
A DIGITAL SIMULATOR DESIGN FOR
REAL-TIME AND OPEN-LOOP APPLICATIONS

N.A. Izquierdo Jr.
Commonwealth Edison Company

M.Kezunovic, Z.Galijasevic, F.Ji1,
A.Gopalakrishnan, J.Domaszewicz

Texas A&M University

U.S.A

Abstract – This paper describes new design of a digital simulator
for relay testing. The main simulator feature is its capability to
operate in both real-time and open-loop modes. In the real-time
mode, the modeling software used is the Real Time System
(RTS) developed by Texas A&M University. In the open-loop
mode, a standard Electromagnetic Transient Program (EMTP)
is used. A common Graphical User Interface (GUI) is used for
both operating modes. The main design features of the simulator
are summarized in this paper.

Keywords – Digital Simulation, Protective Relaying, Relay
 Testing, EMTP, Real-Time Application

I. INTRODUCTION

Recent development of digital simulator technology has
provided an opportunity for use of digital simulators in testing
protective relays both in real-time and open-loop modes.
Texas A&M University has developed an advanced real-time
simulator under the sponsorship of the Department of
Energy–Western Area Power Administration (WAPA). The
simulator was delivered to WAPA in the Spring of 1994, and
its real-time operation has been demonstrated [1-3]. In
another project under EPRI sponsorship, Texas A&M
University developed an open-loop simulator aimed at back-
to-back testing of two terminal protective relay applications.
This design has extensive software capabilities for user
support in performing relay testing [4]. This simulator has
been developed using hardware and software that is
compatible with the ones used in the real-time design. This
provides for great flexibility in upgrading from the open-loop
design to the real-time one [5].1

1The work has been done while the author was with Texas A&M

Recently, Texas A&M University was awarded a contract
from Commonwealth Edison Company that included the
development of a flexible simulator to operate both in real-
time and open-loop modes. Due to the compatibility of the
previous designs, it was possible to provide both modes of
operation using the same hardware and system software
environment. This paper discusses implementation
characteristics and major benefits of such a design achieved
by providing both operating modes.

II. DESIGN REQUIREMENTS

The simulator was implemented under two sets of
requirements. One set was related to the general features as
follows:
� Simulator hardware should be, as much as possible,

commercially available "off the shelf"
� Simulator system software should be standard solution

commercially available "off the shelf"
� Simulator application software should be written in high

level programming language and portable
� Simulator should have an elaborate Graphical User

Interface implemented using standard X-Windows tools
The other set of requirements was related to the specific

application constraints as follows:
� Simulator should operate in both real-time and open-loop

modes
� The real-time mode should allow for interactive testing of

protective relays to change network topology for such
conditions as autoreclosing sequences

� The open-loop mode should allow for interactive testing
of protective relays by submitting test files generated
through simulations using Electromagnetic Transient
Program (EMTP)

� Graphical User Interface should allow for a common
access to both the real-time and open-loop modes [6]

To meet these requirements, a new design had to be
implemented. Various features of both the real-time [3] and
open-loop [7] simulators, previously developed independently
by Texas A&M University, were combined in one simulator
design.

III. IMPLEMENTATION

This section describes various implementation aspects of
the new simulator.

A. System Architecture

The major hardware and software building blocks of the
simulator architecture are shown in Fig. 1.

I/O

DSP

for Three Terminals

GUI
RTS

Circuit Breakers

 Controller
LAN

XX

RISC RISC

D/A Converters

EMTP + replay

Instrument Transformers

I/O

GUI

Power Amplifiers

Fig. 1. The architecture of the simulator

In the closed-loop operating mode, transient simulation is
carried out on-line so that a real-time change of the network
topology controlled by the relay under test is possible. On the
other hand, in the open-loop mode transient simulation is
done off-line so that there is no possibility to change network
topology under the control of the relay. To provide these two
modes, unique hardware and software solutions are used.

The hardware basis of the simulator consists of two RISC
computers, DSP subsystem, two sets of I/O boards and
amplifiers subsystem. One computer serves as a user front-
end machine for both open-loop and closed-loop simulators.
Graphical user interface software (GUI) runs primarily on that
computer. The second computer, the faster one, is dedicated
to run real-time transient simulation as well as real-time
replay of EMTP output file. One set of I/O boards connects
that computer to the DSP subsystem where the real-time
simulation of instrument transformers and circuit breakers
takes place. Another set of I/O boards serves as a connection
between the DSP subsystem and amplifiers' section of the
simulator.

The simulator software consists of the graphical user
interface software, conversion software, software for file
management and resource control, as well as real-time
simulation and playback software. Both operating modes of
the simulator are provided to the user by means of the
common graphical user interface (GUI). Several programs
that perform conversion between the different file formats
accompany the user interface software. In the closed-loop
mode, network simulation is performed in real-time by the

Real-Time System (RTS) software, while DSP boards-based
software simulates instrument transformers and circuit-
breakers. In the open-loop mode, entire network simulation is
done in preparatory phase by EMTP, while only the replay of
the output file takes place in real-time. File transfer from the
graphical user interface to network simulation software and
back is managed by the program called Sequencer. Finally,
Controller software is used to ensure that I/O hardware of the
simulator is used on scheduled basis.

B. Hardware Implementation

The simulator hardware is shown in Fig. 2. It can support
up to 3 terminals for relay testing. The system hardware
consists of two RISC machines, each of which can be
equipped with the Graphical User Interface (GUI). However,
all connection to the external I/O hardware is made through
the RISC System/590 only. This is to ensure maximum
computational speed for the real-time simulation.

The DSP subsystem is composed of a single 'central' DSP
and a number of 'peripheral' DSPs (TI's TMS320C40 chips).
The central processor is connected to the host and to the
peripheral DSPs.

The I/O subsystem is divided into a communication
interface to receive/send serial data from/to the DSP
subsystem, a D/A subsystem for reconstruction of the analog
signals, a digital I/O subsystem to monitor contact status
changes of the device under test, and a hardware mechanism
for clock synchronization between the Master and Slave I/O
terminals. Clock Synchronization between the terminals is
achieved by using Phase Locked Loop ICs, which ties the
Slave Terminal clocks to the Master Terminal clock. The I/O
subsystem and the amplifier subsystem are packaged into a
custom designed high-precision cabinet. The interfaces are
designed so that both open-loop and real-time testings are
possible using the same hardware.

LAN

MICRO

INTERF.6000 590 DSP

I/O

IBM RISC

6000 250
IBM RISC

AMPLIFIERS

GUI

SYSTEM

THREE-TERMINAL

RECONSTRUCTION

FILE REPLAY

REAL-TIME
SIMULATIONCHANNEL

RELAY

WAVEFORM

Fig. 2. Simulator Hardware

C. Software implementation

The software architecture of the simulator and interactions
between its major components are shown in Fig. 3.

EMTP-RTS

EMTP

Conversion

GUI-EMTP

Sequencer
RTS

EMTP

Software
File Replay

RTS

Software
DSP

GUIController

GUI

Sequencer

Conversion

Fig. 3. The software architecture of the simulator

D. Graphical User Interface

The user builds the network in one-line diagram form and
initiates the simulation in both operating modes of the
simulator by using a common graphical user interface. The
network is built in a paint-brush-program way; the user
selects with the cursor an icon in the toolbox representing a
network component, inserts it to the required location in the
drawing area, and connects it to the rest of the network using
editing tools such as move, cut, link, delete, undo, etc. [6].
The parameters of the components are entered through a
menu-driven interface. Ease of use is further enhanced by the
existence of the libraries of predefined models for some of the
complex network elements.

As far as the GUI is concerned, there is no difference
between the two operating modes until the very start of the
simulation. In both modes the same graphical interface is
used: the same components and tools are utilized to build the
network, and component parameters are defined through the
same menus. The two operating modes are forked by
selecting different option provided by the GUI menu before
the simulation is about to start. This transparency, along with
the unique output file format, is ensured by using the
appropriate file conversion prior to the simulation.

In order to support concurrent use of the simulator by
multiple users (in closed-loop and open-loop mode), GUI

software is written as a client program. It means it relies on
certain services provided by the server program (in this case
called Controller). The service can be either real-time
network simulation or real-time waveform file replay.
Multiple real-time operations are not allowed at the same time
because they attempt to use the same hardware, each on the
exclusive basis. Therefore, GUI negotiates with the
Controller when to start such an operation.

E. Conversion software

After the user creates a network using one-line network
editor feature of the GUI, it can be saved in the output file in
the specific format (referred as ".gui"). This file keeps all
information that enables one to redraw the network at a later
time. However, in order to run the simulation, this file must
be first converted into another file whose format depends on
the simulation program used in the specific operating mode.

For both possible types of the simulations, ".gui" file needs
to be converted into the EMTP input file format. However,
since RTS based simulation uses some complex component
models that do not exist in EMTP, the output file can not be
the same as for the EMTP based simulation. Therefore,
specific 'hybrid' EMTP format is adopted for the RTS based
simulation in order to provide additional information.
Likewise, since ".gui" file itself does not bear all the
information needed for EMTP based simulation, a special
mechanism for building input file from predefined "include"
file modules has been developed.

Since RTS requires its input in the specific format, an
additional file conversion is needed in closed-loop operating
mode. First, 'hybrid' EMTP input file has to be processed so
that all the network components are given in the specific
order. Then, in order to shift as much of the computational
burden as possible into the preparatory phase, the network
admittance matrix and the forcing function vectors are
computed.

F. Real-Time System (RTS)

The network simulation in the closed-loop operating mode
has to be performed in real-time. Ordinary programs for
power system transients simulation are not suitable for this
purpose. Therefore, a program specially developed for the
real-time network transient simulation is used in the TAMU's
simulator.

The RTS is a new program specially tailored for the real-
time applications [1,2]. The main objective in its development
was to meet very stringent time and memory requirements. It
is, therefore, written in C with the extensive use of the speed
optimizing techniques. To meet the other requirements, such
as accuracy and stability, RTS uses EMTP modeling and
solution techniques.

All the main elements existing in EMTP are also included
in RTS: simple branches, coupled branches, overhead
transmission lines, voltage sources, MOVs, voltage arresters
and time switches. Additionally, there is a number of complex
network elements such as relay controlled circuit breakers,
series capacitors with MOV protection, voltage and current
instrument transformers and faults. Common to all of them is
that they are handled in alternative ways so that the real-time
nature of the simulation is not jeopardized. For example,
series capacitors with MOV protection are modeled and
solved efficiently as a single component [2]. A special
solution technique is used to represent switching operation.
Circuit breaker and instrument transformer models are
implemented using DSP boards.

G. File replay

The file replay software enables replaying of the
waveforms generated by EMTP and collecting of the relay
response data. The file replay software described here is a
major upgrade of the version incorporated in the previous
open-loop simulator. In both cases the software is composed
of two modules: the host (RISC) module and the DSP
module. In the previous simulator design, waveform data is
downloaded by the host to the local DSP memory prior to
actual replaying. Even though such an approach greatly
simplifies the overall design (the host is not directly involved
in replaying), it has an obvious drawback: the length of a
waveform is limited by the capacity of the DSP memory. The
new version enables real-time transfer of waveform data from
a disk file system to the I/O cabinets. Thus, any size of the
waveform data can be accommodated.

Organization of the file replay software is shown in Fig. 4.
The first step (not done in real-time) is the conversion of the
EMTP output file to the one in which waveform samples are
represented using the D/A converter format. The second step
is the actual replaying. The host module is implemented as a
single UNIX process. The main task of the module is to read
waveform data from a disk file to a buffer located in the main
memory of the host. A chunk of data of a predefined size is
read at a time. After a disk read operation, the host module
checks the status of a buffer located in the local memory of
the DSP subsystem. Chunks of data are transferred between
the host buffer and the DSP buffer as

Disk
File

RISC

Host
BufferDMA

DSP3

Buffer
DSP4

DSP1

DSP2

Fig. 4. Organization Of Replaying Software

long as they are available in the former one and there is space
in the latter one; after that another disk read is initiated. Host-
to-DSP transfers take only about 10 % of the overall time
budget. Hence, on the host side, virtually all the time is
devoted to the most time-consuming operation: reading from
the disk.

The DSP buffer is located in the local memory of the
central DSP. The central DSP manages the DSP buffer and
distributes waveform data to the peripheral DSPs. The data is
received from the host using an on-chip DMA controller. The
peripheral DSPs receive data from the central one and present
them to the waveform reconstruction system contained in the
I/O cabinets. The peripheral DSPs also collect the relay
response data from the cabinets and store the data in their
local memory. After the replaying has been completed, the
relay response data is transferred to the central DSP and, in
turn, to the RISC host, which stores them in the capture files.

H. Controller

To make it possible for multiple users to concurrently use
the simulator, a program called Controller is used. It acts as a
server, providing two services (real-time simulation and real-
time file replay) to the clients (GUIs). Its task is to resolve
possible collisions of the concurrent requests from different
clients (GUIs), since certain simulator's hardware must be
used on exclusive basis.

The logic on which Controller operates is rather simple as
shown in Fig. 5. Before any real-time operation, GUI asks
Controller for permission. Since Controller keeps track of the
status of all GUIs and hardware resources, it checks if the
requested resource is available and grants or denies
permission. The implementation of the Controller and client
part of the GUI is done using standard UNIX mechanisms for
interprocess communication. All the requests coming from
GUIs to the Controller are put into the input queue and then
processed on the first come first serve basis. Backward
communication is based on the same mechanism.

Input
Queue

Send

Request

Answer

Receive

Check

Status

Input
Queue

Start

Request

Real-Time

Send

Receive
Answer

Oper.

Hardware

2

1

3

4 Controller

GUI

Fig. 5. GUI–Controller Communication

IV. EXAMPLES OF SIMULATOR OPERATING MODES

This section explains in more detail each of the operating
modes of the simulator.

A. Closed Loop Operating Mode

In both operating modes the user first builds network by
using Graphical User Interface (GUI). Network description is
contained in the file in ".gui" format. In closed loop mode,
described in Fig. 6, GUI then invokes GUI-EMTP software. It
converts ".gui" file into ".rts" file whose format closely
resembles format of an EMTP input file. After that, GUI
starts EMTP-RTS software that produces two files: ".inp" and
".ss". First file contains network data in the specific format
requested by RTS, and second file keeps steady state solution
data. To create ".ss" file, EMTP-RTS invokes EMTP.

Prior to the start of the real-time simulation, GUI sends a
request to the Controller. Controller checks if the hardware
that is to be used is available, and sends an answer. If the
permission is granted, GUI transfers necessary files and
invokes Sequencer. Sequencer starts RTS which outputs its
results through the DSP subsystem as soon as they are
calculated. Relay responses are used to change the network
topology interactively by the operation of the respective relay
terminal(s). At the end of the simulation, Sequencer copies
back the waveform (".wav")and message files (".msg").

GUI-EMTP

RTS

EMTP

RTS

Software
DSP

GUIControllerGUI

Sequencer

Conversion

EMTP-RTS
Conversion

Permission

Request

.wav, .msg .inp, .ss

.OUT

.gui

.rts
4

7

3

1

.rts .inp, .ss2

.wav, .msg .inp, .ss5

6

Trip
Signal

.dat

I/O

Fig. 6. Closed-Loop Operating Mode

B. Open Loop Operating Mode

Fig. 7 shows the involvement of particular software
modules in the open loop operating mode of the simulator.

GUI-EMTP

Replay

ArrDat

EMTP

Replay
File

GUI

Sequencer

Conversion

.pun

2

.out8

.OUT .dat4

.dat

.gui .dat1

Conversion
EMTP Results

.out .OUT7

GUIController

Permission

Request

3

.out .OUT6

5

I/O

Fig. 7. Open-Loop Operating Mode

Again, the first step is to build the network by using
Graphical User Interface (GUI). In the next step GUI invokes
GUI-EMTP conversion software. It converts ".gui" file into
".dat" file whose format is identical to the format of an EMTP
input file. In addition to the conversion used in the closed
loop mode, this involves processing of the "include" files and
component reordering. Also, during this conversion, EMTP
auxiliary program ArrDat might be called to process surge
arrester and metal-oxide varistor data.

Since in this operating mode only file replay happens in
real-time, GUI starts EMTP separately. However, it still
communicates with the Controller to find out where to run
EMTP most efficiently. After the EMTP simulation is done,
GUI requests permission from the Controller to start real-time
replay. If the replaying hardware is available, the permission
is granted. GUI then transfers EMTP output file and invokes
Replay Sequencer. Sequencer first invokes software that
processes raw EMTP results, and then replaying software. At
the end of the replay, Sequencer copies back the waveform
and relay response file.

V. CONCLUSIONS

Simulator description given in this paper leads to the
following conclusions:
� It is possible to to implement digital simulator design that

is capable of both real-time and open-loop operation
� Simulator hardware and system software can be selected

as "off the shelf" products
� Graphical User Interface (GUI) can be implemented to

serve as a common interface for both operating modes

VI. ACKNOWLEDGMENTS

The simulator development reported in this paper is funded
by the Commonwealth Edison Company of Chicago under
contract # 811856.

VII. REFERENCES

[1] M. Kezunovic, et. al. ''Transient Computation for Relay Testing
in Real-Time", IEEE Transaction on Power Delivery, vol. 9,
no. 3, July 1994, pp. 1298-1307.

[2] M. Kezunovic, et. al. ''Computing Responses of Series
Compensation Capacitors with MOV Protection in Real-Time",
IEEE PES Summer Meeting, paper no. 94 SM 400-2 PWRD,
San Francisco, July 1994.

[3] M. Kezunovic, et. al. ''Design, Implementation and Validation
of a Real-Time Digital Simulator for Protection Relay Testing",
IEEE PES Winter Meeting, Paper no. 95 WM 034-9 PWRD,
New York, February 1995.

[4] M. Kezunovic, et. al. ''Advanced Signal Processing and File
Management Software for Relay Testing Using Digital
Simulators", 11th. PSCC, Avignon, France, September 1993.

[5] M. Kezunovic, et. al. ''New Digital Simulator Design for
Protective Relay Testing", Texas A&M Relay Conference,
College Station, Texas, March 1995.

[6] M. Kezunovic, et. al. ''Extensible Graphical User Interface for
Digital Simulators", First International Conference on Digital
Simulators, College Station, Texas, April 1995.

[7] M. Kezunovic, et. al. ''Design Characteristics of and Advanced
Two-Terminal Digital Simulator for Relay Testing", First
International Conference on Digital Simulators, College
Station, Texas, April 1995.

N. A. Izquierdo Jr. (M '76) earned his B.S.E.E. at the Illinois
Institute of Technology, in 1978. He also completed post-degree
master's level courses. Mr. Izquierdo began his career with
Commonwealth Edison (ComEd) in 1975 in the Relay Section of
the Operational Analysis Department. In 1978 as a Relay Settings
and application Engineer in the System Planning Department, he
was responsible for relay setting and fault calculation for two
Chicago divisions and three generating stations. He also taught
various ComEd after-hours protective relay courses. Since 1982, in
the Relay Section of the Operational Analysis Department, he has
been responsible for acceptance testing, including design and
manufacture of new protective relays, developing relay test

equipment, investigation and analysis of oscillograms after system
disturbances, assisting the Regional Operational Analysis
Department, General Office Engineering Departments, and
laboratory personnel with special investigations and solutions of
relay and power system problems. He currently holds the title of
Staff Engineer in the Operational Analysis Department, Technical
Services-Relay Group. He is a member of the Institute of Electrical
and Electronic Engineers.

M. Kezunovic (S'77, M'80, SM'85) received his Dipl. Ing. degree in
electrical engineering in 1974, and the M.S. and Ph.D. degree from
the University of Kansas, in electrical engineering in 1977 and
1980 respectively. His industrial experience is with Westinghouse
Electric Corporation in the U.S.A., and the Energoinvest Company
in Sarajevo. His academic experience is with the University of
Sarajevo and Washington State University. He has been with Texas
A&M University since 1987 where he is an Associate Professor. He
is member of the IEEE PSRC, member of CIGRE and a registered
Professional Engineer in the State of Texas. Dr. Kezunovic is the
chairman of the PSRC working group F-8 on " Digital Simulator
Performance Requirements".

Z. Galijasevic received his B.S. and M.S. degrees from the
University of Sarajevo, Bosnia and Herzegovina, both in electrical
engineering, in 1985 and 1992 respectively. From 1985 to 1992 he
was with the Power Electric Institute of the Energoinvest Company
in Sarajevo. In 1993 Mr. Galijasevic joined Texas A&M University
as a research engineer. His main research interests are in the area of
digital simulation of electromagnetic transients and computer aided
measurement.

F. Ji was born in Henan, China on February 11, 1965. She received
her B.S. and M.S. degrees in electrical engineering from Tianjin
University, Tianjin, China in 1985 and 1988 respectively. Ms Ji had
been employed with Tianjin University from 1988 to 1991 as a
teaching and research assistant. In 1994 she received M.S. degree in
electrical engineering from Texas A&M University. Currently she is
with the Texas Instruments in Houston.

A. Gopalakrishnan received his B.E. degree in Electrical &
Electronics Engineering from BITS, Pilani, India in 1989. From
1989 to 1992, he was working in The English Electric Co. of India
Ltd., in Madras, India. Mr. Gopalakrishnan is currently a graduate
student in EE at Texas A & M University.

J. Domaszewicz earned his M.Sc.E.E. degree from Warsaw
Technical University, Poland, in 1986. From 1986 to 1989 he was
with the Department of Electronics at Warsaw Technical University.
Mr. Domaszewicz is currently a graduate student at Texas A&M
University.

