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Abstract: This paper explores the following questions: a) how variety of data about faults and outages may 
be utilized for automated analysis of such events, b) what will be the new decision-making framework for 
utility operators using the analysis results, and c) where would such solutions fit as the tools intended for 
protection and control (PAC) engineers? Those research questions and practical application aspects are 
explored through a couple of machine learning/artificial intelligence (ML/AI) use cases for transmission and 
distribution applications, namely: a) automated analysis of the faults using ML/AI on synchrophasor data 
aimed at transmission system operators that are responsible for real-time decision-making when the system 
experiences faults, and b) automated prediction of the outage state of risk (SoR) in distribution systems 
caused by environmental conditions around the feeders such as severe weather extremes, lightning strikes 
and vegetation growth aimed at asset and outage management engineers responsible for the system 
maintenance and restoration. Possible utilization of the results by PAC engineers are explored in each case. 
 
Introduction  
The power system monitoring, control and protection requirements are changing due to several emerging 
reasons: a) power systems dynamics are evolving with addition of inverter based resources (IBRs) at the 
transmission level with deployment of utility scale renewable generation such as solar and wind-based 
inverter-connected power plants, and distributed generation resources (DERs) at the distribution level with 
addition of third party owned renewable generation and both mobile (electrical vehicles) and stationary 
(battery) energy storage connected via inverters [1,2]; b) new field recording technology is also evolving by 
addition of synchrophasor systems and point-on-wave (POW) capturing systems across transmission and 
distribution [3,4], and c) the emergence of wealth of recorded data from legacy and new recording systems 
combined with wealth of environmental data is proliferating the use of ML/AI applications on such data to 
detect, classify and characterize the faults and predict outages [5,6]. 
 
The mentioned developments have raised an issue of how ML/AI may be used to enhance the decision-
making capability of PAC engineers, and in what circumstances such tools may be used. In this context, 
we are expanding the analysis and decision making process to include: a) on-line real-time monitoring of 
the transmission system disturbances  such as faults to aid transmission system operators in making timely 
decisions about the system control, and b) predictive capability of anticipating distribution system outages 
providing asset and outage management engineers and related repair and restoration crews with capability 
to prepare mitigation measures to reduce or even avoid outage impacts. Such developments go well 
beyond the traditional approach of automating the analysis of protective relaying and digital fault recording 
data [7] to complement the supervisory control and data acquisition (SCADA) recording since in our 
approach new data and new analysis methods are used [8,9]. 
 
In this paper, we focus on two recent trends in the uses of emerging data, and related ML/AI applications, 
namely: a) automated analysis of synchrophasor data, and b) outage state of risk (SoR) prediction using 
historical grid outage data and extensive environmental data. We are surveying recent developments by 
pointing to several recent studies where we have used utility historical data and other field data to create 
new results not utilized before [10-11]. The contribution of this paper is in defining new decision-making 
paradigm that PAC engineers may be facing in the future when performing their everyday tasks, and 
suggesting how their tasks may be expanded and enhanced using ML/AI-based solutions. We start with 
the background section where we explain how the legacy systems and related data may be expanded, then 
we show examples of ML/AI applications in the transmission and continue with a section on distribution 
application.  The benefits and requirements of such solutions and list of references are given at the end.   



Legacy solutions and new data analysis opportunity 
 
Transmission applications 
Traditional approaches to automated fault analysis in transmission systems focus on the use of data 

recorded in transmission 
substations. Figure 1 shows a 
typical transmission substation 
recording equipment used for 
fault analysis: fault locators (FL), 
digital fault recorders (DFRs), 
phasor measurement units 
(PMUs), digital protective relays 
(DPRs), remote terminal units 
(RTUs) of a supervisory control 
and data acquisition (SCADA) 
system and sequence of events 
recorders (SOE). They record 
samples of either analog (A) 
waveforms, (e.g., voltages and 
currents coming from the power 

Figure  1 Substation recording equipment 

system instrument transformers), or samples of status (S) data coming from contacts of the switching 
equipment, (e.g., “a” and “b” breaker contacts), or both A and S types. Some supporting communication 
and processing systems are developed to collect data from multiple substation devices or signals and store 
them in centralized locations. As an example, a centralized fault location (CFL) system may collect fault 
location data from multiple substations and keep it for the entire system at an engineering back office. 
Similarly, data from DFRs may be collected in substations from multiple DFR units and preprocessed in a 
local master station (LMS) and then communicated to corporate master stations (MS) for regional or 
company-wide collection and storage. Synchrophasor data is typically collected by PMUs in substations 
and forwarded in real time to phasor data concentrators (PDCs) that may be in a substation or at different 
company offices, and in many cases, passed over to the energy management system (EMS) for integration 
with SCADA data or direct display for control center operators. The RTU and SOE data are typically passed 
to the SCADA database to be used by legacy EMS functionalities and applications such as state estimation. 

Because such recording devices capture different data for different purposes, the users of such data are 
different groups in the utility company. An illustration of the recorded data properties that drive data uses is 
given in Table 1. Incidentally, an automated analysis can not only benefit the protection engineers but also 
the operators, particularly the Independent System Operators (ISOs), which only receive the PMU data 
streams but not the data captured by other substation devices. In reference to Figure 1, we are focusing on 
the automated analysis of PMU data streams using ML/AI-based data analytics as discussed next. 

Table 1 Types and properties of substation recorded data 

  

RTUs: Remote Terminal Units;  

PMUs: Phasor Measurement 
Units;  

ERDs: Event Reporting 
Devices such as DFRs and 
DPRs 



Distribution applications 
Well known statistics of the outages in the US are 
shown in Figure 2 [12]. In the distribution systems, 
the data available from the substation recording 
devices may be complemented with other data as 
shown in Table 2. Some data (Table 2) may come 
from the sources that are within the utility company 
such as various measurements by substation 
recording devices and historical outage data or from 
outside the utility company such as weather and 
vegetation data [12]. This abundance of data opens 
an opportunity for application of ML/AI techniques to 
assist utility personnel, including PAC engineers in 
addressing outages. We illustrate the benefits from 
utilizing ML/AI data models in predicting outages in 
distribution systems in following sections.  

 
 

Table 2. Sources of data for ML/AI PAC applications 
In our example the 
focus will be on outage 
prediction characterized 
by the outage state of 
risk (SoR). Since such 
prediction can be made 
several hours ahead, 
there is an opportunity 
to prepare for the 
outages by managing 
mitigation measures. 
This approach creates a 
new paradigm for PAC 
engineers since in the 
current practices their 
focus is on capturing the 
fault occurrence and by 
locating it, they are 

supporting system restoration activities. The customer is typically left to their own means to cope with the 
outage. The outage SoR prediction, if communicated to the customers, can help them develop their own 
mitigation measures to reduce outage impacts as shown in Figure 3.   
 
With the help of the ML/AI techniques, the process of correlating data from Table 2 is automated, and results 
shown in the SoR spatiotemporal maps are superimposed on the feeder map allowing the operators, 

maintenance and PAC 
engineers alike to manage 
and implement the 
mitigation measures, and 
the SoR warnings sent to 
the customer can be used to 
manage and mitigate the 
outage impacts.     
 

Figure 2 Major cause of power outages in the US [11] 

Figure 3 The mitigation measures to reduce the outage impacts 



Automated analysis of the faults in transmission system using ML/AI on synchrophasor data  
 
Close analysis of data types and properties from Table 1 differentiates the uses and users of data. PAC 
engineers use data obtained from triggered instruments such as DFRs and DPRs to create reports based 
on analysis of analog and contact data samples. The state-of-the-art is that such data is collected 
automatically whenever the faults occur and then analyzed automatically [7], allowing protection engineers 
to characterize faults quickly, initiate appropriate repair actions by informing the repair crew where the faults 
are located, and inform power system operators what type of fault has occurred and whether or when the 
transmission lines that experienced faults may be restored. The disadvantage of using such equipment is 
that the occurrence of the fault triggers the recordings, which only captures a portion of the event data 
starting with the trigger instance and ending with fault clearance. The issue is that such data does not offer 
an extensive view of the disturbances reflecting the events that may be leading to a fault, including 
frequency excursions or disturbances caused by switching of power system equipment, including 
generation rejection and load shedding or transmission line switching.  
 
Power system operators, on the other hand, get data from all substations using SCADA, but such data is 
somewhat limited by the recording features of RTUs. RTUs report only root mean square (RMS) analog 
values and contact changes, which happens by exception when certain measured values exceed 
thresholds. A typical scan of SCADA systems is only every two to ten seconds to help reduce the large 
amount of data being captured and communicated. Hence, the events occurring between the scan periods 
may not be captured. Besides, the RMS values without the phase angle between the recoded three-phase 
waveforms of voltages and currents cannot be used to analyze fault type or location. That is why SCADA 
data is not used to analyze faults but only allows system operators to observe switching actions caused by 
relays. In this section we discuss the use of ML/AI-based data analytics that focus on the analysis of 
streaming PMU data, which can complement the fault and disturbance analysis with system-wide analysis 
based on synchrophasors streamed by the PMU units typically at 30 or 60 frames per second.  
 
We start with the problem formulation: Given a signal segment 𝐬(𝑡−Δ,𝑡+Δ)=[𝐬^((1) ) (𝑡−Δ,𝑡+Δ),…,𝐬^((𝑀) ) 
(𝑡−Δ,𝑡+Δ)] ,  from multiple anonymized PMUs predict event type 𝑦∈{0,…,𝐶} that occurred at [𝑡−Δ,𝑡+Δ] by 
learning from scarce observations and low precision  labels. 
 
Then, we focus on the research questions to be answered as one applies ML/AI to streaming PMU data. 
The summary of the questions and answers is given in Figure 4 below. Our research leading to the answers 
is published in several paper so far [8, 9, 14, 15]. 
 

 
 

Figure 4 Research questions and answers when using ML/AI on PMU data 



As it may be noted from Figure 4, some of the issues when applying ML/AI algorithms to the streaming 
PMU data are as follows: a) data is typically not clearly labeled, particularly regarding the time of an event 
occurrence, b) the data is rather noisy with lots of missing and bad data, c) some events are not equally 
represented in the recorded data, so additional simulations are needed to reach the balance, d) quite often, 
for security reasons, the topology of the power system is not provided. Besides those key issues, many 
other more subtle technical issues stemming from PMU data properties need to be resolved (Figure 5). 
   

While addressing all the 
PMU data properties 
depicted in Figure 5 may 
take considerable time 
and perhaps realistically 
may not be practical. 
Figure 6 shows a practical 
approach that yields 
some useful results. In 
this case we used field 
recordings from multiple 
sources (The US utility 
data provided through 
Pacific Northwest 
National Laboratory-
PNNL; data provided by 

the French utility Réseau de Transport d'Électricité-RTE; data provided by Salt River Project-SRP) and 
simulated data obtained using PSCAD commercial time-domain software and an IEEE PSRC 
recommended fault study model). The ML/AI algorithm development requires multiple stages: collecting 
and processing historical recordings of synchrophasor data, then selecting the model and training it, and 
eventually testing the results. In this case, different ML/AI algorithms were used: a) transfer learning (TL) 
using transfer component analysis (TCA), b) support vector machine (SVM), and c) correlation alignment 
(CORAL) deep learning. Such choices came after a considerable study [8, 9, 14, 15]. 
 

The outcome of this 
development was set of 
algorithms that may be 
used to automatically 
detect and classify faults 
from the incoming 
synchrophasor data. 
Since the algorithms take 
streaming data, any fault 
disturbances are 
captured as they occur 
providing PAC engineers 
with additional 
information, and PAC 
engineers and operators.   

Figure 6 Training and testing stages of a fault detection/classification ML/AI algorithm        with timely information  
 
about system wide fault events. In the case of ISO operators, this may be the only automated information 
they receive about the faults since the fault analysis based on digital relay and digital fault recorder data 
may not be shared by transmission system operators (TSOs).     
 

Figure 5 Property of synchrophasor data recorded by Phasor Measurement Units  



Automated outage state of risk (SoR) prediction in distribution systems using ML/AI on historical 
outage and environmental data   
This application is also unique since it allows prediction of the outage SoR leading to pre-emptive actions 
to reduce outage impacts. To pursue such developments, one must decide which causes of outages will 
be covered and what corresponding data may be used to reflect the causes. In this sense, many options 
are available as shown in Figure 7.     

The left-hand side 
of Figure 7 shows 
the outage causes 
such as tree and 
animal contact, 
snow and lightning 
storms, fires, etc., 
while the right-
hand side shows 
databases that 
contain relevant 
data. More details 
about the database 
sources are given 
in Table 2 which 
was discussed at 

the beginning of the paper. While we are showing same examples of the data sources, the details of the 
data features contained in the sources is quite complex depending on the type of data we may wish to 
extract. As an example, just the weather data may offer different features deepening on the weather sources 
as depicted in Figure 8. 

 

The choice of the 
weather data may 
be driven by 
availability or by the 
type of prediction 
one is trying to 
make. If the 
inclement weather 
is reflected only 
through the 

temperature 
feature, the ground 
weather stations 
may be sufficient. If 
the lightning data is 
considered,      then  

 

the radar or satellite data may be used. For some more precise weather impacts, such as needed for the 
wind impact calculation, special treatment and processing of data may be performed to extract the relevant 
features [16]. In general, the weather is one of the major causes of outages, so special attention needs to 
be given to the selection of the weather features to be used for the study of weather impacts.  If we decide 
to combine the impact of weather with the impacts of trees growing into the distribution feeders, then the 

Figure 7 Causes of outages and related data sources 

Figure 8 Sources of weather data 



vegetation-related data needs to be carefully considered as well. As an example, the vegetation parameters 
of interest and related data sources are shown in Table 3. 

Table 3. Type and sources of vegetation data used for outage SoR prediction 

  

Now, we will illustrate how the outage SoR prediction is obtained. First, we need to define the SoR, which 
may be done as follows: 

It is apparent that the probability of the inclement weather 
is used for the Hazard function, the Vulnerability is 
calculated as the conditional probability that such 
weather hazard will inflict a fault, and finally the Economic 
Impact is the measure of the outage consequences. 
Once multiplied, the three components give the SoR 
prediction. Each of the SoR components may be 
represented as a Geographic Information System (GIS) 
map, which is then superimposed on the map showing 

utility feeders. The details of the outage SoR prediction process are shown in Figure 10. 

 
Figure 9 Outage state of risk predicƟon maps and miƟgaƟon outcomes 

The process of developing the outage SoR prediction starts with inclusion of the weather, 
vegetation, soil, and many other environmental data features (left-hand side of Figure 9), 
combined with the historical data on outages. As a result, a hazard map and vulnerability map 
are generated in GIS, and then superimposed on the feeder map (right-hand side of Figure 9). 
The two maps are multiplied to create the outage SoR map. The economic impact may be 
added. Since the prediction is associated with outages caused by weather and vegetation, the 
parts marked in red are where the risk is highest, and vegetation needs to be trimmed to reduce 
the risk. The last map shows most of the areas depicted in black meaning that the risk is 
eliminated because of a mitigation measure of trimming trees in the areas with the highest risk.    



Benefits and Requirements of ML/AI Applications to PAC engineers 

Both applications have a benefit of an automated processing, which saves time and offers an ability to 
correlate large amounts of data well exceeding cognitive capabilities of an individual. The automation also 
offers consistency since it always processes the data using the same mathematical framework. The 
additional benefit is the impact on decision making of utility personnel about tracking power system 
disturbances either in near real-time (synchrophasor processing) or by predicting them. Since those are 
new applications, it remains to be seen how they may benefit PAC engineers. A few thoughts for the 
transmission applications are: 

 Synchrophasors are offering system-wide assessment of the impact of disturbances, including 
faults. This may help PAC engineers develop a methodology for implementing adaptive relaying 
strategies for modifying the relaying action due to system-wide conditions. 

 With an increase in the deployment of synchrophasors, additional system-wide relaying may also 
be implemented to offer certain system switching to alleviate the conditions leading to potentially 
incorrect relay tripping such as slowly developing frequency deviations or oscillations. 

 In some circumstances, as the operators get informed about the impeding disturbances, they may 
develop some remedial actions performed manually to save the system from relay misoperation 
due to a possible loss of security or dependability in protective relaying operation. 

In the distribution applications, several possible uses of the outage SoR prediction by PAC engineers are:  

 Revisit impact of the restoration strategies on protective relaying setting, particularly in the areas 
of large penetration of renewable distributed energy resources since re-connecting the resources 
such as PV panels and electrical vehicles may create unexpected bidirectional current flows. 

 Offer additional time to run the setting coordination studies to make sure that large-scale outages 
on important feeders do not cause any relay misoperations and implement adaptive relaying 
strategies as needed based on such studies. 

 Analyze any safety issues as the inverter-based resources are reconnected to the grid making 
sure the reconnecting onto the feeders does create inadvertent feeder reenergization causing 
unexpected hazards for the repair and maintenance crews. 

While the benefits may be explored in the future, it became apparent that the implementation of the ML/AI 
based solutions also imposes significant new requirements:    

 Data intensive applications require new approach to data management and utilization. 
 The cost of implementing such solutions is high, so the applications must create proportional return. 
 This is a new practice, so acceptance and utilization by PAC engineers is still not well defined. 
 The use of data requires careful cybersecurity and critical infrastructure considerations. 

Conclusions 

Based on the presented results and other observations about the development and implementation of the 
ML/AI algorithms for fault detection and classification in transmission and outage SoR prediction in 
distribution, the following are some conclusions: 

 By its nature, the ML/AI algorithm require an extensive set of data to develop, train and test 
models. The PAC engineers may be able to provide some such data, but the data source vary 
across multiple utility groups and outside providers, so management of such sources is nontrivial. 

 In the current practice, the field-recorded synchrophasor data is of a very poor quality, and the 
practice of not associating the data with the power system topology creates multiple challenges in 
implementing ML/AI algorithms, so much better utility practices of data management are needed. 

 Once the weather and other data external to the utilities is used, special care has to be placed on 
the data cybersecurity and trustworthiness may hinder the progress in deploying such solutions in 
the utility environment, which may be mitigated by using a secure cloud computing. 



 The PAC engineers may benefit from such applications because they become more aware of the 
unfolding, and future fault and outage events, allowing better understanding of relaying practices, 
and leading to better serving the operators and outage and asset management crews.   
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