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Converting data to knowledge is the main concern of this paper, which provides

a new data processing solution and illustrates it through several applications.
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ABSTRACT | This paper focuses on the most critical task in

monitoring and control of power systems: converting data to

knowledge that will facilitate control action. With expansion of

smart grids, which assume wide dissemination of intelligent

electronic devices (IEDs) in substations supported by extensive

communications, data associated with power system events

becomes abundant. The fact that new data of better quality

than before exists in smart grids does not assure that better

decision making will be possible. In order to convert data to

actionable knowledge, certain processing needs to be per-

formed. This processing is referred to as Translational Knowl-

edge, i.e., the knowledge that allows transition from data

collection to action. This concept is illustrated through several

applications such as fault locating, alarm processing, and

protective relaying.

KEYWORDS | Alarm processing; fault location; power system

control; power system monitoring; protective relaying

I . INTRODUCTION

The enhancement of the monitoring, control, and protec-

tion of power systems through smart grid solutions

primarily means availability of more data of better quality
than before and availability of new applications that will

utilize the data to produce better decision making. To

allow such benefits, the process of data collection,

integration and usage needs to be improved. A unique

approach to providing more reliable and more compre-

hensive data not available before was introduced a few

years ago [1]. It resulted in development of a number of
applications that took advantage of new information to

gain better knowledge about power system events,

particularly faults. At that time the smart grid terminology

was not extensively used so the new concept was termed

Data Integration and Information Exchange [2]. While the

concept was the topic of research initially, outcomes are

reduced to practice and demonstrated at a number of

utility sites now [3].
What made the new solutions possible was the concept

of Translational Knowledge, a set of procedures that

allowed field data to be merged with models to produce

better decision making. While there is extensive literature

about Translational Science [4] going into details of

assumptions and meanings of the science contribution to

knowledge formulation, and its contribution to practical

engineering decisions, this paper stays at the level of
illustrating such concepts using several new solutions

made possible through smart grid developments. Of

particular attention in this paper are fault conditions in

power systems where a number of decisions are made

either automatically or by operators to detect faults, isolate

faulted components, repair faulted elements and restore

power system operation.

The first application discussed, which utilizes new data
to create improved decision making after occurrence of a

fault, is an optimal fault location scheme. While many

solutions for fault location under particular system

conditions have been developed so far [5], [6], there is

still no approach that will select the best result for any

network configuration and operating condition. An

improved approach to locating faults with an optimal

outcome was developed utilizing additional data about
network conditions, as well as additional measurements

[7]. Further details how the knowledge about algorithm

constraints and performance leads to better decision
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making is illustrated through the use of network models
and fault data matching capabilities [8], [9]. The next

application introduces a new alarm processing concept

where cause/effect reasoning is improved through knowl-

edge about device operation embedded in a control model

of protective relay operations. While intelligent alarm

processing has been a subject of investigation for some

time [10]–[12], a breakthrough in the ability to make more

informed decisions came as a result of merging data from
substation intelligent electronic devices (IEDs) with

supervisory control and data acquisition (SCADA) data

[13]. The last application that allowed a new approach

based on availability of improved power system models is a

neural network (NN)-based protective relaying scheme,

which has many variations [14]–[18]. As a result, an

improved approach to protective relaying has been

developed with a distinct feature that creates benefits
over existing solutions: no settings are used, hence no need

for setting calculation and coordination [19]. This makes

the scheme inherently adaptive, which is an ultimate need

in smart grids where penetration of renewable generation

and overloading of existing systems creates unique fault

and operating conditions making setting coordination a

challenging task. To create improved decision making, the

knowledge about power system conditions has been
utilized to train the NN solution and allowed transition

of such knowledge into the decision making of a new relay

design based on new input data choice.

The paper first addresses the spatial and temporal

aspects of data collection. Each of the new applications is

discussed in subsequent sections and conclusions; ac-

knowledgements and references are given at the end.

II . BACKGROUND

This section gives a brief review of spatial and temporal

considerations of data collection and discusses the impact

on data integration and information extraction [20].

A. Temporal Considerations

1) Relative and Absolute Time as a Reference for
Correlating Power System Events: Monitoring, control, and

protection applications require knowledge of the instance

of time when a given event has occurred. The relative time
may be used to understand the time sequence between the

various control actions. As an example, knowing the

inception time of a fault, the time that takes relays and

breakers to operate can be calculated relative to the
incident time. Besides, an absolute time plays a role when

various data related to a given disturbance is collected at

multiple locations, and such data is used to improve

knowledge about the event. As an example, operation of

multiple relays and tripping of multiple breakers may be

sensed by IEDs located in multiple substations, so absolute

time needs to be known to be able to differentiate actions

corresponding to the same event from actions caused by
other but time adjacent events.

2) Sampling Clock Time as a Reference for Synchronous
Signal Sampling Versus Scanning: Various measurements in

the power system are performed by IEDs which convert

the measurements to samples by performing analog-to-

digital (A/D) conversion at the time the measurement is

taken. The samples are taken by a sampling and hold (S/H)
circuit, and then the A/D converter converts samples into a

computer word, known as data. The clock signal used for

initiating the S/H circuit operation can be applied

simultaneously (synchronously) for all the measured

channels or sequentially as each channel is measured

(scanned). Recovery of the information from data samples

depends heavily on whether the signals were sampled

synchronously or scanned. For example, it is possible to
recover the phase angle between different phases in a

three-phase circuit if synchronous sampling was per-

formed, but it may not be possible to recover it if the

signals in the three phases were scanned. The mode of

sampling clock control that results in synchronous

sampling versus scanning is widely different in modern

IEDs versus legacy remote terminal units of SCADA system.

3) Time as a Reference for Waveform Representation in
Time and Frequency Domain: Many of the applications for

monitoring, control, and protection require that the analog

waveforms of current and/or voltage be analyzed either as

time domain functions or phasors. The time domain

representation is important when waveforms experience

transient behavior (during faults) while the phasor

representation is sufficient for steady state conditions
(during normal operating conditions). In both instances,

how time is represented is important, which leads to either

an accurate representation of a waveform at any instant in

time or an approximation of the waveform with a phasor at

a given time instance of interest.

A typical example of time synchronization between

waveform samples is two-ended protection or fault location

on a transmission line which is implemented using time-
domain solutions. A typical example of synchronization of

phasor samples is in the two-ended fault location where the

measurements from two ends are phasors but may be used

either as synchronized or unsynchronized. While the

phasors extracted from sample may be used for many

applications, taking phasor samples synchronously across

all the IEDs is more involved since it requires understand-

ing of how the sample calculation is performed.

4) Implementation of the Time Reference: To illustrate

how various options of time synchronization mentioned

above may be implemented, Fig. 1 shows various designs of

the sample and hold and A/D conversion circuits used in

legacy and new IED solutions. For ease of implementation

of the smart grid solutions in general and in particular the
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ones discussed in this paper, the sampling synchronization

should be controlled by a common reference such as a GPS

time synchronization signal [21]. GPS receivers typically

provide both the sampling clock signal and absolute time

reference as shown in Fig. 2, which may be then combined

with the design shown in Fig. 1 to provide very precise
control of all the temporal issues mentioned in this section.

B. Spatial Considerations

1) Location as a Reference for Data Processing and
Information Extraction: For various events in the power

system such as faults, only specific power system
components are involved in the event and only local data

from IEDs are used in the process of information

extraction. For example, a transmission line protection

relay uses only local data to analyze faults on the line. On

the other hand, system integrity protection scheme (SIPS)

monitors large area and requires wide-area data. Due to

the huge diversity in IEDs, their technologies, and

communication infrastructure, sometimes it is challenging

to achieve good spatial considerations. There are some
non-traditional ways that could be used to improve spatial

considerations, like precise satellite images similar to

Google Earth [22], National Lightning Detection Network

(NLDN) [23], and geographic information system (GIS)

technology [24] that can be used for enhanced presenta-

tion of spatial data obtained by substation IEDs.

2) Location as a Reference for Model Representation: In
the Translational Knowledge approach, to create new

knowledge, the extracted information needs to be

Fig. 1. Synchronous sampling versus scanning.

Fig. 2. GPS synchronization.
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supplemented by a predefined model. Choices of models

vary depending on which type of information is utilized to

create them. As an example, the model can represent a

power system network, like in the case with the optimal

fault location applications, or it can represent cause/effect

relationships in control equipment operations like in the

case of Petri-Net logic used in Intelligent Alarm Proces-

sors, or it can represent pattern space for resulting vectors
in the neural network-based Fault Detection. Such cases

are discussed later in the paper.

To illustrate how the different background considera-

tions relate to the three applications discussed further in

this paper, Table 1 shows temporal, spatial and model

requirements for those applications. More details can be

found in the following sections.

III . OPTIMAL FAULT LOCATION

This section gives a brief overview of the typical fault
location approaches and implementation requirements

and then focuses on a solution that illustrates additional

benefits from the Translational knowledge approach.

A. Overview of Fault Location Algorithms
Transmission lines occasionally suffer from faults

which are generally caused by random and unpredictable

events. Transmission lines are normally equipped with

protective devices (relays) at both/all ends. Relays sense

the signal waveforms caused by such faults and isolate the

faulted line as soon as possible by operating corresponding

circuit breakers. Distance relays typically give some idea
about the fault location, but the results may over-reach or

under-reach due to several unknown parameters, such as

prefault loading, fault resistance, remote in feed etc. In

order to restore service quickly, an accurate location of the

fault is highly desirable in all circumstances to help the

maintenance crew find and repair the faulted line as soon

as possible.

Transmission line fault location approaches can be
broadly classified into three categories: [5], [6]:

• phasor based;

• time-domain based;

• traveling wave based.

Phasor based methods use a fundamental frequency

component of the signal and lumped parameter model of

the line while time-domain-based methods use transient

components of the signal and a lumped or distributed
parameter model of the line. Both of these methods can be

subdivided into another two broad classes depending upon

the availability of recorded data: single-end methods

where data from only one terminal of the transmission

line is available and double-end methods where data from

both (or multiple) ends of the transmission line can be

used [25]–[27]. Double ended methods [28]–[34] can use

synchronized or unsynchronized phasor measurements, as
well as synchronized or unsynchronized samples. Travel-

ing-wave-based fault locations [35]–[37] use the reflection

waves generated by the fault. They are based on the

correlation between the forward and backward traveling

waves along a line or direct detection of the arrival time of

waves at line terminals. Each of the techniques requires

very specific measurements from one or both ends of the

line to produce results with desired accuracy. In some
applications, the measurements from both ends of the

transmission line are not available and single-ended

algorithms cannot perform well due to the unique

configuration of the transmission lines (multiterminal

lines, taps, etc.). In such cases, some unconventional

techniques based on wide area measurements may have to

be used [8], [9].

B. An Optimal Solution That Matches Data
With Models

To illustrate how Translational Knowledge is generated

based on the field sampled data and power system model, a

fault location scheme that matches the field data with a

power system model to produce an optimal solution is

discussed in detail next.

A typical smart grid scenario that will illustrate this
unique approach is the situation when tapped lines are

used to supply large industrial customers. In this case,

measurements at all ends of the tapped line may not be

available due to the lack of measurement sensors at the

taps. Since the smart grid implementation assumes that

measurements at other locations in the vicinity are

available through communications, a scheme that takes

advantage of the sparsely measured data is developed.

C. Data Processing
Traditionally, in a substation, remote terminal units

(RTUs) acquire analog and digital measurements (bus

voltages, branch flows, frequency, breaker status, trans-

former tap position, etc.), collectively called SCADA

measurements, which are sent to the energy management

Table 1 Temporal, Spatial, and Model Requirements
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systems (EMS) every two to ten seconds. With the rapid

advancement of technology, IEDs come into the picture.

These computer-based devices can record and store a huge
amount of data (both operational and non-operational)

with a periodicity depending upon the intended purpose of

the device. Their sampling rates are much higher than

what is used in RTUs, and the data is taken synchronously

versus being scanned in RTUs.

In a modern integrated substation automation solution,

various types of IEDs are employed for monitoring, control

and protection purposes. All of the newer models have data
recording and exporting capabilities today. The IEDs are

triggered by various events such as faults, and at that time

they record data that is typically not captured by SCADA

RTUs such as auto reclosing sequences, transients, and

current dc offset. This additional data may be used to

supplement SCADA data to create better results in fault

location. The basic idea of integration of data is to collect

all the IED data in a substation database and use it for
extracting information automatically and then utilizing the

extracted information for several power system applica-

tions. The functional diagram for proposed substation data

flow is shown in Fig. 3.

To import the IED data into the central repository

requires means of data format conversion and communi-

cation among different IEDs, all features that are widely

required in the smart grid solutions. In addition to the
automatically retrieved IED and RTU data, the database

should contain several other data, such as the following:

• static system data containing description of the

system components and their connections (i.e.

topology and model parameters);

• SCADA EMS PI Historian data, which may be used

to tune the static system model with real-time data;

• substation interpretation data that allows one to
correlate the naming convention of recording

devices and of the static system model with PI

Historian data.

Although, integrating a huge amount of data provides
improved information by exploiting redundancy, the qua-

lity of data is also a major concern. Distortion in magnitude

and phase angle of current and voltage signal is introduced

in each stage of the measurement chain. Ideally, the output

waveform should be an exact replica of the input signal,

but the error introduced in several data processing stages

makes the output distorted. Thus the quality of data

depends largely on the performance of devices used in the
measurement chain. The performance of these devices and

the information extraction schemes are discussed elabo-

rately in [38]. Several commercial software packages are

used to implement the fault location scheme. The static

power system model is implemented using PSS/ETM 30

[39]. To tune the power grid with pre-fault data, SCADA

PI-Historian data is used [40]. The required data for this

approach can be broadly classified into:

1) System Level Data: This includes power system model

data (in saved case format *.sav) and data reflecting real

time changes in power system (PI Historian data). The

power flow input data (in *.raw format) contains power

flow system specification data for the establishment of a

static system model used by PSS/E to run the power flow

analysis. Sequence data (*.seq) contains the negative and
zero sequence impedance data needed for short circuit

study. SCADA PI Historian data contains the latest load,

branch and generator data to tune the static system data

with the actual pre and post fault conditions.

2) Field Data: These include event data recorded by

different IEDs after occurrence of any abnormality. The

field recorded data (digital protective relay or digital fault
recorder data) should follow the COMTRADE format.

Using this format, the measured data (*.dat), and

configuration (*.cfg) are described. The digital protective

relay (DPR) or digital fault recorder (DFR) data contains

analog and digital sample values from signal input

channels for a specific substation. The configuration data

contains information for interpreting the allocation of

measured data to the equipment in a substation. The DFR
recorded data supplied in native DFR format, used in our

example, are converted to COMTRADE file using DFR

Assistant software [41] which can generate an analysis

report (containing the type of fault and a possible faulted

line) in addition to generating the COMTRADE files.

In addition, we need substation interpretation data for

each substation correlating the nomenclature used in DFR

files and those used in PSS/E files. The interpretation files
should be modified as frequently as needed to reflect the

DFR configuration or system model changes.

D. Information Extraction
The event data obtained from DFRs should be pre-

processed before use in the applications. This section

illustrates how the data captured by DFRs are converted

Fig. 3. Functional diagram for substation data flow.
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into information and integrated with system level data to
be used in the fault location application.

1) Extraction of Phasors: Once the disturbance events are

obtained from the IEDs, two processing steps are taken to

obtain phasors from the samples of recorded analog signals

as follows:

• removal of high-frequency noise by low-pass

filtering;
• use of an improved Fourier algorithm to effectively

remove decaying dc-offset component and obtain

the prefault and during-fault phasors of voltages

and currents [42].

The prefault phasor can be calculated using the first

cycle of the recorded waveform. The during-fault phasor

can be calculated using any fault cycle following the fault

inception and prior to fault clearance. The fault inception
moment is determined from waveforms recorded by DFR.

It is possible to select different fault cycles to calculate the

during-fault phasors from the different DFR recordings.

This may introduce fault location error, especially for the

arcing faults during which the fault resistance is changing.

Under this situation, selecting different fault cycles means

experiencing different impacts of fault resistance. Another

option is to use time synchronized phasors which are cal-
culated based on the same data window determined

through one for the data synchronization methods men-

tioned in the background section. An alternative is that the

user checks the waveforms manually and specifies the

matching fault cycles across all recordings.

2) Synchronization of Phasors: The PSS/E load flow study

based on the modified system model (the real-time power
system model obtained from SCADA PI Historian) is

carried out to obtain the prefault phasors and during fault

phasors. For a typical fault case, several DFRs may be

triggered and the phasors calculated from the recorded

waveforms may lack synchronism which will introduce

phase angle difference among phasors. Thus time

synchronization of the phasors obtained from different

DFRs is necessary. The phasors calculated from each DFR
recording may be synchronized by rotating them in

reference to the phasors obtained by the load flow study,

assuming the angle difference between the pre- and

during-fault phasor for the corresponding recorded current

or voltage is fixed. This way, all recorded pre- and postfault

phasors are synchronized using the same reference.

Another option is to use GPS-synchronized phasors.

3) Tuning the Power System Model With Real-Time Power
System Conditions: The saved case model from PSS/E may

not reflect prevailing operating conditions of the system

when a fault occurs. To obtain simulated phasors corre-

sponding to the time when a fault occurred, the static

system model should be tuned with real-time power

system conditions. This tuning procedure may consist of

updating power grid topology (switching status) and then
updating generation and load data near the substations of

interest. This may be achieved by utilizing information

from both DFR recordings and SCADA PI Historian

data. The updated model is saved in a new saved case

data (*.sav) which is used for further simulation.

Updating power grid topology: Topology describes

connectivity of various components in a power system. In

our case, the topology (i.e., connectivity between different
buses), line status (whether the line is in service or not),

line impedances and susceptances are extracted from the

static system model provided in the simulation tool. The

topology update is performed using information of the pre-

fault breaker status and the pre-fault current magnitudes

of the monitored branches derived from the DFR data. It is

assumed that a zero magnitude (or smaller than 0.01 p.u.)

of the current through a monitored branch indicates an
out-of service status of the branch. If both the current and

the breaker status of a branch are available, the current

measurement will be used instead of the breaker status for

topology update. This is based on the observation that the

monitoring of currents is usually more reliable than the

monitoring of the breaker status because the measurement

contacts of the breaker may be unreliable or may not be

monitored. In this way the service status (i.e., in or out of
service status in the static model saved in the PSS/E file) of

the branches will be updated.

Updating generation and load data: In a typical power

system, the operator is able to track changes in real time

using the SCADA system. Through the SCADA database, a

low sampling rate recording typically used to capture short

term and long term disturbances is available. Captured

data is typically scanned every few seconds and it is usually
phasor or RMS data, not sampled data. The PI Historian

data provided by the utility is load, branch and generator

data scan (typically at 10 s intervals) in a period before and

after fault for each substation where DFRs are triggered.

These data are used to update the system.

E. Translational Knowledge Through Matching
System Wide Sparse Measurement and Power
System Model

The system wide sparse measurement based fault

location method [8], [9] uses phasor measurements from

different substations located in the region where the fault

has occurred. The measurements may be sparse, i.e., they

may come from only some of so many transmission line

ends (substations) in the region. The technique compares

measured data with data generated by the short circuit
simulation of possible fault locations. The measured and

simulated data from the locations where measurements are

taken is compared while the location of the fault is

changed in the short circuit program. This process is

repeated automatically until the measured and simulated

values have minimal difference, which indicates that the

fault location used in the short circuit program is the actual
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one in the field. The overall process is described below

using the following flowchart (see Fig. 4).

The waveforms can be matched using phasors or tran-

sients. In our present approach, field-recorded waveforms

are used to calculate phasors, and they are in turn matched

with the phasors obtained using short circuit study from

short circuit model data (saved case data using PSS/ETM
30 was supplied by the utility).

The matching degree can be formulated as [33]

fcðx; Rf Þ ¼
XNv

k¼1

rkvjVks � Vkrj þ
XNi

k¼1

rkijIks � Ikrj (1)

where

fcðx; Rf Þ the cost function used for phasors for matching;
x; Rf the fault location and fault resistance;

rkv; rki weights for the errors of the voltages and

currents, respectively;

Vks; Vkr simulated and recorded during-fault voltages,

respectively;

Iks; Ikr simulated and recorded during-fault currents,

respectively;

Ns;Nr total number of voltage and current phasors to
be matched, respectively;

k the index of voltage or current phasors.

Theoretically the cost function should become zero

when the simulated and recorded waveforms match com-

pletely. In a practical solution, the cost function is not zero

and should be minimized. To obtain good waveform

matching, the fault search range should be extensive. All

possible faulted branches and fault resistance should be
included in the search range which makes the search two-

dimensional and exhaustive. For a large system, multiple

searches should be run in parallel which can be achieved

using population based optimization methods such as

genetic algorithm (GA) [43]. Basically, in GA the objective

is to maximize the fitness value. Therefore it can be

applied to a maximization problem.

Equation (1) can be converted into a maximization
problem by

ff ðx; Rf Þ ¼ �fcðx;Rf Þ (2)

where ff ðx; Rf Þ is the fitness function to be used in GA.

F. Implementation
The architecture of the fault location scheme is shown

in Fig. 5. The input data include the DFR data, the
interpretation file for DFR data, the system model file in

the PSS/E format and the PI Historian data matched to the

model. The detailed description of this data requirement

and handling of the data to extract information was dis-

cussed in earlier sections. The operation procedure of the

software to utilize such information to obtain fault location

is briefly described below.

The fault location solution using GA is performed in
the following steps. First, the initial population is chosen

randomly for this two dimensional (i.e., with two variables

x; Rf ) optimization problem. A fault location variable can

be chosen from a range of zero to the length of the possible

faulty line, and a fault resistance variable can be selected

from typical possible fault resistance values. Second, short

circuit studies are carried out using PSS/E, and the fitness

is evaluated for each of the possible fault locations. Third,
by using three GA operators (selection, crossover, and

mutation), fault posing for the next iteration is obtained.

By iteratively posing faults, running short circuit simula-

tions, evaluating the fitness value, updating the fault

location and resistance, the GA-based search engine guides

the search process for a globally optimal solution.

G. Case Study
The software is implemented using the Java program-

ming language. To interact between PSS/E activities and

the Java programming language, IPLAN [44] language

(which is a part of the PSS/E package) is used. The IPLAN
language is able to modify the system topology, control the

load flow and short circuit studies, and control the report-

ing of the results of the PSS/E activities. Like other

programming languages, IPLAN language can be used to

write programs, by which one can automatically control

the PSS/E activities, as well as read and save the results in a

disk file.

Fig. 4. Flowchart of system wide sparse measurement method.
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The parameters used for GA are: population size ¼ 30,

crossover probability ¼ 0:8, mutation probability ¼ 0:05,

coding binary string length for fault location ¼ 8, and
coding binary string length for fault resistance ¼ 8. Fault

resistance ranges from 0 to 0.4 p.u.

Implementation of OFLA is evaluated for the following

issues: using varying number of DFR files, specifying the

search region, using preprocessed fault location estima-

tion, using different quantities for the match between

measured and simulated data, evaluating differences in

accuracy when different input data are available and
different assumptions are satisfied etc. These different

options may produce different results. Test activities are

conducted on the data collected from a real life electric

power system [45], [46].

We have also tested the fault location scheme [36] for

one test case provided by the utility. Two subsequent (in

5 ms gap) phase to ground faults occurred in one circuit

between substation A and substation B. PI Historian data
(extracted in *.xls format) is provided for both of the

substations for a 10-s time interval for a duration from

prefault to postfault. DFR triggered for only substation A

for both of the faults. For the first fault, a DFR-resident
algorithm could estimate fault location and for the

second fault, the DFR-resident algorithm could not. The

fault location scheme estimated the location accurately

for both of the cases.

IV. ALARM PROCESSING

Alarm processing is an important part of power system

operation that has been a traditional feature of the power

system energy management system (EMS) studied over the
past decades. Despite a variety of proposed solutions,

operators still have a strong need for a better way to

monitor the system than what is provided by the existing

alarm processing software [10]. An EPRI study [11] has

listed issues that operators face with alarms during their

day-to-day operation of a power system:

• alarms which are not descriptive enough;

Fig. 5. Architecture of the fault location scheme.
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• alarms which are too detailed;
• too many alarms during a system disturbance;

• false alarms;

• multiplicity of alarms for the same event;

• alarms changing too fast to be read on the display;

• alarms not in priority order.

Operators are expected to monitor the system condi-

tion and take actions immediately after the alarms occur.

However, when all problems mentioned above mix up,
operators are severely constrained to perform efficiently in

a timely manner.

A. Overview of Alarm Processing Algorithms
In recent years, several different concepts for filtering

and suppressing alarms based on intelligent techniques

have been implemented in many practical systems [12].

The major intelligent techniques used so far include the
following.

Expert System (ES) technique: This technique [47]–

[50] is well suited for a diagnosis problem such as fault

section estimation because it mimics the behavior of fault

analysis experts which perform fact-rule comparisons and

search of consequent options. The disadvantage is that an

expert system has to be developed using formalized

knowledge that captures the expertise, which may require
an extensive expert interviewing effort.

Fuzzy Logic (FL) technique: This approach offers a

convenient means for modeling inexactness and uncer-

tainties; hence a powerful solution to handle the imprecise

and incomplete data may be implemented [51], [52]. The

disadvantage is the need to have empirical data that helps

determine the membership function and properties of

fuzzy variables.
Petri-nets (PN) technique: It possesses the character-

istics of graphical discrete event representation and

parallel information processing [53]–[59].While very

fast, the dynamic nature of the temporal change of the

alarms cannot be easily captured with the standard Petri-

net approach unless further adjustments are made.

Fuzzy Reasoning Petri-nets (FRPN) technique: This

technique gains the advantages of expert system and fuzzy
logic, as well as parallel information processing [50]–

[59]. Some of the disadvantages of previously mentioned

individual techniques may be offset by the benefits coming

from combining the techniques.

B. An Improved Solution That Matches Data
With Models

An implicit disadvantage of the traditional knowledge-
based systems is that they may be incapable of handling

complex scenarios that are not encountered during

knowledge acquisition, implementation, or validation.

They may also suffer from the slowness in analysis due

to involved knowledge representation and inference

mechanisms. Solutions based on discrete event view of

Petri-nets also have several limitations. For instance, the

number of initial inputs is limited and it is difficult to
model inexactness and uncertainties. Consequently, to

accurately identify fault sections under complex circum-

stances, substantial heuristic rules and information are

additionally required [60].

An advanced FRPN diagnosis model is adopted in [60].

This intelligent alarm processor (IAP) model is expected to

achieve the following goals:

• suppress multiple alarms from one event;
• generate a single conclusion through a logical

cause-effect relationship;

• automate the process to get answers quickly;

• make graphical and numerical information concise

and easy to follow.This approach assumes that filed

data and model of the relay actions are matched

leading to a cause-effect analysis described below.

C. Data Processing
It has been proven that the logic operand data of digital

protective relays can be used as additional input to
enhance the alarm interpretation [60]. In a digital

protective relay, the pickup and operation information of

protection elements is usually in the form of logic

operands [61]. The pickup and operation logic operands

are more reliable than SCADA data because they are more

redundant and have less measurement uncertainty than

relay trip signals and circuit breaker status signals.

In such a solution, input data such as relay trip signals
and circuit breaker status signals are acquired by RTUs of

the SCADA system. Relay logic operand signals are defined

in their data memories and retrieved from relays by the

SCADA front-end computers in substations. The data are

acquired from different substations and transmitted to the

control center through selected communication links such

as microwave or optical fiber. In the control center, the

SCADA master computer puts the input data into a real-
time data base and keeps updating them at each scan time.

The detailed description of field data needed for this

application is listed in Table 2.

D. Information Extraction
The alarm diagnosis algorithm and model used for this

case are illustrated in an earlier paper [60]. The protection

system configuration for this case is shown in Fig. 6.

The system consists of 9 sections, including 3 buses,

2 generators, and 4 transmission lines.

The alarm processing application includes two stage

analyses.
• First Stage: The system’s topology is analyzed based

on circuit breaker status data from the real-time

data base. The analysis includes all sections

isolated by the opening of circuit breakers into a

rough candidate set. The set is rough because it

may include sections, which are not faulted but are

isolated due to backup relay operation.
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• Second Stage: The FRPN diagnosis model as well as

data in the real-time data base corresponding to
each section in the rough candidate set is used and

FRPN matrix operation is implemented.

When one or more faults occur on a given sections of

the power system, protection devices will reach a certain

status accordingly. The observed circuit breaker status

signals obtained from RTUs of SCADA systems are used as

inputs for estimation of the faulted sections. The logic

reasoning method uses the relay status obtained from the
online-database to validate each candidate fault section.

The strategy is to build one FRPN diagnosis model for each

section of the power system. Each model establishes

reasoning starting from a set of SCADA data leading to the

conclusion about fault occurrence on its section with a

certain truth degree value.

E. Translational Knowledge Through Matching
SCADA and Relay Data With the Reasoning
Diagnosis Model

We use a backward reasoning concept to structure the

FRPN diagnosis models and generalize the design for

transmission lines and buses. Fig. 7 illustrates the

backward reasoning concept for structuring transmission
line and bus diagnosis models respectively [60]. The

BAND-OR[ structure concisely represents all the possible

combinations of main, primary backup and secondary

backup protection operations for inferring a fault.

Table 2 Input Data List

Fig. 6. Protection system configuration diagram.
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F. Implementation
Based on the proposed structure introduced earlier

[60], the FRPN diagnosis models are developed. As ex-

amples, Fig. 8 shows the FRPN models for the transmission

line BBSES_60A and Unit 1, respectively.
Each proposition is given a Btruth degree value[ to

illustrate the strength of confirmation. We use a Bweighted

average[ operation when calculating the truth degree

value of a consequent proposition from the truth degree

values of its antecedent propositions. Fig. 9 illustrates the

operation for r1 in Fig. 8.

The Bweighted average[ operation has two benefits

[60]. First, the relative significance of antecedent proposi-

tions in implicating the consequent proposition is recog-
nized by the weights of antecedent propositions. This is

particularly meaningful when the cause-effect relation

among antecedent propositions is considered. In our

assumption, the circuit breaker opening is the effect of a

relay trip. The Bcircuit breaker opens[ proposition is

generally given larger weight than that of the Brelay trips[
proposition because a circuit breaker opening indicates the

completion of a protection operation more directly. For

Fig. 7. Backward reasoning concept for structuring transmission line diagnosis models.

Fig. 8. A FRPN model for BBSES_60A fault.
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example, regarding the rule r3 in Fig. 8, the proposition p5

BBLR4160 Trip[ will be given a weight 0.4; the proposition

p6 BCB4160 Open[ will be given a weight 0.6.
Second, the false data problem is effectively handled by

averaging the truth degree values of antecedent proposi-

tions. For example, when the relay MLR4160 trips and the

circuit breaker CB4160 opens as a consequence of a fault

on the line BBSES_60A, and BMLR4160 Trip[ is not ob-

served, p15, which stands for Bmain protection operates[,

it will still get a moderate truth degree value instead of 0,

hence a moderate truth degree value for the final con-
clusion. It is apparent that the larger the number of input

data, the impact of false data is more effectively countered.

G. Case Study
On September 5th 2007, a tornado in the area resulted

in the tripping of two 345 kV lines and two generators in

one of the substations. As a result of the unit trips, the bus

split into two buses due to the configuration of the
substation. Two cases taken from the SCADA database of

the EMS responsible for monitoring the area are used. The

first record was captured at approximately 07:49 AM,

before the event occurred, and the second was captured at

approximately 07:54 AM, just after the event occurred, as

shown in Fig. 10.

For the case in question, there were 2125 alarm

messages that appeared within only 45 min. Obviously,
this is beyond the capacity of any operator to handle. Thus,

operators may not be able to respond to the unfolding

events in time, and even worse, the interpretation by the

operators may be either wrong or inconclusive. Operators

also admitted that the list of large number of alarms

provided little help for them.

Though the operator in this case was not able to

provide relay data, our algorithm still works by having only
SCADA data as inputs.

CASE 1: No protective relay signals. Circuit breaker

CB4210, CB4220, CB4160, CB4920 status changes are

detected as shown in Fig. 11.

Diagnosis result: Line BBSES_60A is faulted, and its

truth value is 0.5130.

CASE 2: This report assumes the operation of the circuit

breaker is tripped by the associated relays, thus allowing
the relay status to be obtained to validate the fault. We

assumed that we received the relay signals related to this

case. All the devices worked correctly with no false signals.

Operation of circuit breakers CB4210, CB4220, CB4160,

CB4920 is detected as shown in Fig. 12.

Fig. 9. An example of ‘‘weighted average’’ operation.

Fig. 10. Alarm screen shot.
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Diagnosis result: Line BBSES_60A is faulted, and its

truth value is 0.8550. With the input of the related

relay signals, the fault certainness has been increased

dramatically.

For this case, the extracted information is the cause-
effect relationship between the fault event and alarms. The

final conclusion will be that a fault occurs on the

transmission line with a truth degree value. It greatly

reduces the system operator’s burden to deal with the

overwhelming alarms during an event.

From the simulation test, we may draw the conclusion

that by even using only SCADA data, our proposed IAP

model works properly for the practical cases. Compared

to current solutions, our model has the following

advantages:

• The fault alarm analysis report can be generated

automatically and immediately after the fault
occurs.

• The FRPN models can be built in advance based on

power system and protection system configura-

tions and stored in files. In such a way, the FRPN

models can be easily modified according to the

changes of input data as well as power system and

protection system configuration.

Fig. 12. FRPN model analysis procedure for line BBSES_60A_with_assumed_relay_data.

Fig. 11. FRPN model analysis procedure for line BBSES_60A.
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• This solution can use only SCADA data and does
not need detailed data from IEDs or other

measurement devices.

V. NEURAL NETWORK-BASED FAULT
DETECTION AND CLASSIFICATION

The traditional transmission line protection schemes are

mostly based on the calculation of three phase voltage and

current phasor estimates and their comparison to pre-

defined thresholds, which are a preset criteria. Calculating

settings requires complex short circuit analysis to cover
worst-case fault conditions and to coordinate the selectiv-

ity of each relay protection zone. The threshold-based

algorithm needs extensive theoretical analysis and verifi-

cation through elaborate field evaluations to make sure

overload conditions and distributed generation injections

are clearly differentiated from the faults. However, there

are some inherent problems associated with the traditional

distance relay principle. For example, the transient signal
during a fault is a nonstationary signal containing funda-

mental frequency components, dc offset with damping,

harmonics, etc. In some extreme situations, it will result in

an inaccurate estimation of phasor representation of the

faulted signal, which may cause the false judgment in re-

lays [62]. This was actually the case in the 2003 North-

eastern blackout in the United States and Canada when the

relays could not differentiate between faults and overload
conditions and cascading trips took place, bringing the

entire interconnection into a blackout that cost the eco-

nomy an estimated $50 billion [63].

A. Overview of Neural Network (NN) Algorithms
Neural network (NN) is an artificial intelligence tech-

nique, which has been studied in the power system area

[14]–[16], and applied to solutions such as fault detection
and classification [17], [64]–[70], fault location [71]–[73],

fault direction discrimination [74], etc. By resembling the

human brain, the neural network works as a parallel distri-

buted processor made up of simple processing units, which

has a natural capability for storing intelligence and making

it available for generalization [75]. A neuron is the most

fundamental information-processing unit of a neural

network. The three basic elements of a neuron are synaptic
weights, a summing junction, and the activation function.

The input–output mapping of a neuron can be expressed by

the following two equations [76]:

uk ¼
Xn

j¼1

!kjxj (3)

yk ¼’ðuk þ bkÞ: (4)

Fig. 13 shows the structure of a single neuron.

The NN learning process shows the procedure of con-

verting the power system field data to information, which

then can be processed to form the knowledge, which is

based on the interneuron connection strengths, or synaptic

weights. In this section, we will discuss what data is re-
quired for neural network based fault detection and classi-

fication; what kind of model is used to convert the data to

information; and how to the translation from information

to knowledge leads to the final decision making step.

B. An Improved Protective Relaying Solution That
Matches Data Patterns to Fault Types

The purpose of a NN-based protective relaying algo-

rithm is to match a given set of input data patterns into

several groups or clusters, so that each data pattern is
assigned to a unique cluster. The procedure includes neu-

ral network training and testing.

Neural network training is the most important step

when applying neural networks. The learning techniques

for some neural networks can be classified into two broad

categories: supervised learning and unsupervised learning

[76]. In supervised learning, each input signal is associated

with the labeled output. The task is the input–output
mapping by adjusting the synaptic weights to minimize the

overall error between the entire output set and their

corresponding input data set. In unsupervised learning,

the categories of the outputs are not known in advance.

The network is self-organized by clustering techniques to

identify the mutual similarity of the input patterns. The

task is to adjust the network weights until the similar in-

puts can produce similar outputs. A neural network based
on a combined unsupervised/supervised training scheme

has proven to be more capable of handling large data sets

of random fault scenarios than solely using supervised

training schemes [19], [67]. The input data vectors of

samples from voltage and/or current signals are mapped

into clusters that contain information about fault existence

and type.

Fig. 13. Basic neuron model of a neural network.
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During the testing procedure, distances between each

test pattern and established clusters are calculated. The

outcomes of the testing are class labels assigned to test
patterns according to the most common value among the K
nearest prototypes.

The input into the neural network will be in the form

of a moving data window containing samples of voltage

and current signals from local measurements and simula-

tions. Patterns are extracted from these data and placed

together in one row to form feature vector components,

which is shown in Fig. 17. Fig. 17 shows the patterns of the
sampled data. The pattern is arranged using the postfault

samples of three phase voltage and current signals. The

zero sequence values of voltage 3v0 ¼ va þ vb þ vc and

current 3i0 ¼ ia þ ib þ ic are also included to precisely

detect ground faults. In this case, all fault types can be

differentiated very well [76]. Thousands of such patterns

obtained from power system simulation or substation

databases of field recordings are used to train the neural
network offline, and then the pattern prototypes are used

to analyze faults online by using the Fuzzy K-NN classifier.

C. Data Processing
Compared with traditional methods, neural network-

based fault-diagnosis algorithms use the time-domain data:

three-phase voltage and current samples as input instead of

calculating phasors, which is shown in Fig. 14.

The neural network algorithm requires a large number

of fault and non-fault cases to complete the process of

training and testing for neural network tuning. Those

training and testing cases are quite different for various
transmission lines due to the selection of different simu-

lation parameters and settings. To perform comprehensive

tests, two categories of data will be acquired: field signal

measurements and data from simulation cases. Since it is

not possible to acquire enough fault cases from the field,

generating the needed data files by simulation provide an

alternative solution. Fig. 15 shows a block diagram for the

fault and non-fault scenarios generation which is based on
ATP/ATPDraw [77] and Matlab [78].

The power system of interest is first modeled in ATP/

ATPDraw. A user can define the desired fault or nonfault

cases by initializing the simulation setting parameters in

Matlab. The measured three-phase voltage and current

samples, which could also include time stamp, are ex-

tracted in the data format files defined by a user.

D. Information Extraction
The feature extraction is the procedure of information

processing, which is shown in Fig. 14. The detailed un-
supervised and supervised learning phases of neural

network training are shown in Fig. 16 [67].

The neural network algorithm compares information

from input voltage and current signals with prototypes

instead of predetermined settings.

Typically, the data window length in each phase is one

cycle or half cycle of the fundamental frequency signal. A

longer window increases the number of samples for train-
ing and gives better information about the original signals.

but it prolongs the training and testing procedures. The

sampling frequency has a similar effect on forming the

patterns as the data window does. Increased sampling

frequency offers improved signal detection but also causes

significant computational burden.

Fig. 15. Simulations for fault and nonfault scenarios.

Fig. 14. Fuzzy ART neural network algorithm for fault diagnosis.
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E. Detecting and Classifying Faults by Mapping Data
to Labeled Clusters

The purpose of the information processing is to form

the knowledge, which could allocate the training patterns

into homogeneous clusters by some grouping technique.

Then the clusters are assigned to the classes, which are our
expected fault events in the power system, such as fault

type, etc. The number of clusters is increased and their

positions are updated automatically during the learning,

and there is no need to define them in advance. Fig. 18

shows the raw training patterns as information. Fig. 19

shows the clusters after the training processing, which is

the knowledge of the neural network based fault detection

and classification.

The typical types of classification are based on
detecting the fault type and fault zone. The classification

of mapping data to labeled clusters is performed by using

the K-nearest neighbor rule (K-NN) [19].

Given a set of classified clusters, the standard K-nearest

neighbors rule determines the classification of the input

pattern xi based only on the class labels of the K closest

clusters in the cluster structure established during

training:

�jðxiÞ ¼ f K; �jðvlÞ
� �

(5)

Fig. 18. The raw training patternsVInformation.

Fig. 17. Pattern arrangement for proposed neural network

algorithm-data.

Fig. 16. Neural network clustering algorithm.

Fig. 19. The patterns are allocated to the clusters after a training

processingVknowledge.
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where
�jðvlÞ is membership value which determines the

degree of belonging of cluster l to class j;
�jðxiÞ is membership value of pattern i belonging

to class j;
i ¼ 1; . . . ; P where P is number of patterns;

j ¼ 1; . . . ; C where C is number of classes;

l ¼ 1; . . . ;K where K is number of neighbors;

v1; v2; . . . ; vK denotes the centers of K nearest neighbors
of pattern xi.

�jðvlÞ has only crisp values 0 or 1, depending on

whether or not a cluster vl belongs to class j:

�jðvlÞ ¼
1; if cluster l belongs to class j
0; otherwise.

�
(6)

F. Implementation
K-NN rule based clusters have the equal importance,

without taking into account their radii, and distances to

the pattern that have to be classified. Thus when imple-

menting the detecting and classifying faults by mapping

data to labeled clusters, the advanced K-nearest neighbor

technique, Fuzzy K-NN, is discussed and used to deal with
transmission line fault diagnosis issues in a line protection

scheme [67], [68]. The theoretical background can be

found in [79], [80].

New patterns are classified based on the weighted dis-

tances ðdlÞ to K nearest clusters, as well as on relative size

ðrlÞ and class labels ðclÞ of these clusters. The Fuzzy K-NN

calculates a vector of membership values ð�1ðxÞ�2ðxÞ;
. . . ; �cðxÞÞ of input pattern xi in the existing classes. The
class membership values are calculated based on the

following equation:

�jðxiÞ ¼ f K; �jðvlÞ; dlðxiÞ
� �

(7)

where now may �jðvlÞ take any value between 0 and 1,

representing the relative size of the actual cluster l. Each

cluster belongs to one of the existing classes, with its
membership value defined by the following adopted

relation:

�jðvlÞ ¼
rl

rmax
; if cluster l belongs to class j

0; otherwise.

�
(8)

The membership degree of cluster vl belonging to

class j is equal to the ratio between radius ðrlÞ of actual

cluster l and radius ðrmaxÞ of the largest cluster in the

cluster structure. The outcome is that the larger clusters

have more influences than the smaller ones, and the

clusters with longest radius have �jðvlÞ ¼ 1.

By taking into account distances between pattern xi and
K nearest clusters, the distance dlðxiÞ is selected to be a

weighted Euclidean distance between pattern xi and

cluster l

dlðxiÞ ¼ kxi � vlkm: (9)

The new fuzzier classification algorithm will help
classify better a variety of input patterns.

G. Case Study
In this case, a simulation system for the 500 kV trans-

mission line is built based on the ATP/ATPDraw and

Matlab [81]. A large number of fault and nonfault cases has

been generated, which includes different fault types, fault

locations, fault resistance, and fault angles. The fault is

initiated at 0.02 s into the simulation process, and cleared

at 0.45 s.

The proposed neural network is trained by using the
simulated fault and nonfault cases. There are 209 clusters

altogether determined with labels of different fault types.

Then 5000 cases are tested for the trained neural network.

Two classification algorithms are used when performing

the test procedures: the nearest neighbor algorithm and

the fuzzy K-nearest neighbor algorithm. Fig. 20 shows the

errors for the fault classification for the basic nearest

neighbor algorithm and the fuzzy 4-nearest neighbor
algorithm. From Fig. 19, we can see that the error for fuzzy

4-NN is stable at about 1.5%.

Using the prototypes of trained clusters, the Fuzzy

K-NN classifier takes into account both the effect of

weighted distances and the size of neighboring clusters for

distinguishing new patterns. It is proven that it has better

performance than a common K-nearest neighborhood

classifier. The advantage of neural network based fault
detection algorithms is that the neural network can form

its knowledge translating it from information describing

the clusters.

VI. OTHER APPLICATIONS

The examples of the translational knowledge approaches

described in previous sections relate to three distinct ap-

plications related to fault analysis: Fault detection and

classification, fault location, and alarm processing. If there

is a single fault in the system each of the applications will

perform as discussed in the related sections. A more com-
plex translation knowledge processing occurs in a case of

multiple faults. To further discuss such cases it is worth

differentiating different types of multiple faults and their

consequence on the approaches described earlier. The

multiple faults may be classified as follows.

• Evolving faults: the fault starts as one type and ends

up in a different type (as an example, the fault
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evolves from single phase-to-ground to two-phases-

to-ground).

• Cross-country faults: such faults involve one trans-

mission line and then extend to another (as an

example, this may happen when two different

transmission lines are on the same transmission
tower).The lines may or may not begin/end in the

same substations.

• Multiple time-correlated faults: Unrelated faults

occurring in different parts of the system but in

very short time proximity to each other (as an ex-

ample, a storm comes through a region and light-

ning causes many faults where one may be initiated

before the other clears). This may happen on the
lines that may or may not begin/end in the same

substation.

In such situation, while quite rare, the proposed appli-

cations are expected to perform as follows:

A. Fault Detection and Classification
The proposed technique is a pattern recognition based

technique that eventually uses simulated or actual

recorded cases for the NN training. If the above described

cases can be replicated through simulation and/or captured

record of actual waveform, the proposed technique can
learn how to deal with such cases

B. Fault Location
The proposed technique is based on matching between

phasors generated from a short circuit study and phasors

extracted from measured waveforms captured in the field

during a fault. Prior to the use of the technique the

topology of the system and model of the system need to be

determined and Bcalibrated[ using SCADA PI Historian

data. For multiple faults as described above the challenge
becomes to model them in the short circuit program,

capture the waveforms, and determine the model and to-

pology using PI Historian data. If from the recorded wave-

forms it may be determined which type of the multiple

fault has occurred, which requires further expertise be-

yond what was discussed in this paper, then the corre-

sponding system model may be used for short circuit study,

and the technique may be applied as proposed. If the re-
presentation of multiple faults in the model gets con-

strained due to the short circuit modeling tool limitations,

a time domain modeling tool such as electromagnetic

transient program (EMTP) may be used for more accurate

model representation. In that case the technique will need

to be extended to allow match between the simulated and

recorded waveforms rather than phasors as originally

proposed.

C. Alarm Processing
In this step one is really not dealing with fault char-

acterization but rather with interpretation of alarms that

come from relays, disturbance recorders, sequence of

event recorders, etc. Hence it becomes important to

understand how such devices react to multiple faults, and

what types of alarms are generated in that case. Again,
such study requires expertize beyond what is presented in

this paper. If such expertize is developed and clear corre-

lation between the various types of multiple faults and

alarms is established, then the proposed technique may be

applied. The models for cause–effect relationship between

the alarms and types of faults would need to be developed,

but once developed the same approach for drawing con-

clusions as originally proposed in this paper would be
applicable.

The above cases of multiple faults have not been

studied in this paper for a simple reason: the use of trans-

lation knowledge assumes that the overall process is even-

tually automated and hence provides a quick way of

analyzing simple (and most common) fault cases. A com-

mon attempt by many in the past was to develop complex

translational knowledge techniques that can help automate
the analysis process for complex events such as multiple

faults. The experience of this author has been that if one

attempts to automate cases that are overly complex one

runs into a Bdiminishing returns[ situation rather quickly:

the time spent on developing the solutions, and conse-

quently maintaining them and updating them through the

life-cycle of the solution, becomes so costly that the auto-

mation is not justified, and the whole approach defeats its
basic purpose of being easy and cost effective to use and

apply. This leads to practical recommendation: as one

develops automated means for the translation knowledge

techniques one should make a judgment what level of

complexity is worth implementing using automated solu-

tions and when one has to start relying on sound judgment

of an expert that uses multiple means, many of them

Fig. 20. Error results of neural network fault classification tools.
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manual, to come to a conclusion. The case in point, multi-
ple faults, may be better analyzed through an experienced

person gathering different sources of information manually

or automatically and making some judgment through quite

often heuristic approach. The final massage of this expe-

rience is notable: complexity of the translational knowl-

edge approach need to be carefully managed when practical

automated solutions are developed and implemented.

VII. CONCLUSION

It is widely understood that smart grid solutions create

large amounts of field data that has potential value to im-

prove power system monitoring, control and protection.

This paper has demonstrated how data may be converted to

information, and then matched to different types of

models for different applications to create knowledge for
control actions. The benefits of this process, termed trans-

lational knowledge, are multiple:

• in the fault location case, an optimal solution was

achieved by matching field data with model data in

the cases when no other algorithms could reach the
result;

• in the alarm processing case, by matching data to

the model of relaying logic, a compact cause/effect

analysis is achieved that is not possible with legacy

solutions;

• in the protective relaying case, matching data vec-

tors from the field signals with cluster of patterns

designating fault types created an inherently adap-
tive protection that does not rely on accuracy of

settings as in traditional relays. h

Acknowledgment

The author gratefully acknowledge the contributions of

his former Ph.D. students Y. Liao, S. Vasilic, and X. Luo

whose dissertation work has been incorporated into this
paper. His current Ph.D. students B. Matic-Cuka, P. Dutta,

Y. Guan, and P. Chengzong are acknowledged for the

extension of the prior work and case studies reported in

the paper.

RE FERENCES
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