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Abstract— traditionally the risk analysis framework 
comprises two steps: risk assessment and risk mitigation. The 
tracking of operating conditions for each feeder section of a 
distribution network using the prediction of hourly risk levels 
and monthly accumulated risks corresponds to the first step. In 
this paper, we evaluate the use of two modern approaches to risk 
mitigation, one commonly named as automatic fault location, 
isolation and service restoration (FLISR), and other as demand 
response management (DRM). Since the implementation of 
these approaches depends on distribution automation, the 
control actions to mitigate the risk are carried out through the 
distribution management system. Results reveal advantages in 
the implementation of FLISR and DRM for improving the 
distribution network resilience. The developed visualization tool 
with georeferenced data from a real-world distribution network 
supports the achieved benefits. 

Keywords-- Power Distribution System, Resilience, Predictive Risk 
Assessment, Risk Mitigation, Fault Location, Isolation and 
Service Restoration (FLISR), Demand Response Management 
(DRM). 

I. INTRODUCTION 

The risk control can prevent failures and mitigate 
consequences through the definition of acceptable risk and 
comparative evaluation of feasible choices based on 
monitoring and decision analysis. A key for affective ranking 
of risk reduction measures and proactive risk management 
employs risk-based technologies [1]. The correlation between 
historical management data of power distribution systems and 
available weather data supports the risk measurement for 
weather-based risk assessment. Predicted risk levels aid to 
determinate the power distribution network state in 
cooperation with some method of power system security 
analysis that continuously monitors the operating condition. 

As operating conditions vary throughout the day, the 
power system must be maintained in normal secure state. In a 
normal secure state, there is energy supply to all loads and no 
operating limit is exceeded [2] while, in a normal insecure 
state, the power balance in each bus and all operating 
inequality constraints also remain satisfied, but the power 
system is vulnerable to some contingencies [3]. Since any 
permanent fault in the power distribution system causes load 
losses, the assertion that distribution networks operate in 
normal insecure state is legitimate, consequently, the 

identification of feeder sections with high risk level is a strong 
indication of alert state requiring preventive actions to 
mitigate impacts of an energy supply interruption. 

In the risk-based decision-making framework [4], the 
correlation between likelihood and impact describes the risk 
assessment, i.e. the risk is assessed as the likelihood that 
hazards will unfold to explore vulnerabilities to provoke 
impacts on specific targets [5]. When the high-risk level is 
identified, load balancing allows dynamic reallocation of 
loads to adjacent feeders [6], and automatic restoration 
optimization provides adjustment parameters of adaptive 
protection devices [7] to ensure the power transfer. The 
feasibility of these control actions comes from self-healing 
technologies that include automatic fault location, isolation 
and service restoration (FLISR) and demand response 
management (DRM). 

As it is very expensive and rather unrealistic to replace, 
upgrade or make all components of the power system more 
robust [8], risk analysis provides a powerful methodology 
capable of assisting in control actions. The consequent 
benefits include the improved resilience in distribution 
networks where unfavorable events are anticipated, mitigation 
strategies are determined and the power grid is rapidly adapted 
and restored, as described in [9]. Our contribution in this paper 
is the integration of two self-healing technologies, automatic 
FLISR and DRM, into a risk mitigation approach. After the 
resilience improvement, the reexamination of distribution 
network is made using a developed visualization tool based on 
the geographical information system (GIS) that assigns 
different colors to each level of risk in the graphical 
representation of feeder sections. 

II. PREDICTIVE RISK ASSESSMENT FRAMEWORK 

The correlation between the likelihood of an event 
occurring over time and its consequent impacts provides a 
measurement of risk [4]. The computation of the failure 
probability for each feeder section uses (1) and (2). The 
observed statuses of features of interest, xi, composes the 
vector of current external dependences X={xi|dom(xi)= 
dom(f)={0,1} ∧ i=1,...,D}, where D is the number of features 
of interest. The analyzed data comes from external servers for 
lightning monitoring and weather forecasting as well as 
vulnerability models for vegetation growth and aging 
degradation of power system components. 
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where 

𝑝(𝑓|𝑿) : Conditional probability of failure subject to X; 
𝑝(𝑿|𝑓) : Estimate of the likelihood of X given f; 

𝑝(𝑓) : Estimate of failure probability; 

𝜃෨,,௬ାଵ
 : 

Estimate of the probability of observing xi 
conditioned to a failure event f in the current m-th 
month of the current year. 

The calculation of energy supply interruption cost with 
georeferenced network data of fault event locations and 
interruption cost formulation based on time series provides the 
impact quantification as in [5] and [10]. The various 
stakeholders in the energy market, such as utility company, 
regulatory authority and energy consumers, perceive different 
costs and their sum yields the total cost of power interruption, 
𝐶TOTAL, as is given in (3). 
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where 

𝜴, 𝜱, 
𝜣, 𝜯  : 

Set of time series, all customers on the feeder, most 
typical customer types and consumption profiles; 

𝐻  : Billing loss penalty function; 
𝑐

 : Electricity rate; 
𝑐

ி : Customer damage function; 
𝐿: Installed power; 

𝐹,,
ௗ  : Load percentage demand hour-by-hour; 

𝑤,, : Type and consumption profile of the j-th customer; 
𝑧,: Interruption state changes of the j-th customer. 

The matrix, which ranks the risk in levels through a 
classification method, provides the correlation between 
𝑝(𝑓|𝑿) and 𝐶TOTAL. Elements of this matrix are grouped in 
three levels: unacceptable risk as the high level (H); 
undesirable and acceptable risk with review as the medium 
level (M); and acceptable risk as the low level (L). 

III. RISK MITIGATION WITH FLISR AND DRM 

The key issue in any risk analysis approach is the 
anticipation of damages in order to take proactive risk 
mitigation strategies [11]. Instead of merely responding to the 
last event, a risk-based decision-making framework allows for 
setting priorities under common constraints of time and 
money. In this way, the coordination of automatic FLISR with 
DRM can release power capacity that is needed to restore 
consumption areas reducing interruption time and cost. 

A. Interruption Time Reduction using Automatic FLISR 

The capabilities of distribution automation are important 
factors in the implementation of FLISR schemes allowing 
adaptive protection by controlling relay settings in real-time 

[12]. A benefit of implementing FLISR is the substantial 
reduction in power interruption time and improved system 
reliability [13]. Without FLISR, several steps need to be taken, 
such as outage report, travel to the site, fault investigation and 
patrol, before the fault is isolated and adjacent un-faulted 
sections are restored by manual switching [14]. FLISR 
schemes automate the fault location, isolation of the faulted 
section, and service restoration of un-faulted adjacent 
sections, minimizing the restoration time of faulted section 
while preserving the energy supply for consumers at adjacent 
un-faulted sections [15]. In a power distribution system with 
FLISR, the adjacent un-faulted sections are restored in a short 
time, but the faulted section still requires travel, patrol and 
repair time intervals. Furthermore, the use of adaptive 
protection reduces power supply interruption on unaffected 
sections [16]. 

In the context of risk assessment, the understanding of 
interruption time is fundamental to mitigate the financial 
impact. Since the operating state of energy consumers can be 
changed by fault management procedures, in (3) the binary 
variable 𝑧, reflects the interruption of power supply to the j-
th consumer during the fault event. 
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The interruption time needed to repair and restore the 
faulted section, ∆t, is discretized by a pre-defined time-step, 
𝜕𝑡, yielding the set of time series 𝜴. Thus, in (4), 𝛥𝑡 
comprises the time interval in which the j-th consumer does 
not have energy supply from the power grid. 

B. Interruption Cost Mitigation using DRM  

Traditionally, the power generation matches the load 
demand, reserve margin for peak demand and reserve energy 
during contingences. As power supply constraints persist, 
power distribution technologies, like distributed generation 
(DG) and demand response (DR) programs, have received 
great attention for cost reduction and capacity relief [17]. 
DRM can aid the consumer through the efficient use of energy 
using remote monitoring and controlling loads and suitably 
pricing the energy to reduce the demand on peak hours [18]. 

Although most literature focuses on pricing strategies to 
shift the high power demand to off-peak hours, the DR 
definition from the Federal Energy Regulatory Commission 
report also includes resilience issues by providing financial 
incentives to preserve the operating state of distribution 
networks [19], as following: "Changes in electric use by 
demand-side resources from their normal consumption 
patterns in response to changes in the price of electricity, or 
to incentive payments designed to induce lower electricity use 
at times of high wholesale market prices or when system 
reliability is jeopardized". 

The demand-side resilience is the main concern in [20] 
where Hirohisa Aki reports the damage caused by Great East 
Japan Earthquake in 2011 and presents some learned lessons 
such as the importance of including broad responses against 
risks and the necessity of flexible business practices to manage 



these risks. His conclusion also highlights the DR program as 
a byproduct of the experienced power shortage with its 
recognition resulting in the initiation of "negawatt" market 
[21]. 

Figure 1 illustrates the behavior of the responsive load to 
residential consumers during a day that is achieved using the 
general pattern of daily load curves from appliances in 
residences. In Fig. 1 (a), the load curves of washing machine 
(WM), oven/stove (OS) and heating circulating pump (CP) 
reveal the differences in power demand patterns [23]. In 
addition to load curves of all residential appliances that can 
response to DR controller, acceptable time delay (ATD) 
values are required in the construction of the daily residential 
responsive load. Figure 1 (b) is achieved by the sum of hourly 
power demand of all residential appliances while their ATD 
values remain less than interruption duration. In residential 
consumers, the penetration of responsive load is larger than 
50% of total power demand [22]. The procedure to achieve the 
responsive load of commercial and industrial consumers is 
similar to residential consumer but the penetration is different. 
In [18], for example, the DR controller actuates to shed the 
load when the instantaneous demand exceeds 90% of the 
contracted capacity or demand limit. In industry the shedding 
operation is more restrict due to production needs, but the use 
energy generation and storage can contribute to the responsive 
load penetration. 

The responsive load represents the demand surplus and its 
control should straightforwardly affect the total cost of the 
power interruption, i.e. in the risk assessment framework the 
shedding of responsive loads mitigates the risk by reducing 
the financial impact. In the predictive risk assessment 
framework, the total cost, 𝐶TOTAL, is formulated as in (3). The 
sum of costs related to different stakeholders in the energy 
market comprising the billing loss to utility company, 𝑐

𝐿, 
the penalty cost from regulatory authority rules, 𝐻𝑐

𝐿, and 
the economic losses of residential, commercial and industrial 
consumers, 𝑐

ி𝐿. These three costs depend on total 
percentage of load demand, 𝐹,,

ௗ , that includes the demand 
surplus. Thus, the power demand with DRM, 𝐹,,

ோெ, responds 
to shedding signal from DR controller when the distribution 
system is jeopardized. 
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In (5), the variable 𝛿 is the penetration percentage of 
responsive load for m-th type of consumer and 𝐹,

ோ  is the 
percentage of responsive load for m-th type of consumer 
during i-th time-step. In the case of residential consumer, the 
responsive load behaves as in Fig. 1 (b) where the maximum 
magnitude for each hour is at the beginning of the interruption 
period when the percentage responsive load is equal to one 
(𝐹,

ோ=1.0). For commercial consumers, the arriving of 
electrical vehicles (EVs) during working hours pushes the 
percentage of responsive load to values above 1.0 as the 
energy generation during solar light hours for industrial 
consumers. 

IV. RISK ASSESSMENT WITH IMPROVED RESILIENCE 

In this section, the aforementioned advantages from the 
integration of smart grid technologies, such as automatic 
FLISR and DRM, are measured using the developed GIS 
visualization tool. This makes it possible to evaluate the 
functionality of the proposed application and analyze the use 
of smart grid technologies to mitigate the financial impact of 
energy supply interruption. In order to ensure the applicability 
of the GIS visualization tool, the test distribution network is a 
real-world feeder with ten sectionalizing switches limiting 
nine feeder sections with data available in [24]. The 
computation of quantified values of likelihood and impact for 
each feeder section is classified as in Table 1. 

TABLE 1. RISK MATRIX WITH LIKELIHOOD AND IMPACT CATEGORIES. 

 

 
(a) 

 
(b) 

Fig. 1. Determination of changes in responsive load during the interruption 
time: (a) general pattern of load curves; and (b) residential responsive load. 

 



The evaluation of proposed risk mitigation technologies, 
i.e. the reexamination of risk level in each feeder section is 
done in two steps. In the first, expected improvements in the 
implementation of automatic FLISR in the test distribution 
network is measured using the hour-by-hour risk assessment 
and their results are compared with the base case. After that, 
monthly-accumulated risk magnitudes are achieved and 
compared, as well. In the second step, exactly the same 
evaluation approach is performed, but now, the risk mitigation 
technology comprises the implementation of both automatic 
FLISR and DRM. 

The first step requires the specification of interruption time 
intervals. In adjacent un-faulted sections, the restoration of 
energy supply service took few minutes (from 1 to 5), while 
faulted sections inspection needs more time for field crew 
travel and device damage repair. Screenshots of the GIS 
visualization tool developed with sunburst chart approach [25] 
provide the result of the hourly risk assessment. Figure 2(a) 
shows a screen portion with feeder representation in three 
clusters: red, blue, and green. In the hourly risk levels for all 
analyzed cases, the light blue color corresponds to the low risk 
level, the olive green to medium and dark red to the high-risk 
level. The external cycle maintains the chronology of risk 
levels per cluster over the twenty-four hours daily by starting 
at zero hour (00:00). Comparatively, Fig 2 (b) displays the 
measured risk levels in the risk assessment for the base case, 
while the Fig. 2 (c) shows the same sunburst chart in which 
the screenshot is taken in the case where the test distribution 
network has automatic FLISR. 

The red cluster of the feeder in the base case has a high 
level only at the 16:00. After the implementation of automatic 
FLISR, the hourly risk assessment pattern changes and 
becomes predominant with medium risk. The change is 
consequence of the financial impact reduction to Insignificant 
classification during whole day. The blue cluster of the feeder 
remains with medium risk predominance even after the FLISR 
implementation but the high-risk level, from 20:00 to 21:00, 
reduces to medium risk level because the Serious 
classification of the financial impact has changed toward one 

lower class, i.e. toward Significant classification. The risk 
mitigation from high to medium level is also verified in the 
green cluster of the feeder, between 18:00 and 22:00, when the 
financial impact decreases to Significant class. However, the 
assessed risk still remains at high level during the time period 
starting at 08:00 and ending 14:00 since the financial impact 
categories maintain the Serious and Major classification. 

The aforementioned risk assessment has intense variation 
during the day as a consequence, in most cases, of the severe 
weather forecast. In days in which the forecasted 
meteorological parameters indicate calm weather, the 
variation of risk level is less intense. The cumulative risk 
representation aims to minimize the effect of monotonous risk 
assessment providing a tool capable of diagnosing the 
distribution system for periods of time exceeding one day. 
This property comes from the attribution of zero value to the 
low risk level, one to medium and two to the high-risk level. 
Figure 3 (a) shows a screenshot with heat map representation 
of cumulative risk level in one month to the base case where 
the cold color tones at the rear layers correspond to small 
accumulated risk while the warmer color tones at the front 
layers indicate the large accumulated risk. For comparison, 
Fig. 3 (b) displays the screenshot to the same feeder sections 
previously analyzed, but now the distribution network has 
automatic FLISR. 

The red cluster of the feeder in the base case accumulates 
risk by covering the four rear layers. After the implementation 
of automatic FLISR, the accumulated risk does not grow up 
staying at the most rear layer, i.e. the purple layer. The drastic 
financial impact reduction to Insignificant classification and 
consequent monotonous incidences of the low risk level avoid 
the growth of the accumulated risk. Blue and green clusters of 
the feeder have larger cumulative risk than red cluster. As in 
the hourly risk assessment, there are a number of occurrences 
with financial impact classified as Catastrophic. In terms of 
progression through the layers and color tones, the 
accumulated risk magnitude is at maximum by covering all 
layers, until the hottest color tone, in the base case. On the 
other hand, this progression is not so excessive with the FLISR 

   

(a) (b) (c) 

Fig. 2. Screenshots with (a) clusterized feeder and hourly sunburst chart to (b) base case and (c) distribution network with FLISR. 



implementation, which reaches until the orange color tone. 
The decrease of cumulative risk progression results in the 
financial impact mitigation where the maximum impact 
classification changes from Catastrophic to Major. 

Risk assessment results in Fig. 2 and 3 and their meanings 
expose the benefits of automatic FLISR implementation. 
There are feeder clusters where the risk mitigation is very 
intense while, in other clusters, the aggregated gain is not 
complete allowing for the incidence of high-risk level in a few 
hours of the day. The load balancing by DRM when 
distribution network is jeopardized also works as a potential 
risk mitigation technology that is analyzed in the next 
evaluation step. 

The second step has the same features as the first 
evaluation step, in addition to the input parameters 
characterizing the responsive loads. The penetration 
percentages of responsive loads are 0.5, 0.3 and 0.1 for 
residential, commercial and industrial consumers, 
respectively, where the percentage of responsive load comes 
from general consumption patterns available in [24]. After the 
risk assessment characterization with input parameters, 
screenshots of the developed GIS visualization tool provide 
risk level behavior hour-by-hour. Figure 2 (c) displays a 

screen portion of the sunburst chart representation of risk 
levels hour-by-hour for the case of distribution network with 
FLISR in January, 14th of 2016. The improvements with the 
DRM implementation produce the hourly risk level variations, 
as is comparatively shown by the screenshot in Fig. 4 (a). 
Since the DR controller just receives the load shedding signal 
when the system is jeopardized, the red cluster of the feeder 
changes dramatically its risk level pattern during the day, from 
medium to low risk level. Similarly, blue and green clusters of 
the feeder change their patterns eliminating the incidence of 
the high-risk level. Most notable risk pattern change comes 
from green cluster of the feeder where the olive green replaces 
the dark red color in the time period between 08:00 and 14:00 
hours that results from the financial impact reduction of Major 
and Serious classification to Significant classification. Lastly, 
the proposed risk assessment approach outputs the same risk 
pattern for blue and green clusters of the feeder. 

In addition to hourly risk assessment under severe weather 
forecast, the monthly accumulated risk is evaluated in the case 
of the DRM implementation. Figure 3 (b) displays a screen 
portion with heat map representation of cumulative risk level 
in January of 2016 to the distribution network with FLISR. 
For comparison, Fig. 4 (b) shows the same screen portion after 
the DRM implementation in the test distribution network. The 

   
(a) (b)  

Fig. 3. Screenshots with heat map representation of cumulative risk during a month: (a) base case; and (b) distribution network with FLISR. 

 
   

(a) (b)  
Fig. 4. Screenshots of automated FLISR and DRM implementation: (a) hourly sunburst chart; and (b) heat map representation of cumulative risk. 



red cluster of the feeder accumulates the same risk magnitude 
of the test distribution network with FLISR even after the 
DRM implementation repeating the behavior that is achieved 
in hourly risk assessment as previously commented. The 
decrease in the cumulative risk progression in blue and green 
clusters of the feeder is again verified. Before the DRM 
implementation, the cumulative risk progression reaches the 
orange layer. After the DRM, the progression only reaches the 
green layer. This decrease in the accumulated risk magnitude 
comes from financial impact reduction to Significant 
classification. At last, the cumulative risk progression in both 
blue and green clusters of the feeder have reached the same 
layer in graphical representation. 

V. CONCLUSION 

The study has made the following contributions: 

 The online risk assessment framework to identify 
distribution network regions with different risk levels 
is applied in the evaluation of the self-healing 
technologies, such as automatic FLISR and DRM, for 
mitigating risk; 

 The screenshots with sunburst chart representations of 
risk assessment hour-by-hour show benefits of the 
FLISR implementation through the change from 
medium to low and from high to the medium risk level 
in many feeder sections. The cumulative risk 
representation confirms the previous benefits showing 
sections without accumulated risk in the heat map as a 
consequence; 

 In the case of DRM implementation, the risk 
assessment graphical representation from developed 
GIS visualization tool allows for identifying the 
suppression of high-risk level in the hourly assessment 
and the consequent decrease in accumulated risk 
magnitude in the monthly assessment; 

 Both cases used for evaluation are examples of how the 
developed GIS visualization tool is able to represent 
clusters of the feeder in a dynamic sunburst chart and 
heat maps. The outcome reveals the benefits of risk-
based decision-making framework on control and 
analysis of power distribution networks. 
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