it 1
i= e (1= A ) S () + 1(2)] (42)
J-1
PSy = Z Yas. (34) Fig. 2 shows the solution of the best uniform approximation
e linear polynomiala.
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TABLE I
ALGORITHM AMPLITUDE INDICES OVER 0.570 FIVE CYCLES

Best uniform approximation

linear polynomial Alg. PL Pl

Min. Max. Min. Max.
Fou. | 0.83793 | 1.16335 | 0.93864 | 1.09670 -

L Sim1 | 0.91911 | 1.00127 | 0.98748 | 1.00060

Sim2 | 0.98391 | 1.01732 | 0.99858 | 1.00115

Sim3 | 0.91746 | 1.00202 | 0.98741 | 1.00009

LES | 0.91215 | 1.00161 | 0.98660 | 1.00007

0 t,

Fig. 2. Best uniform approximation method. TABLE Il

ALGORITHM AMPLITUDE INDICES OVER 0.1 TO FIVE CYCLES

SinceYn — Yy = f(t3) — f(t1), therefore

Alg. P, Pl
N 1a) — f(+ Yv — Y Min. Max. Min. Max.
By = 1) = () _ Yy —¥o (43) Fou, | 0.80247 | 1.16335 | 0.02866 | 1.09756

t3 — 11 Ty

Siml | 0.82201 | 1.02764 | 0.97768 | 1.00107

The new algorithm can be obtained after modifying the set of Sim2 | 0.95004 | 1.38682 | 0.99595 | 1.00874
sampled values like the simplified algorithm 1 Sim3 | 0.79557 | 1.06854 | 0.97693 | 1.00142
LES | 0.78740 | 1.04615 | 0.97550 | 1.00106

1 e

Y.is=Y,+ N coth <N) (YN — Yb) (44)

Yeis =Y. (45) for the simplified algorithm, antlESfor the least error squares
algorithm.

From the simulation results, we observe that

« Simplified algorithm 1 narrows the amplitude deviation.
Specially for maximum peak, it reduces the overshoot
from 1.161 09 to 1.001 27.

Simplified algorithm 2 is the best algorithm among these
five algorithms. Its peak deviation is limited to 1.732% of
the real amplitude.

« Simplified algorithm 3 has almost the same performance

In this section, the ideal network is used to evaluate the per- as the simplified algorithm 1 and LES algorithm. The
formance of the three simplified algorithms and LES algorithm.  overshoot of the simplified algorithm 2 is the largest one
Two performance indices are proposed in our study. when compared to the simplified algorithms and LES al-

The first indexP1; is used to find the peak value of an algo- gorithm. In this sense, to use the indeX; as the only in-
rithm over a range of time constants from 0.5 to five cycles. This  dication in the performance evaluation is not fair, since we
index demonstrates the worst case an algorithm may encounter are dealing with nonlinear peak-value solution problem
in service, and it corresponds to particular values of the dc offset  with multiple variables.
time constants andg3. The value of3 is determined by the fault ~ * From the indexPI,, we can see that the simplified algo-
inception angle, and the time constarns also a variable, which rithm 2 is the best algorithm among these five algorithms,
depends upon the system configuration and fault resistance. and its deviation is less than 0.15%.

The second inde® I, is introduced to evaluate the algorithm As it was pointed out earlier, the results presented in Table Il
over the same range of time constants. It is defined as follovese evaluated over the range of time constants from 0.5 to five
for every time constant, an algorithm can reach its peak (miaycles. If this interval extends from 0.1 to five cycles, the min-
imum and maximum value) at a particular By averaging the imum value of the Fourier algorithm will be exactly the same
whole set of these peak values, we get the second iftflgx as the result shown in Table I. The data window is moving
which indicates the average minimum and maximum value fsbm the first fault cycle to 1.5 cycles, so the maximum value
the algorithm over the above range. in the Fourier algorithm can be found. Reference [3] points out

These two indices are very similar to the indices proposéiat such period (1 to 1.25 cycles after the occurrence of the
in [1]. The Fourier algorithm performance is also evaluated lic offset) can be used to find out the maximum and minimum
using these two indices. To do so, we can use the Fourier etror for the Fourier algorithm. The study results are shown in
gorithm performance index as a bridge to compare the perfdiable Il after the time constants range is extended from [0.5, 5]
mance of the three simplified algorithms with the performane®ycles to [0.l, 5] cycles.
of other algorithms which have been studied in detail in [1].  We can see that the performance of the simplified algorithms

The evaluation results for sampling rdfe= 16 are listed and LES algorithm deteriorates very dramatically-ashanges
in Table Il, whereFou stands for the Fourier algorithngim over the period 0.1 to 0.5 cycles. In this period, the dc offset

It is of interest to note that the cosine paff_; is exactly
the same one as iH,; ». That mean¥’,; s has the ability to
eliminate the second order polynomial component, and we ex-
pect that the second order polynomial can approximate function
f(t) = Age=/7) more accurately.

V. PERFORMANCE EVALUATION OF THE SIMPLIFIED
ALGORITHMS USING THE IDEAL NETWORK
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TABLE IV
2 : : AMPLITUDE VARIATION OF DIFFERENT ALGORITHMS BASED ON THE SAMPLES
TAKEN AFTER THEFILTERS

20|

& Alg. Dy I I
.; o Af:in A%L"'-"-' A}'r’nuin Ag:a-" Af::in A?#ax
& Fou. | 0.9102 | 1.1276 | 0.9990 | 1.0010 | 0.9199 | 1.1139
o Siml | 0.9913 | 1.0123 | 0.9946 | 1.0199 | 0.9837 | 1.0108
20 | | Sim2 | 0.9894 | 1.0492 | 0.9870 | 1.0399 | 0.9249 | 1.0490
‘ ‘ . ‘ Sim3 | 0.9821 | 1.0119 | 0.9925 | 1.0064 | 0.9844 | 1.0107
’ * imesinms Imp. | 0.9952 | 1.0162 | 0.9983 | 1.0105 | 0.9961 | 1.0140

LES 0.9823 | 1.0127 | 0.9974 | 1.0024 | 0.9826 | 1.0114

Fig. 3. Filter input waveform of,, .

decays very fast. It is very hard to compensate it, not to meii€ results caused by the exponentially decaying dc component
tion the calculation error for this compensation in a real digit@nd other noise fades outand finally the results settle down to the
relay implementation. The overshoot of the simplified algorith/€ady state magnitude. The calculated maximum and minimum
2 is quite large over this period. The ind®¥, indicates an im- Magnitude f,,,,. andA,,.;,,) occur between the firstand second
proved performance in the simplified algorithms and LES afycle of sampled data following the fault inception. Based on

gorithm over the Fourier algorithm. The simplified algorithm&is observation, we define two indices for performance evalu-

1 and 3 as well as the LES algorithm have very similar pefilon as
formance in this case. The simplified algorithms 1 and 3 are
computationally less demanding than the LES algorithm. For APY = @ by = A"”'”-
N = 16, the simplified algorithm 3 needs 9 multiplication and Ass Ass
28 addition/subtraction operation to calculatg 3 andY; 5.
For LES algorithm, 17 multiplication and 31 addition/subtrac‘;

o ceraton ae reeded 0 o andi . O Vs e RSP ol
ously, a significant computation reduction is achieved for the ying 9 q Y P piay

A : . amajor role in the transient performance evaluation for different
simplified algorithm 3 over the LES algorithm. algorithms. The low-pass filter reduces the high frequency com-
ponents more than 20 dB before the signal reaches the A/D con-
VI. TRANSIENT PERFORMANCEEVALUATION verter of the digital relay. The simulation result listed in Table IV

The ideal network evaluation method focuses on the erfows the impact of the decaying dc offset for the algorithms
purely caused by the exponentially decaying dc offset. In a ré41der evaluation. _ S
power system, the transient signals may contain not only the!n this table, the subscript 2 represents the KING side signal,
decaying component, but also high frequency components &H{tflImp stands for the improved algorithm defined by (21) and
other noise. In this study, a real power system (a section frdd?)- From these simulation results, we can conclude that
CenterPoint Energy Company’s 345-kV transmission system) is « There is a large error in the Fourier algorithm. That means
modeled to generate waveforms for transient performance eval- the impact of the decaying dc offset on the Fourier algo-
uation. rithm cannot be ignored.

The short transmission line (10.14 mi) between NBELT and < For the Fourier algorithm, the maximum magnitude de-
KING modeled by EMTP is used for the transient performance  viation is with I,, which has a large decaying dc offset
evaluation [9]. A three phase fault is applied at the middle of  shown in Fig. 3. In this case, all the proposed algorithms
this transmission line. Simulation results show that there is no  have a better performance than the Fourier algorithm.
significant exponentially decaying dc offset in voltage signals. ¢ Not surprisingly, the overshoot of simplified algorithm 2
As expected, quite large exponentially decaying dc offset does s the largest one. The undershoot of simplified algorithm
exist in some current signals as shown in Fig. 3 for the KING  2isalso the largest one, which is not seen in the evaluation

(46)

Obviously, the smaller the difference between these two

side current in phase A. using the ideal network.

Inthis study, 960-Hz sampling rate is used (i.e. 16 samples peres The simplified algorithm 1 is very susceptible to the high
cycle) [the output frequency of EMTP waveformais< 960 = frequency components. If the sampled datd-gfbefore
5760 Hz]. A fifth-order active low-pass Butterworth filter with the low-pass filter is applied to this algorithm, the devia-
cutoff frequency 360 Hz at 20 dB is employed here. tion becomes 0.9422 1.0521. That also happens to the

Determination of the magnitude variation for different mea-  improved algorithm: the deviation is 0.9294 1.0683.
surement algorithms is of most concern during a disturbance. The simplified algorithm 3 has almost the same perfor-
The steady state magnitude calculation for a fault current (ten mance in this case: the deviation is 0.9844.0122.
cycles after the fault happens) is used as a reference to measure The performance difference among the simplified algo-
the variation of the magnitude calculation. As the data window  rithm 1, 3 and LES algorithm is negligible (the deviation is
advances, the magnitude computed by an algorithm will oscil- 0.9837~ 1.0199, 0.982% 1.0119 and 0.9823 1.0127,
late around the steady state magnitutle. The oscillation in respectively).



GUOet al: ALGORITHMS FOR REMOVAL OF EXPONENTIALLY DECAYING DC-OFFSET ON THE FOURIER ALGORITHM

717

» The good performance of the simplified algorithm 3hat is

comes from its ability to suppress not only the decaying

dc component, but also the high frequency harmonics.Ni:l b
T S1n

Another advantage of the simplified algorithm 3 is that the
modification is very simple: only one multiplication and

is involved.

» The improved algorithm has the best performance amongk:1

these six algorithms. Its deviation varies only from 0.9952
to 1.0162. However, this algorithm is computationally
quite demanding and may not be suitable for real-time 0
applications.

VIl. CONCLUSION [2]

» Exponentially decaying dc offset has a significant impact
on the Fourier algorithm. An ideal network consisting of
the lumped R-L circuits is used to reveal this impact. In
the worst case, the deviation may be over 20% of the reall4]
magnitude.

* Animproved algorithm by using a partial summation tech- [5]
nigue is proposed to eliminate the influence of the de-
caying dc offset on the Fourier algorithm.

k=1
. . . N—1 .
one subtraction are needed, and no recursive computatmz [r’“ cos <2m k)}
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