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Abstract—The emerging nano-Grids (n-Grids), which we 

designated as commercial or residential buildings hosting electric 

vehicle charging stations, a fixed battery storage and photovoltaic 

panels integrated with the building’s load, all being interfaced to 

the grid through a bidirectional energy exchange framework may 

provide substantial advantages to the power grid and n-Grid 

owner. The n-Grids, because of their substantial energy storage 

capacity and ramp rate, have an added capability, if aggregated 

can provide ancillary services, reserve in particular, for the 

wholesale market. In this paper, the optimal framework for their 

aggregated participation in the day-ahead energy and reserve 

markets is developed. In the developed bi-level optimization, at a 

centralized level the aggregator attempts to maximize its 

profitability by offering optimal energy and reserve prices to the 

n-Grids. At the decentralized level, the n-Grid optimizer, based 

on the prices offered by its aggregator, while assuring its own 

flexibility and dependability, runs the scheduling of its resources 

to maximize their profit from energy and reserve product 

procurement. The simulation results demonstrate that the n-

Grids are able to provide significant flexibility and resilience to 

the system by leveraging their high ramp and storage capacity, 

and as a consequence, provide financial profit to their owners. 

Index Terms—Ancillary services, Battery storage, electricity 

market, PEV charging station, nano-Grid 

I. INTRODUCTION 

The ever increasing interest in reducing environmental 
pollution, producing clean and resilient energy, as well as 
having smarter power systems has led to an increased 
engagement of customers by owning distributed energy 
resources (DERs) and making the buildings smart [1]-[3]. 
Various ways of facilitating customer engagement is through 
installing PV generation, battery storage, utilizing plug-in 
electric vehicles (PEVs) for controlling demand response, etc. 
[4]. This engagement brings about a variety of advantages for 
both the grid and the customer. From the grid perspective, the 
increment in reliability, security, resilience and flexibility levels 
are worth pursuing [5], [6]. For the customer, less expensive 

electricity, opportunity of financial profitability and less proba-
bility of its load supply loss are of a high significance [7], [8].  

The focus of this paper are smart customers that own an n-
Grids. As Fig. 1 depicts, an n-Grid may be in located a 
commercial/residential building which has implemented 
(rooftop) photovoltaic panels (PVs), a fixed battery energy 
storage system (BESS) integrated with PEV charging stations 
(CSs) allowing charging/discharging of PEV’s mobile battery 
storage. Installing a BESS makes the n-Grid capable of 
handling uncertainties of load, PV generation and PEV 
charging/discharging forecasts, and may increase the 
profitability of n-Grid owner, if and only if proper scheduling 
framework and incentives are developed.  

In order to provide the opportunity of profitability for n-
Grid owners, an aggregator aggregates their resources and 
participates in the wholesale market on their behalf. Various 
schemes of aggregators’ participation in the wholesale market 
are discussed in [9]-[17]. The authors in [9] proposed the 
optimal electricity market bidding strategy for energy storage 
aggregators, [10], [11] for demand response aggregators, [12] 
for DER aggregators, [13]-[16] for PEV aggregators and [17] 
for a combination thereof. A comprehensive framework for 
PEV and DER participation in the wholesale market is 
developed in [17]. In the proposed bi-level optimization 
algorithm, the aggregator maximizes its profits in the upper 
level and the PEV parking lot owners maximizes their profit in 
the lower level. However, the authors do not consider the 
interactions of a PEV parking lot chargers with a smart 
building. Reference [18] discusses the PEV and BESS 
scheduling for a number of n-Grids connected to each other and 
proposes hourly and sub-hourly optimal commitment of the 
resources. The interaction with the aggregator as well as n-
Grid’s ability to provide reserve product in the wholesale 
market is neglected.    

Our paper covers the missing part not covered in the 
literature, which is the participation of n-Grids in the electricity 
market. We demonstrate how the n-Grids are able to provide 
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the reserve product from the combination of BESS and PEVs 
energy storage capacities creating a profit for its owner. A novel 
optimization framework for the participation of n-Grids in the 
day-ahead energy and reserve ancillary service products based 
on the aggregator pricing is proposed in our paper. In the 
proposed bi-level optimization, an aggregator at the centralized 
level aims at maximizing its profit from participation in the 
wholesale energy and reserve markets, on behalf of its agents. 
The n-Grids offer energy and reserve prices to the agents. Then, 
at the decentralized level, the n-Grids aim at maximizing their 
profit based on the received prices from the aggregator.  

The rest of the paper is organized as follows: the proposed 
framework, the interaction among the wholesale market, 
aggregator and n-Grids is elaborated in Section II. Section III is 
devoted to the mathematical optimization formulation and a 
case study. Simulation results are presented in Section IV. 
Lastly, the concluding remarks are discussed in section V. 
References are given at the end. 

II. N-GRID PARTICIPATION IN THE WHOLESALE MARKET 

  Each aggregator and its agents, n-Grids in this case, 
attempts to maximize its own profit. The aggregator offers a set 
of energy, reserve prices and reserve utilization factor to the 
agents. This is done based on its forecast of the wholesale 
prices, the wholesale market factor (the portion of reserve 
expected to be employed for energy generation) and its agents’ 
behavior (see Fig. 2). The n-Grids, based on the forecast of their 
PV generation, load, PEV arrival/departure and initial state of 
charge (SOC), and the inputs received from the aggregator, run 
their own optimization. The aforementioned forecasts are done 
using historical data and/or mathematical models [18]-[19]. 
Afterwards, the n-Grid sends its desired energy and reserve 
levels to the aggregator. The optimization process is run 
iteratively until the optimal results are achieved. Finally, the 
aggregator submits its offers to the wholesale market and the 
awarded energy and reserve amounts would be binding. The 
mathematical formulation of the optimization is discussed next. 

III. MATHEMATICAL FORMULATION 

A. The Centralized Level Optimization (Aggregator) 

The objective function the aggregator attempts to maximize 
in the day-ahead market is as follows: 

𝐶 = max ∑ ((𝜆𝑡
𝑝

− 𝜋𝑡
𝑝

) ∑(𝑝𝑡
𝑎 + 𝑠𝑟𝑡

𝑎 . 𝑢𝑓𝑡)

𝑎

    

𝑡

+ (𝜆𝑡
𝑟 − 𝜋𝑡

𝑟) ∑ 𝑠𝑟𝑡
𝑎

𝑎

) .



For ∀𝑡 S.T.: 

𝜋𝑝 ≤ 𝜋𝑡
𝑝

≤ 𝜋
𝑝
 

𝜋𝑟 ≤ 𝜋𝑡
𝑟 ≤ 𝜋

𝑟
. 

Where 𝜆𝑡
𝑝

 and 𝜆𝑡
𝑟  are, respectively, the predicted prices of 

energy and reserve in the wholesale market. Variables 𝜋𝑡
𝑝
, 𝜋𝑡

𝑟 

stand for the offered energy and reserve prices to the agents. 
The offered energy, reserve, and reserve utilization factor are 
given by 𝑝𝑡

𝑎, 𝑠𝑟𝑡
𝑎  and 𝑢𝑓𝑡. Also, index t indicates time-intervals 

and a stands for the agents. 

B. The Decentralized Level Optimization (n-Grid) 

Based on the received prices from the aggregator, the n-Grid 
seeks to maximize the following objective function: 

𝐶 = max ∑ (𝜋𝑡
𝑝

𝑝𝑡
𝑔𝑟

+ 𝜋𝑡
𝑟𝑠𝑟𝑡 + 𝜋𝑡

𝑝
𝑝𝑠𝑟𝑡 − 𝜃𝑏𝐸

𝑏

𝑡

− ∑[𝜙𝑡
𝑑𝑖𝑠(𝑝𝑘𝑡,𝑡

𝑒𝑣,𝑑𝑖𝑠 + 𝑝𝑠𝑟𝑘𝑡,𝑡
𝑒𝑣 )

𝑘𝑡

− 𝜙𝑡
𝑐ℎ𝑝𝑘𝑡,𝑡

𝑒𝑣,𝑐ℎ] − ∑ 𝑙𝑐𝑙,𝑡Ω𝑙
𝑑

𝑙

) .



 

Figure 2.  A typical nano-Grid and its interaction with the agregator.  

 

 
Figure 1.  The flowchart of aggregator and n-Grids’ interaction. 

 



Where 𝑝𝑡
𝑔𝑟

, 𝑠𝑟𝑡 and 𝑝𝑠𝑟𝑡  are the power output of n-Grid to the 

main grid, reserve and energy under reserve service. 𝜃𝑏, 𝐸
𝑏
are 

the BESS degradation cost and maximum SOC. Parameters 

𝜙𝑡
𝑑𝑖𝑠 and 𝜙𝑡

𝑐ℎ are the discharging reward and charging price of 

PEVs. Also, 𝑝𝑘𝑡,𝑡
𝑒𝑣,𝑑𝑖𝑠

, 𝑝𝑘𝑡,𝑡
𝑒𝑣,𝑐ℎ

 and  𝑝𝑠𝑟𝑘𝑡,𝑡
𝑒𝑣  indicate the discharging 

and charging power and reserve utilization of PEVs. The load 

loss and the associated prices are shown by 𝑙𝑐𝑙,𝑡 and Ω𝑙
𝑑. Index 

l indicates type of load and 𝑘𝑡 indicates the number of PEVs 
predicted to be connected to the charging station at time t.  

The n-Grid is compensated for the procured energy, reserve 
and energy under reserve service, based on the offered energy 

and reserve prices by the aggregator, i.e., 𝜋𝑡
𝑝
 and 𝜋𝑡

𝑟. Also, it is 

assumed that the n-Grid owners negotiated with the PEV 
owners the charging price and discharging rewards. To 
generalize the model, in the case that the owner of PEVs and n-
Grid is the same, e.g. household n-Grids, the contract prices 

needs to be set to 0 (𝜙𝑡
𝑑𝑖𝑠, 𝜙𝑡

𝑐ℎ = 0) that the PEV 
charging/discharging does not impose any costs except the 
energy cost. Regarding reserve procurement, the PEVs are only 
compensated for the part of their procured reserve called up for 
energy production. The PEVs do not impose any penalties, if 
they cannot provide energy under the reserve product. Also they 
are free to arrive and depart at their convenience, hence, there 
is no necessity to compensate them for providing reserve, and 
they only are compensated for energy production. 

For ∀𝑡, (4) is subject to the following constraints: 

𝑝𝑡
𝑝𝑣

+ 𝑝𝑡
𝑏 + ∑(𝑝𝑘𝑡,𝑡

𝑒𝑣,𝑑𝑖𝑠 − 𝑝𝑘𝑡,𝑡
𝑒𝑣,𝑐ℎ)

𝑘𝑡

= 𝑝𝑡
𝑔𝑟

+ 𝑝𝑠𝑟𝑡 + ∑ 𝑑𝑠𝑙,𝑡

𝑙

 .


Where 𝑝𝑡
𝑝𝑣

, 𝑝𝑡
𝑏 and 𝑑𝑠𝑙,𝑡 stand for the PV power, BESS power 

and supplied load. In (5), the power flow equality constraint is 
enforced. The power output of PV is not controllable and is 
defined as a variable generation source. The BESS power is 
positive in discharge mode and negative in charging mode. 

The constraints associated with the total procured reserve 
product of the n-Grid are given below: 

𝑠𝑟𝑡 = 𝑠𝑟𝑡
𝑏 + ∑ 𝑠𝑟𝑘𝑡,𝑡

𝑒𝑣

𝑘𝑡

  

𝑠𝑟𝑡 ≤  𝑠𝑟𝑡 − [(𝑝𝑡
𝑝𝑣

− 𝑝𝑡
𝑝𝑣

) − (∑(𝑑𝑙,𝑡 − 𝑑𝑙,𝑡  )

𝑙

)] 

𝑠𝑟𝑡𝑢𝑓𝑡 = 𝑝𝑠𝑟𝑡 = 𝑝𝑠𝑟𝑡
𝑏 + ∑ 𝑝𝑠𝑟𝑘𝑡,𝑡

𝑒𝑣

𝑘𝑡

 . 

Variable 𝑠𝑟𝑡 represents for the maximum available reserve 

capacity. Parameters 𝑝𝑡
𝑝𝑣

 and  𝑑𝑙,𝑡 lower limit of PV power and 

upper limit of load forecasts. 

According to (6), the maximum available reserve capacity 
equals the BESS and PEVs reserve capacities. Hence, a portion 
of reserve capacity should be withheld from other commitments 
to be able to respond the uncertainties in the PV power 
generation and load forecast to enhance the robustness of the 
proposed framework which leads to (7). Based on (8), the 
portion of total reserve which is expected for energy generation 

(𝑝𝑠𝑟𝑡) is provided by the BESS and PEVs. It is assumed that 
there is no constraint for the BESS or PEVs to supply only their 
own part of 𝑝𝑠𝑟𝑡, and that  they are also able cover the 𝑝𝑠𝑟𝑡 of 
each other. The precision of the framework is highly dependent 
upon 𝑢𝑓𝑡. In fact, the aggregator should estimate the reserve 
utilization in the wholesale market very precisely and send this 
signal to its agents for self-scheduling. 

Equation (9) limits the power supplied/injected from/to the 
grid, based on voltage and line capacity limits. 

𝑃𝑔𝑟 ≤ 𝑝𝑡
𝑔𝑟

≤ 𝑃
𝑔𝑟

. 

The load constraints are provided below: 

0 ≤ 𝑙𝑐𝑙,𝑡 = 𝑑𝑙,𝑡 − 𝑑𝑠𝑙,𝑡  𝑙 ∈ (1, 𝐿 − 1) 

0 ≤ 𝑙𝑐𝐿 = 𝑑𝐿 − ∑ 𝑑𝑠𝐿,𝑡

𝑡

. 

𝑝𝑡
𝑝𝑣

+ (𝑒𝑡
𝑏 − 𝐸𝑏) + ∑(𝑒𝑘𝑡,𝑡

𝑒𝑣 − 𝐸𝑘𝑡

𝑒𝑣)

𝑘𝑡

≥ ∑ (∑ 𝑑𝑙,𝑛

𝑖

𝑙=1

+ 𝑙𝑑𝑝𝑛𝑑𝐿−1,𝑛)

𝑡+𝑡′−1

𝑛=𝑡

.



Where 𝑑𝑙,𝑡, 𝑙𝑐𝑙,𝑡 and 𝑑𝑠𝑙,𝑡 are the load, load loss and supplied 

load. Also, 𝑙𝑑𝑝 represents the lower limit of power controllable 
load. Index i indicates the inflexible loads needed to be supplied 
during main grid faults. The duration of fault in the main grid 
is shown by 𝑡′. 

Based on (10) and (11), the total load is divided to different 
loads, based on their characteristics. A portion of it is the 
deferrable load (𝑑𝐿) which can be postponed to the later hours, 
e.g. laundry machine—see (11). A portion of it is the power 
adjustable load (𝑑𝐿−1,𝑡), such as the air conditioner, which in 

extreme situations can be lowered to a preset limit to meet the 
constraints. Also, the inflexible loads can be sorted into 
different categories according to their importance. Equation 
(12) assures that in case of grid failure, the n-Grid is capable to 
supply its important loads, determined by the owner identified 
by index i, and the lower level of power adjustable load during 
a fault occurring at t and lasting for 𝑡′. In case the n-Grid is 
called to provide the energy for reserve product and there is not 
sufficient energy stored, this constraint may be released. 

The power output, reserve and SOC constraints of the BESS 
are set by (13)-(16): 

𝑃
𝑏,𝑐ℎ

≤ 𝑝𝑡
𝑏 + 𝑠𝑟𝑡

𝑏 ≤ 𝑃
𝑏,𝑑𝑖𝑠

 

𝑒𝑡+1
𝑏 − 𝑒𝑡

𝑏 = −𝑝𝑡
𝑏 − 𝑝𝑠𝑟𝑡

𝑏  

𝐸𝑏 ≤ 𝑒𝑡
𝑏 ≤ 𝐸

𝑏
 

𝑠𝑟𝑡
𝑏 ≥ 0. 

Where 𝑒𝑡
𝑏 stands for the SOC of BESS. In (13), the available 

reserve capacity of the battery is limited to the difference of its 
power level and maximum power limit in the charging mode 

(𝑃
𝑏,𝑐ℎ

). Note that 𝑃
𝑏,𝑐ℎ

 is a negative parameter. The change in 
SOC of the BESS is determined by (14), the SOC limits are set 
in (15) and positivity of the BESS reserve is enforced in (16).  

Similar constraints are used for PEV power and SOC 

requirements in (17)-(21), that is, for ∀𝑘𝑡 , ∀ 𝑡 ∈ 𝑇𝑘
𝑖𝑛 , 𝑇𝑘

𝑓𝑛
: 



𝑃𝑘𝑡

𝑒𝑣,𝑐ℎ
≤ 𝑝𝑘𝑡,𝑡

𝑒𝑣,𝑑𝑖𝑠 − 𝑝𝑘𝑡,𝑡
𝑒𝑣,𝑐ℎ + 𝑠𝑟𝑘𝑡,𝑡

𝑒𝑣
≤  𝑃𝑘𝑡

𝑒𝑣,𝑑𝑖𝑠
  

𝑠𝑟𝑘𝑡,𝑡
𝑒𝑣 ≤ 𝑎𝑣𝑡𝑠𝑟𝑘𝑡,𝑡

𝑒𝑣
 

𝑝𝑘𝑡,𝑡
𝑒𝑣,𝑑𝑖𝑠 , 𝑝𝑘𝑡,𝑡

𝑒𝑣,𝑐ℎ , 𝑠𝑟𝑘𝑡,𝑡
𝑒𝑣 ≥ 0 

𝑒𝑘𝑡,𝑡+1
𝑒𝑣 − 𝑒𝑘𝑡,𝑡

𝑒𝑣 = −𝑝𝑘𝑡,𝑡
𝑒𝑣,𝑑𝑖𝑠 + 𝑝𝑘𝑡,𝑡

𝑒𝑣,𝑐ℎ − 𝑝𝑠𝑟𝑘𝑡,𝑡
𝑒𝑣  

{
𝐸𝑘𝑡

𝑒𝑣 ≤ 𝑒𝑘𝑡,𝑡
𝑒𝑣 ≤ 𝐸𝑘𝑡

𝑒𝑣
𝑡 = 𝑇𝑘

𝑖𝑛 , … , 𝑇𝑘
𝑓𝑛

− 1

𝐸𝑑𝑒𝑝
𝑒𝑣 ≤ 𝑒𝑘𝑡,𝑡

𝑒𝑣 ≤ 𝐸𝑘𝑡

𝑒𝑣
𝑡 = 𝑇𝑘

𝑓𝑛
. 

Where, 𝑇𝑖𝑛 and 𝑇𝑓𝑛 are Arrival and departure times of PEVs. 

Also, 𝑎𝑣𝑡  is the availability factor of PEV and 𝑠𝑟𝑘𝑡,𝑡
𝑒𝑣

 is the 

maximum reserve the PEV can provide. The maximum reserve 

capacity of each PEV is given by (17) where 𝑃𝑘𝑡

𝑒𝑣,𝑐ℎ
 is negative. 

In order to increase the robustness of provided reserve capacity 
by PEVs, in (18), it is assumed that their reserve capacity is 
limited by their availability factor at the time. Equation (19), 
assures the positivity of power output and reserve. Lastly, the 
PEV SOC constraints are fixed by (20) and (21). In addition, in 
(21), it is assumed that the PEV owner can set a minimum 

departure SOC and hour of departure (𝐸𝑑𝑒𝑝
𝑒𝑣 ), in case they need 

more stored energy in PEV for long distance travels.  

IV. CASE STUDY 

A. Core Assumptions 

The n-Grid under study is a large commercial building at 
work and is considered to have 20 PEV chargers with the 
maximum charging/discharging rate of 7.2 kW/h. 100 PEVs are 
assumed to have charging/discharging contract with the 
building. To model the mobility of PEVs, the arrival/departure 
and initial SOC distribution functions developed in [19] are 
used. The BESS is assumed to have maximum energy capacity 
of 113.4 kWh with the maximum power output rate of 70.875 
kW [18] whose operational cost is provided in [20]. The PV 
generation data are given in [21] and its forecast error is 
assumed to follow a normal distribution function with standard 
deviation given in [22]. Load is modeled based on [18] with 
normal error distribution function given in [23]. The load and 
PV data are depicted in Fig. 3. The confidence level of PV 
generation and load forecast errors coverage in (4) is set to 95%. 

 The wholesale market under study is the California ISO 
(CAISO) market. The aggregator attempts to participate in the 
day-ahead market whose energy and reserve prices are taken 
from the day-ahead prices on 07/10/2019 [24]. Based on the 
CAISO regulations, an aggregator in order to be eligible to 
participate in the market needs to offer a combination of energy 
and reserve higher than 0.5 MWh at each hour. To meet this 
criterion and emphasize the core role of BESS and PEVs in n-

Grids, it is assumed that the aggregator participates in the 
market on behalf of 30 agents with the following 
characteristics: 

 10 n-Grids with the given data (nGI) 

 10 n-Grids without BESS (nGII) 

 10 n-Grids without PEV charging station (nGIII). 

B. Simulation Results 

Since the objective functions of the aggregator and agents 
conflict each other, the bi-level optimization is run iteratively 
until it reaches a settling point in which both the objective 
function are reach an optimum. In order to find the optimum 
solution, genetic algorithm (GA) is adopted to search in the 
feasible solution space. The energy and reserve prices offered 
by the aggregator to its agents, as well as its forecasted market 
prices are depicted in Fig. 4. By comparing Fig. 3 and Fig. 4, it 
is observed that during the intervals in which the net power (PV 
power minus load) of n-Grids is positive, the aggregator tries to 
offer energy prices lower than the market price, and offer higher 
energy prices, otherwise. The reserve prices offered by 
aggregator are mostly lower than the market reserve prices. 

The aggregator’s expected profit in detail is given in Table 
I. It can be seen that the main part of aggregator’s total profit 
comes from energy trade. The aggregator can gain higher 
profits out of nGII and nGIII demonstrating the fact that nGI, 
due to its higher storage capacity, is more capable to manage its 
power consumption/generation in response to the aggregator’s 
prices. The aggregator’s reserve profitability is much lower 
than energy and mostly comes from nGI, as well due to its 
higher storage capacity. 

TABLE I.  AGGREGATOR’S EXPECTED PROFIT 

 

Each n-Grid’s expected profit is provided in detail in Table 
II. The procured reserve by nGII is almost zero. In nGII, the 
only available energy storage capacity is PEV battery. Hence, 
if it procures reserve product and is called for energy under 

n-Grid 

type 

Expected 

energy 

profit ($) 

Expected 

reserve 

profit ($) 

Expected 

reserve util. 

($) 

Total 

profit 

($) 

nGI 118 13 -16 115 

nGII 168 0 0 168 

nGIII 200 03 -4 198 

Aggregated 486 16 -20 481 

 
Figure 3.  The n-Grid’s different load type and PV power data. 

 

 
Figure 4.  The aggregator’s energy and reserve prices forecasts, and the 

corresponding prices offered to its agents. 

 



reserve, it should use the stored energy of PEVs and needs to 
compensate the PEVs based on their contract which is much 
higher than the energy price. The nGIII because of using BESS 
storage which is almost free, can provide a notable amount of 
reserve product. The nGI, on the other hand, is able to procure 
much higher reserve product since (i) it benefits from both 
BESS and PEV storage capacities (ii) for energy under reserve, 
it can use the BESS stored energy. The total cost of operating 
the n-Grid for nGI is significantly lower than the others, since 
unlike nGII it can make profit from PEVs storage capacity, and 
unlike nGIII it can make profit from its charging station. Lastly, 
the charging station profit for nGI is higher than nGII since it 
benefits from their storage capacity for reserve procurement.   

TABLE II.  EXPECTED PROFIT/COST OF EACH NANO-GRID 

 

V.  CONCLUSION 

 An n-Grid comprised of a PEV charging station integrated 
with a smart building have a potential of customer profitability 
by participating in reserve ancillary service product for the grid. 
In this paper, a bi-level optimization algorithm for the optimal 
participation model of an n-Grid in the wholesale energy and 
reserve markets is developed, the following features are 
demonstrated through simulation: 

 The aggregator’s profitability mainly comes from 
energy trade between wholesale market and its agents. 
In this study, the expected energy profit is $486 while 
its reserve profit is $16. 

 The n-Grids without BESS (nGII), are reluctant to 
participate in reserve market since the compensation of 
PEVs for energy under ancillary services is higher than 
energy price.  

 The total available reserve capacity for the entire day 
for nGIII, is 696 kWh which increases to 1730 kWh in 
the presence of BESS demonstrating the key role of the 
combination of fixed BESS and PEV charging station 
in reserve procurement.  

 The total operating cost of nGI is lower than the others, 
as well, emphasizing the core value of BESS and PEV 
charging station for leveraging n-Grid profitability.  
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Case 

Total 

reserve 

(kWh) 

Expected 

reserve 

profit ($) 

Expected 

energy cost 

($) 

Total 

cost ($) 

CS 

profit 

($) 

nGI 1730 13.4 36.8 8.7 22.7 

nGII 0 0 38.2 20.8 17.4 

nGIII 696 4.8 29.5 24.7 0 
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