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Real-Time Power System Frequency and Phasors
Estimation Using Recursive Wavelet Transform
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Abstract—Phasor frequency, magnitude, and angle describing a
sinusoidal signal are widely used as critical variables in algorithms
and performance indices in many power system applications,
such as the protection relaying and state monitoring. This paper
proposes a novel approach for estimating the phasor parameters,
namely frequency, magnitude, and angle in real time based on a
newly constructed recursive wavelet transform. This algorithm is
capable of estimating the phasor parameters in a quarter cycle
of an input signal. It features fast response and achieves high
accuracy over a wide range of frequency deviations. The signal
sampling rate and data window size can be selected to meet
desirable applications requirements, such as fast response, high
accuracy, and low computational burden. Besides, an approach
for eliminating a decaying dc component, which has a significant
impact on estimating phasors, is proposed by using a recursive
wavelet transform. Simulation results demonstrate that the pro-
posed methods achieve good performance.

Index Terms—Decaying dc component, frequency, phasor,
phasor parameter estimation, recursive wavelet transform
(RWT), sinusoidal signal, total vector error (TVE).

I. INTRODUCTION

I N POWER systems, many applications need real-time
measurements of frequency and other phasor parameters of

voltage and current signals for the purpose of monitoring, con-
trol, and protection. Power system frequency as a key property
of a phasor can be indicative of system abnormal conditions
and disturbances. The phasor frequency, amplitude, and phase
angle are critical variables used by many algorithms. How to
rapidly and accurately estimate frequency and other phasor
parameters is still a contemporary topic of research interest.

Discrete Fourier transform (DFT) is widely used as a filtering
algorithm for estimating fundamental frequency phasors [1],
[2]. The conventional DFT algorithm achieves excellent perfor-
mance when the signals contain only fundamental frequency
and integer harmonic frequency components. Since, in most
cases, the currents contain decaying dc components may intro-
duce fairly large errors in the phasor estimation [3], [4].

A variety of techniques for the real-time estimation of power
system frequency has been developed and evaluated in past two
decades. As an example, DFT has been extensively applied to

Manuscript received October 05, 2009; revised March 19, 2010; accepted
March 23, 2011. Date of publication May 05, 2011; date of current version June
24, 2011. Paper no. TPWRD-00749-2009.

The authors are with the Department of Electrical and Computer En-
gineering, Texas A&M University, College Station, TX 77843-3128 USA
(e-mail: j.f.ren@neo.tamu.edu; kezunov@ece.tamu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRD.2011.2135385

extract frequency due to its low computation requirement. How-
ever, the implicit data window in the DFT approach causes er-
rors when frequency deviates from the nominal value [5]. To
improve the performance of DFT-based approaches, some adap-
tive methods based on the feedback loop by tuning the sampling
interval [6], adjusting the data window length [7], changing the
nominal frequency used in DFT iteratively [5], correcting the
gains of orthogonal filters [8], and tuning the weighted factor
[9] recursively are proposed. Due to the inherent limitation in
DFT, at least one cycle of analyzed signal is required, which
hardly meets the demand of high-speed response for protection
schemes. A method using three consecutive samples of the in-
stantaneous input signal is discussed in [10]. The noise and zero
crossing issue may bring large errors to this method. On the
basis of the stationary signal model, some nonlinear curve fitting
techniques, including extended Kalman filter [11] and recursive
least-squares algorithm [12], are adopted to estimate the fun-
damental frequency. The accuracy is only reached in a narrow
range around the nominal frequency due to the truncation of
Taylor series expansions of nonlinear terms. Some artificial-in-
telligence techniques, such as genetic algorithm [13] and neural
networks [14], have been used to achieve precise frequency es-
timation over a wide range with fast response. Although better
performance can be achieved by these optimization techniques,
the implementation algorithm is more complex and intense in
computation.

Many techniques have been proposed to eliminate the im-
pact of decaying dc components in phasor estimation. A dig-
ital mimic filter-based method was proposed in [15]. This filter
features high-pass frequency response which results in bringing
high-frequency noise to the outcome. It performs well when its
time constant matches the time constant of the exponentially de-
caying component. Theoretically, the decaying component can
be completely removed from the original waveform once its pa-
rameters can be obtained. Based on this idea, [16] and [17] uti-
lize additional samples to calculate the parameters of the de-
caying component. Reference [18] uses the simultaneous equa-
tions derived from the harmonics. The effect of dc components
by DFT is eliminated by using the outputs of even-sample-set
and odd-sample-set [19]. Reference [20] hybridizes the partial
sum-based method and least-squares-based method to estimate
the dc offsets parameters. A new Fourier algorithm and three
simplified algorithms based on Taylor expansion were proposed
to eliminate the decaying component in [21]. In [22], the author
estimates the parameters of the decaying component by using
the phase-angle difference between voltage and current. This
method requires both voltage and current inputs. As a result, it
is not applicable to the current-based protection schemes.
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The recursive wavelet approach was introduced in protective
relaying for a long time [23]–[25]. The improved model with
single-direction recursive equations is more suitable for the ap-
plication to real-time signal processing [24]. The band energy of
any center frequency can be extracted through recursive wavelet
transform (RWT) with moderately low computation burden.

A new mother wavelet with recursive formula is constructed
in our paper. The RWT-based real-time frequency and phasor
estimation and decaying dc component elimination scheme is
proposed. The algorithm can produce accurate phasor outputs
in a quarter cycle of an input signal. It responds quite fast al-
though the time delay brought by prefiltering may be prominent.
The convergence analysis indicates that the higher sampling rate
one uses, the shorter the data window size that the computation
needs, and vice-versa. The sampling rate has barely had an effect
on the accuracy once it reaches 50 samples per cycle (i.e., 3 kHz
for a 60-Hz power system) or higher. Besides, a method for re-
moving the decaying dc component, which affects the perfor-
mance of extracting the fundamental frequency component, is
proposed by using the RWT. Analysis indicates that the compu-
tational burden is moderate. Performance test results including
static, dynamic, transient, and noise tests demonstrate the ad-
vantages of the proposed method.

II. RECURSIVE WAVELET TRANSFORM

The mother wavelet function is defined as a function
which satisfies the admissibility condition

where is the Fourier transform of .
A set of wavelet functions can be derived from by di-

lating and shifting the mother wavelet, as will be given

where and are the scaling (dilation) factor and time shifting
(translation) factor, respectively.

A “good” wavelet is such a function that meets the admis-
sibility condition and has a small time–frequency window area
[26]. We construct a mother wavelet function as expressed as
follows:

And we designate function

Its frequency-domain expression obtained by Fourier transform
is given in the following expression:

Fig. 1. Time-domain waveforms of ����.

Fig. 2. Frequency-domain waveforms of ����.

Setting , makes the wavelet function
admissible (i.e.,. .

One can see that the newly constructed wavelet is a complex
function whose time- and frequency-domain expressions con-
tain real and imaginary parts. Figs. 1 and 2 give the time- and
frequency-domain waveforms of and , respectively.
Some performance parameters can be calculated to specify a
wavelet function [26]. The time-domain center and window
radius of wavelet function are 0.99 s and 0.40 s, re-
spectively. As one can see in Fig. 2, it features a band-pass filter
with the frequency-domain center and band radius of

rad and 1.38 rad. One advantage of the wavelet transform
is that the quality factor , defined as the ratio of frequency
center and bandwidth , stays constant as the observa-
tion scale varies. For , 2.27. The complex
wavelet exhibits good time-frequency localization characteris-
tics. Its time-frequency window area , defined as a product of
time window width and frequency bandwidth , is 2.23

s.
To obtain the center frequency of the band-pass filter,

which is defined as the frequency in which the function reaches
the maximum magnitude, we have the Fourier transform for the
dilated wavelet function

reaches the maximum value when , that
is, . Thus, we have . That is, the scale
factor is reciprocal to the center frequency of the band-pass
filter.

Since the wavelet function is anticausal, which has zeros
for all positive time, the wavelet transform coefficient in scale
for a given causal signal can be expressed as

(1)
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Let be the sampling period, and and be integers. Then,
, . With the observing frequency ,

(1) can be expressed discretely

The formula just shown can be expressed by using convolution

Taking the -transform on both sides, we have

(2)

where , , and are -transforms of dis-
crete sequences , , and ,
respectively.

Based on the expression of wavelet function , we derive
its discrete form in terms of observing frequency

Its -transform is expressed as follows:

Denoting , we obtain the expression for

(3)

where

From (2) and (3), we obtain

According to the properties of inversion of the -transform, we
obtain the recursive expression for discretely computing wavelet
transform coefficients

(4)

In (4), represents the observing center frequency which is
reciprocal to the scale factor . To extract the frequency band
energy centered in 60 Hz, for instance, simply apply 60
to (4). One can notice that wavelet transform coefficients can
be calculated recursively with the historical data. This type of
wavelet transform is so-called the recursive wavelet transform
(RWT). Compared with the RWT in [23] and [24], the proposed
RWT requires the historical data and less computation; thus, it
can be used in real-time applications.

III. FREQUENCY AND PHASOR ESTIMATION

As discussed in Section II, the recursive wavelet (RW) fea-
tures a complex wavelet whose wavelet transform coefficients
(real part and imaginary part) contain both phase and magni-
tude information of the input signal, based on which the algo-
rithm for estimating the power system frequency and phasor is
derived as follows.

A. RWT-Based Frequency and Phasor Estimation

Let us consider a discrete input signal that contains th order
harmonics with a sampling period

(5)

where , , and represent the frequency, amplitude, and
phase angle of the th order harmonic, respectively. Denoting
the absolute phase angle of the th order harmonic at sample
as , one can see that frequency
represents the rate of change of . For simplicity, the sampling
period is neglected when expressing variables for the rest
of this paper.

To represent the input signal in the time–frequency do-
main, apply RWT in scale using (4). As derived in the Ap-
pendix we have the following expression:

(6)
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From (6), one can see that the wavelet transform coefficient
contains information on the input signal in both cosine

form and sine form, denoted as and in (7a) and (7b)
(given in the Appendix), respectively, multiplied by weighting
factors, denoted as and in (8a) and (8b) (given in the
Appendix), respectively.

Let represent the initial estimate of frequency variable,
and rewrite (8a) using the first-order Taylor series expansion.
That is

(9a)

where
.

For simplicity, denote and as
and , respectively. Then, we rewrite the equation as follows:

Following the same procedures, we can rewrite (8b) as follows:

(9b)

Then, (6) can be expressed as follows:

(10a)

where and .
Applying RWT to in a series of scales ,

we obtain a series of coefficients that can be
expressed in (10a). Rewrite those equations in matrix form as
shown in the equation at the bottom of the page. For simplicity,
we represent the previous matrix in vector form. At sample ,
we have the following equation:

(10b)

In (10b), the wavelet coefficient can be calculated by
using recursive (4). For weighting factor , it can be calcu-
lated with estimated frequency using (8a) and (8b) and (9a)
and (9b). Solving (10b), we obtain vector variable . Then,
we can derive the following formula for :

(11a)

After we estimate the frequency adjustment, update the fre-
quency with and iterate the aforementioned approx-
imation procedures until either the frequency change reaches
the cutoff valuel; for example, 0.001 Hz, or a maximum
number of iterations denoted as is performed. As a result, the
real frequency can be estimated at the last iteration. Then, the
amplitude and phase angle can be estimated by the fol-
lowing equations:

(11b)

(11c)

where or .
The flowchart as given in Fig. 3 illustrates the implemen-

tation procedures for the proposed frequency, magnitude, and
phase estimation algorithm. In practice, a low-pass filter with
appropriate cutoff frequency is applied for eliminating high-fre-
quency components in voltage and current measurements. As a
result, the order of harmonic components can be limited within
the range of cutoff frequency. For example, if a third-order But-
terworth low-pass filter with a cutoff frequency of 320 Hz is
used to prefilter input signals, in this case, the maximum order
of harmonics will be limited to five (i.e., 5). Generally,
we select multiples of the nominal frequency (i.e.,
60 Hz, represents the order of harmonics asan initial esti-
mate to start iterations. To achieve high accuracy, scale fac-
tors are required to cover all of the frequency
components of the signal being analyzed. Therefore, we select

. Extensive simulations show
that the proposed algorithm can converge to the real value within
three iterations. It should be noted that if only the fundamental
frequency component is of interest (i.e., only is taken into
the iteration loop), the dimension of scale factors and weighting
matrix will be reduced to . Obviously, if the input signal
only contains the fundamental frequency component, the solved
variables and will be some numbers
close to zero, and then the parameters of those harmonics are
meaningless.

... ...
...

...
...

. . .
...

...
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Fig. 3. Flowchart of the frequency, magnitude, and phase estimation.

B. Analysis of the Convergence Characteristics

The sampling rate and window length may affect the conver-
gence characteristics because of two factors. One is that these
formulae are derived based on the assumption that the error re-
sulting from the discrete computation is negligible. Another is
the error introduced by an inherent settling process in recur-
sive equations. Besides, inappropriately selecting window size
and sampling rate may cause the weighting factor matrix
singular.

To analyze the convergence characteristics, we define the
window length as the cycle of the nominal frequency, which
is independent of the signal sampling frequency defined as

times nominal frequency in Hertz. The variable and
determine the number of samples within a data window

(i.e., ). The total vector error (TVE) is
used to measure the phasor accuracy [27]. Once the amplitude
error (in percentage of the real value) and the phase
error (in degrees) are available, the expression for TVE
is given by , where
0.573 is the arcsine of 1% in degrees.

The signal model in (5) is used for the algorithm convergence
analysis. In (5), we let 60 Hz and 5; that is, the fun-
damental frequency component contained in the signal is 60 Hz
and the frequency of harmonic noise is up to 300 Hz. Analysis
results are given in Fig. 4, in which the dot represents the con-
vergence while “ ” stands for divergence. The results indicate

Fig. 4. Convergence analysis results.

Fig. 5. Estimate frequency error for � � 65 Hz.

Fig. 6. Estimate �� � for � � 65 Hz.

that the window length can be shortened to 0.2 cycles if the sam-
pling rate is 70 samples per cycle (i.e., 4.2 kHz) or higher.

Let us consider a case when the fundamental frequency devi-
ates to 65 Hz and performs the algorithm to estimate frequency,
magnitude, and phase. Relationships between frequency error,
TVE, and two variables and , are shown in Figs. 5 and 6,
respectively, in which the signal sampling rate is simulated from
50 to 150 samples per cycle while the window length changes
from 0.25 to 1 cycle. One can see that the proposed algorithm
achieves high accuracy and fast convergence. Simulations per-
formed in Section V also show that for a broad range of fre-
quency deviation, such as 55 Hz–65 Hz, the algorithm can con-
verge to the real value within three iterations. Besides, the sam-
pling rate has barely any effect on the accuracy once it reaches
50 samples per cycle (i.e., 3 kHz for the 60-Hz power system)
or higher. Compared to the conventional DFT-based methods,
this algorithm can shorten the window length to a quarter cycle.

Let us now consider the computation burden of the proposed
algorithm. If we use 3 kHz sampling frequency and 0.25 cycle
data window as the case performed in convergence analysis and
performance tests, it approximately requires 6000 multiplica-
tions and 5796 summations. Only multi-
plications and summations are used for
computing RWT coefficients (where 5), and

5184 multiplications and summations for ma-
trix inverse computation when three iterations are performed.
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Weighting matrix with various scales and frequencies can
be calculated and stored in advance and can be accessed very
fast by using a table lookup method. Some mathematical tech-
niques, such as Chelosky and LU factorization methods, can be
adopted to simplify the matrix computation [28], [29]. The com-
putation burden can then be noticeably reduced to

multiplications and
summations. Besides, increasing

the window length has a very small effect on the total compu-
tation burden because it only increases the computation burden
of RWT coefficients while the matrix dimension stays the same.
Based on the analysis, one can see the total computation burden
is fairly low. It can satisfy the time response requirement of
time-critical applications.

IV. ELIMINATING DECAYING DC COMPONENT

Similar derivation procedures can be used to develop the al-
gorithm for eliminating the effect of decaying dc offset. Let us
consider the following signal model that contains the exponen-
tially decaying component

where is the signal model defined in (5), , and repre-
sents the amplitude and time constant of dc offset, respectively.

Applying RWT in scale to represent signal in the time-
frequency domain as derived in the Appendix, we have

(12)

From (12), one can see that the wavelet coefficient con-
tains the coefficient for signal and the weighted decaying
dc component. Since the time constant is unknown to , itera-
tions are required to approximate it.

Let represent the initial estimate and rewrite (14a) (in the
Appendix) by using the first-order Taylor series expansion, and
we have

(14b)

where .

For simplicity, denote and as and
, respectively, and rewrite the above formula

Then, (12) can be expressed as follows:

(15a)

where
Applying RWT to in a series of scales

, we obtain a series of coefficients
that can be expressed as the matrix,

shown at the bottom of the page. For simplicity, we represent
the above matrix in vector form. At sample , we have the
following equation:

(15b)

In (15b), the wavelet coefficient can be calculated
by using recursive (4). For weighting factor , it can be
calculated with approximate frequency and time constant

by using (8a)–(8b), (9a)–(9b), and (14a)–(14b), respectively.
Solving matrix (15b), we obtain the vector variable .
Then, we can derive the formula to estimate

(16a)

And (11a) can be used to estimate . After we obtain the
time constant and frequency adjustments, update those two vari-
ables with and , and iterate the above approxi-
mation procedures until either the changes of variables reach the
cutoff value or a maximum number of iterations is performed.
As a result, the real frequency and time constant can be esti-
mated at the last iteration. Then, the amplitude and phase
angle can be estimated by using(11b) and (11c), respec-
tively. If we approximate the exponential function by using the
second-order Taylor expansion, we obtain

...
...

...
. . .

...
...

...
...
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The formula for estimating the magnitude of the decaying dc
component is

(16b)

The initial estimate of the time constant can be selected
from a wide range: a half cycle to five cycles [15]. Generally,
we select two cycles as the initial estimate. The expression for

is given in (13). Given the sampling rate and window size
1/4 cycle, the (13) can be rewritten as

or (the window size is 1
cycle). Considering a typical range for the time constant variable
of the decaying dc component would take on
the range – or – ( is the ampli-
tude of the decaying dc component), respectively. One can see
that the value of has the same level as its amplitude. Thus, the
issues of noise and division by zero due to the small value can
be avoided. The flowchart for performing the algorithm is sim-
ilar to the one shown in Fig. 3 except for modifying the wavelet
coefficients and weighting matrix and introducing time constant
variables into the iteration loop.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed estimation al-
gorithm is fully evaluated with various test conditions covering
static state, dynamic state, and transient state, and the results
are compared with conventional DFT methods, improved DFT-
based methods in [5]–[7], and the latest published techniques in
[9], [10], [20], and [21]. In the static test, a signal model con-
taining harmonics and noise is used and the performance is ver-
ified in a wide range of frequency deviations. The dynamic test
uses the scenarios that may occur in the real power system. The
scenarios including the frequency ramp, short-circuit fault, and
power swing are simulated using appropriate signal models. In
the transient test, three-phase current outputs from the Alter-
native Transients Program/Electromagnetic Transients Program
(ATP/EMTP) [30] are used to verify the performance of elimi-
nating the dc offset. All tests are performed with the sampling
rate 50 samples per cycle, (i.e., 3 kHz, and data
window size 0.25 cycle (12 samples).

A. Static Test

A signal model containing harmonics and 0.1% (signal-to-
noise ratio 60 dB) white noise is assumed, where
represents the zero-mean Gaussian noise. Let 1.0 p.u.,

. The fundamental frequency varies over a wide range
from 55 to 65 Hz in 0.2 Hz steps. Frequency error and total
vector error (TVE) of the fundamental frequency component are
estimated. Comparing to the DFT-based methods in [5]–[7], the
algorithm can output the frequency and phasor parameters in
about 4 ms. The method using three consecutive samples of the
instantaneous signal in [9] and [10], denoted as MV, achieves
the uncertainty of 10 million Hz. But they require a higher sam-
pling frequency (6.4 kHz and higher) and the additional time
delay (approximately two cycles) introduced by the band-pass
filtering. The results are shown in Fig. 7. The output accuracy
can be improved by extending the data window. Simulation re-
sults show that the maximum frequency error and TVE can be

Fig. 7. Static test results using a quarter cycle data window.

TABLE I
TEST RESULTS FOR NOISE TESTS

reduced to 0.05 Hz and 0.17%, respectively, when is extended
to a half cycle

B. Noise Test

The inherent noise rejection capability of the algorithm is in-
vestigated by the noise test. The signal model for the static test is
used. Let the fundamental frequency take the nominal value (60
Hz). For each level of the Gaussian noise, three data windows
(quarter cycle, half cycle, and one cycle) were applied. The test
was conducted by using the method MV except applying the
variable data windows because the MV has a fixed size of data
window. Each case was performed 10 times and the maximum
value of the frequency estimate error for both RWT and MV,
and TVE for RWT are shown in Table I. As one can expect,
the better noise rejection can be obtained by slowing down the
output response (i.e., prolonging the window span). The accu-
racy of RWT with one cycle window is in the same level with
that of MV. The MV requires extra delay caused by filtering.

C. Dynamic Test

1) Frequency Ramp: The following synthesized sinusoidal
signal with a frequency ramp is used to perform the frequency
ramp tests

is the frequency ramp rate. The signal frequency starts from
59 Hz followed by a positive ramp Hz/s starting at 0.1 s
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Fig. 8. Frequency ramp test results.

Fig. 9. Dynamic response for the amplitude step.

Fig. 10. Dynamic response for the phase-angle step.

and ending at 0.3 s, and then stays at 61 Hz for another 0.1 s.
Fig. 8 shows the estimated frequencies and the true values. The
transient behavior at the signal start and each discontinuity are
shown as well. One can see that the outputs follow the inputs
very closely and fast. The algorithm is able to output in about
4 ms with a quarter cycle window. The maximum error during
ramp is 0.012 Hz. As discussed in the noise test, using more
data can improve the tracking accuracy but results in the lower
response as a tradeoff.

2) Step Change: To evaluate the dynamic response when ex-
posed to an abrupt signal change, a positive step followed by
a reverse step back to the starting value under various condi-
tions is applied to the amplitude, phase angle, and frequency of
a sinusoidal signal, respectively. Studies indicate that under all
three types of steps that the algorithm shows similar dynamic be-
havior. The results of the amplitude step (10% of normal value),
phase step 18 rad), and frequency step (1 Hz) are presented
by Figs. 9–11, respectively. The steps occur at 0.02 and 0.06
s. One can observe that the outputs track the changes in inputs
very fast.

Fig. 11. Dynamic response for the frequency step.

Fig. 12. Dynamic response for the amplitude step with prefiltering.

To investigate the effect of prefiltering on the algorithm dy-
namic performance, a third-order Butterworth low-pass filter
with a cutoff frequency of 320 Hz is used to process the input
signals. Fig. 12 shows the result of the amplitude step test. Com-
pared to Fig. 9, which shows the transient behavior without
signal prefiltering, one can see that the low-pass filter enlarges
the overshoot and undershoot, and slows the response from 4
to 10 ms though it is still faster than the DFT-based methods
[5]–[7] and instantaneous sample-based methods [9], [10].

3) Modulation: A sinusoidal modulation signal model is
used to simulate the transient progress of voltage and current
signals during the power swing. Its amplitude and phase angle
are applied with simultaneous modulation as shown in the
following expression:

where is the modulation frequency, is the amplitude-mod-
ulation factor, and is the phase-angle modulation factor.
Equations (17a)–(17c) in the Appendix provide the true value
of frequency, amplitude, and phase angle for the modulated
signal model at output sample .

Let 0.1, 0.1 radian and modulation frequency vary
from 0.1 Hz to 2 Hz in a 0.1-Hz step. The results are compared
to the instantaneous sample-based method MV. The mean of
frequency deviation obtained by RWT and MV, and the
mean and standard deviation of the TVE by RWT in one
second are calculated. Due to the limited space, only parts of
test results are presented. As shown in Table II, the algorithm
achieves good dynamic performance when exposed to signal
oscillations.
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TABLE II
TEST RESULTS FOR MODULATION TESTS

Fig. 13. Phase-A current waveform.

TABLE III
TEST RESULTS FOR DECAYING DC OFFSET

D. Transient Test

A 230 kV power network is modeled in EMTP to generate
waveforms for testing the performance when eliminating
decaying dc offset. A three-phase fault is applied and the
three-phase currents are used as input signals. Fig. 13 shows
the phase-A current waveform. One can see that the signal is
contaminated with decaying dc component and high frequency
noise during the beginning of postfault. The third-order But-
terworth low-pass filter with a cutoff frequency of 320 Hz is
used to attenuate the high-frequency components. Parameters
estimation for the steady state (twenty cycles after the fault
occurs) is used as a reference to measure the TVEs.

As shown in Table III, the results are compared with the con-
ventional full-cycle DFT (FCDFT), half-cycle DFT (HCDFT)
methods, least error square method (LES), simplified algorithm
(SIM3) in [21], and hybrid method (HM) in [20]. In Table III,
is the time (in cycles) when the TVEs are measured. For the high
accuracy, the algorithm was adjusted to a three-quarter cycle
window span. The results show that the accuracy is comparable
to those of LES, SIM3, and HM methods while the proposed al-
gorithm requires a shorter data window, which results in faster
response.

VI. CONCLUSIONS

This paper proposes a new wavelet function and its recursive
wavelet transform. The method allowing real-time estimating
of power system frequency, magnitude and phase while elim-
inating the impact of decaying dc component based on RWT
is proposed. The algorithm features rapid response and accu-
rate results over a wide range of frequency deviations. It uses
only a quarter cycle of input signals for outputting frequency,
and magnitude and phase results for a signal contaminated with
harmonics. The sampling rate and observation window size can
be chosen to meet selected applications requirements. The anal-
ysis of the algorithm convergence characteristics indicates that
the higher the sampling rate, the shorter the computation data
window and the faster the rate the method outputs phasor, and
vice-versa. The decaying dc component can be completely re-
moved by estimating its parameters using RWT. The perfor-
mance of the proposed algorithm is evaluated under a variety
of conditions including static state, dynamic state, and transient
state. Comparing other techniques results demonstrates the ad-
vantages. Computation burden analysis indicates that the com-
putation requirement is moderate. Thus, this approach can sat-
isfy the time-critical demand of the real-time applications in
power systems.

APPENDIX

The RWT coefficient of a given signal is expressed as

Denoting , , we have

Expanding the cosine part and rearranging the equation, we
obtain
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where

(7a)

(7b)

(8a)

(8b)

Similarly, for signal , we have the expression for the RWT
coefficient

Denoting , , we have

where

(13)

(14a)

The true value of frequency, amplitude, and phase angle at the
output sample for the modulated signal model can be com-
puted as

(17a)

(17b)

(17c)
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