'O FACILITATE REPAIR OF THE SYSTEM AFTER

cur or implement appropriate control action to
'the power system’s normal operation, the occurrence
nlts is tracked through a variety of recording equipment,
' digital fault recorders (DFRs), protective relays, cir-
ker monitors, sequence-of-events recorders, fault
$, smart meters, power quality meters, and many other
eciali devices; these are often located in substations or
mounted on related power apparatus being monitored. A wealth
of data is collected in real time, and additional descriptions of
causes and impacts are recorded by maintenance crews as they
inspect the sites where faults occurred. Such data are analyzed
by utility staff to understand causes and impacts and develop
mitigation measures. In general, this process takes time, and
fault repair and restoration may be prolonged, preventing util-
ity personnel from reducing or avoiding impacts, which, quite
often, may be significant. In worst-case scenarios, the impact
may be catastrophic, including loss of life.

This article focuses on the use of artificial intelligence
(AI) to automate fault analysis, which quickly detects, clas-
sifies, and characterizes faults, resulting in an opportunity
for timely actions to reduce fault impacts. The new opportu-
nities of Al applications are made possible due to advances
in data and computational sciences and new technologies
for data collection, communication, and processing; above
all, though, this possibility exists due to the capability of Al
to perform causal analysis of fault-related data well beyond
the cognitive capabilities of individuals or traditional analy-
sis methodology. We describe how such techniques may be
developed, what it takes to adjust current utility practice to
implement them, and who may be the users of such solutions
and related results.

Automated Fault Analysis in
Transmission Systems

Issues With Existing Solutions

Traditional approaches to automated faylt analysis in trans-
mission systems focus on the use of data recorded in trans-
mission substations. The typical data types and properties
of substation recording equipment are shown in Table 1.
Because such recording devices capture different data for
different purposes, the users of such data are different
groups in the utility company.

Close analysis of data types and properties from Table 1
differentiates the uses and users of data. Protection engi-
neers use data obtained from triggered instruments, such as
DFRs and digital protective relays, and obtain reports in the
form of waveform and contact data samples. The state of the
art is that such data are collected automatically whenever
the faults occur and then analyzed automatically, allow-
ing protection engineers to characterize faults quickly, ini-
tiate appropriate repair actions by informing repair crews
where faults are located, and inform power system opera-
tors what types of faults occurred and whether or when the
transmission lines that experienced faults may be restored.
The disadvantage of such equipment is that the occurrence
of faults triggers it and captures only a portion of the event
data, starting with the trigger point and ending with fault
clearance. The issue is that such data do not offer an exten-
sive view of the disturbances describing the events that may
be leading to a fault, including frequency excursions or dis-
turbances caused by switching of power system equipment,
including drooping of generators, shedding of load, or trans-
mission line switching.
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- Artificial Intelligence Is Not a Panacea,
but It Works for Fault Analysis and
Outage Management

Power system operators, on the other hand, get data from
all substations using supervisory control and data acquisition
(SCADA), but such data are somewhat limited by the record-
ing features of remote terminal units (RTUs). RTUs report
only root-mean-square (RMS) values and contact changes,
which happen by exception when certain changes in the mea-
sured values exceed thresholds. A typical scan of SCADA
systems happens only every 2-10 s, to help reduce the large
amount of data being recorded. Hence, the events occurring
between scan periods may not be captured. Besides, RMS val-
ues without the phase angle between the recoded three-phase
waveforms of voltages and currents cannot be used to analyze
fault type or location. That is why SCADA data are not used
to analyze faults but only allow system operators to observe
switching actions caused by relays.

Advantages of Using Phasor Measurement

Unit Data

Phasor measurement unit (PMU) data are a relatively new
addition to the recording capabilities in substations. The key
features of PMU data are time synchronization and absolute
time stamps.

Power system operators can get a much better resolution
of an event recording since PMU data are typically reported
30-60 times a second and contain a detailed representa-
tion of the positive sequence phasors of current and voltages
calculated from samples taken by PMUs. Since three-phase
phasors and contacts may be captured by PMUs, protec-
tion engineers may use such data for fault analysis as well.
Engineering groups may also use such data to analyze vari-
ous power system phenomena not observed before, such as
low-frequency oscillations caused by
using renewables, and they can also use

table 1. Types and properties of substation-recorded data.

installed over the last 10 years in the U.S. system alone, and
the number is increasing.

In the case of fault analysis, using PMU data helps system
operators to quickly detect and classify faults without wait-
ing for protection engineers to provide results of their analy-
sis based on DFR and distribution point unit data. This is
particularly important for the independent system operators
that do not have access to DFR and digital protective relay
data since the information is owned by transmission opera-
tors and not readily exchanged through the Open Access
Same-Time Information System.

The uses and applications of PMU data do not come with-
out major challenges, which eventually lead to the need to
find a cost-effective way of dealing with such challenges to
fully utilize the power of PMU data and justify the business
case of investing further in this technology. Some major chal-
lenges include 1) an overwhelming amount of data coming
from the PMU streaming capability, causing difficulties in
processing large amounts of data by utility staff; 2) sparsity
of PMU-equipped substations, causing difficulties in locating
events and capturing their properties if the events are occur-
ring in parts of the system far from the substations where
PMUs are located; and 3) imperfections in data recording and
communication systems, causing bad data and a lack of labels
that describe how the PMU data patterns correspond to typi-
cal power system events, such as transients caused by faults,
abnormal frequency deviation, or instability.

Such PMU data, coming from many substations, may have
to be captured by multiple phasor data concentrators (PDCs)
before it reaches the corporate PDC or super(regional) PDC,
where various data storage capabilities are available and

PMU data to verify models of power ~ .o o
) Operating Reporting ynchromzatlon

system components, such as generators | Source Type of Data Mode Frequency Among Devices
and their controls. Because PMU data , :
h h di d ad d RTU - Status Report Every several No

ave such diverse and advanced prop- 7 RMS value seconds :
erties, a business proposition in many . .
companies has been developed around MU Phasor Report ;Jg;%ggntc']mes Yes
multiple uses of such high-fidelity data, g , ' -
which has led to their installation across | ERD RMS/ DFT/Samples rLép?JI;st ,UPO" request ~ No
the United States and worldwide at a d e -
rather intensive pace. It is estimated | RTU: remote terminal unit; RMS: root mean square, PMU: phasor measurement
that over 4,000 PMUs may have been unit; ERD event reportmg device; discreet Fourier transform.
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various applications may reside. One simple observation is
that the amount of streaming PMU data may be overwhelming
for both humans and IT solutions currently processing such
data. This, in turn, may create diminishing technology returns
since the data may be rich in information, but timely knowl-
edge extraction becomes difficult, if not impossible, limiting
the full use of this technology. Al technology has become a
niche solution since it enables automation of the analysis of
large amounts of 'data very quickly, which is far more efficient
than what humans or existing IT solutions may provide. At the
same time, the knowledge extracted by Al solutions becomes
readily available for all the PMU data users, particularly
system operators, for their timely decision making. Further
details are discussed in the upcoming sections.

Al Approach: From Data to Model

Machine learning (ML) techniques, as an Al approach,
helped several fields leap ahead in terms of saving time and
money to perform repetitive but complex tasks. A simi-
lar leap may be achieved in fault analysis if there is some
guarantee that enough PMU data are available and that
these data are dependable. Data availability is not simply
achieved by collecting terabytes of PMU measurements but
by ensuring that these measurements are diverse enough
to accurately represent transmission system events. The
power system mostly operates in normal conditions with
some noise and subtle shifts in topology. Therefore, several
hours or even days of PMU data may contain only normal
operation, which is not enough when trying to train an ML
algorithm to detect faults in the system. Detecting and clas-
sifying faults requires many instances of each type of fault
targeted by the algorithm as well as a balanced number of
normal operation instances to help the algorithm recognize
the difference.

When data are collected at such a large scale, the quality
of the collected data may be challenging to maintain. A PMU,
like any other device, may encounter an error or go offline for
a multitude of reasons. Because fault detection algorithms
are looking to flag anomalies in data, bad data may be mis-
taken for a critical fault event. Missing and unreasonable data
points, sometimes intervals, are the most difficult to deal with.
In some big data applications, the issue of missing data may
be mitigated by traditional methods, such as interpolation or
advanced techniques, such as variational autoencoders or gen-
erative adversarial networks. However, when the main goal is
to detect abnormal behavior, trying to fill in any of the missing
data intervals with reduced accuracy may lead to misclassify-
ing an event as a normal operation. That is the point where the
role of domain expert judgment becomes most apparent. For
example, a PMU with large amounts of missing data or unrea-
sonable data from recordings in an actual system for several
years may be disregarded from the process. In addition, the
features chosen to train an ML algorithm may be modified to
consider this phenomenon. Part of evaluating PMU data quality
is evaluating the quality of the accompanying event logs. Event
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logs are descriptions of power system events, one category of .

which is line faults. Event logs contain labels that define when
an event occurred through a time stamp, what type of event
it is, and any further classification or characterization of the
event. Labels are extremely important for developing a super-
vised ML model for fault detection and classification.

Labels exhibit several problems that include inaccurate
time stamps, wrong event type descriptions, and wrong fault
type classification. While visual inspection of large amounts
of data may be a tedious process, it may be required to cre-
ate accurate labels, which are a precursor for effective Al
model training. !

One way to produce more event labels and ensure their
accuracy is through simulation. In the case of line faults,
some faults are more commonly found in field-recorded
PMU data than others. Three-phase faults, for instance, are
rare in comparison to single-phase-to-ground faults. None-
theless, simulating more three-phase faults using a system
like the one portrayed in Figure 1 achieves a balance in data,
giving the classifier model enough training information with
accurate labels to distinguish among different fault types.

Features and Model Implementation

Feature engineering is one of the most important steps in
designing a successful ML model for fault detection and
classification. It is the step in which one decides how to pres-
ent the information to the ML algorithm.

Despite the ability of Al tools to detect patterns and
point out irregularities, domain experts know why and
where to look for these irregularities; this is the advantage
of feature engineering done by domain experts. In the case
of line faults, dips in voltage are the main indicator that
a fault has occurred. Voltage dips signify that a relay has
engaged the circuit breakers on the line and are usually fol-
lowed by an autoreclosing sequence to automatically clear
the fault and return to normal operation. Consequently, a
feature capturing such voltage dips would be the best can-
didate for training an ML algorithm. To provide a clearer
picture of the expected data, Figure 2 shows several field-
recorded PMU measurements of single-phase voltage over
the intervals of 1 min [Figure 2(a)] and 2 s [Figure 2(b)].
To the untrained eye, it might seem like there are numer-
ous voltage dips. However, what is displayed are the normal
conditions under which the power system operates, where
there is a lot of noise. There are two important takeaways
from this figure. The first is the importance of the use of
field-recorded data in the training process of ML models
since this behavior is not captured by simulations. The
second is the importance of choosing the time window for
extracting features from the data. A time window of 1 min
may be too long and may contain too many perturbations
for a fault detection algorithm. A 2-s time window, on the
other hand, allows for precise detection of the time at which
the fault occurred. Realistically, faults cause transients that
occur at the scale of milliseconds. Even though using such
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a short time window is possible, it is not prattical consid-
ering the amount of data available that span months and
years. The most advantageous time window, such as the 2 s
selected in this application, would be a compromise.

After extracting features from the PMU data, both simu-
lated and field-recorded, the model is brought together by

selecting the ML algorithm and using the extracted features
as input. Using supervised learning techniques, the model
is trained to associate certain features with the labels ‘it
receives for their respective time windows. Accordingly, the
process of label improvement by domain experts is also cru-
cial to the model’s resulting accuracy.

HMI Control
Computer

Power System
Model

Test Plan

figure 2. PMU ambient data for (@) 1 min and (b) 2 s.
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Result Evaluation and Utilization

The stage of performance evaluation for the resulting ML
model is split into two steps: 1) testing the performance on a
subset of the training data and 2) verifying the performance
on a new dataset. When training the ML algorithm, the com-
mon practice is to set aside part of the training data to be able
to test the model’s accuracy after training. This may be an
80/20 data split, for example, where 80% of the data are used
to train the model and the last 20% is used for testing pur-
poses. A more reliable method of data splitfing is the “strati-
fied k-fold,” in which the data are split into k parts, or folds.
Then, the algorithm chooses one of the folds for testing and
keeps the rest for training a new model and then repeats this
process k times. This process ensures that the model’s perfor-
mance is cross validated over several train/test datasets inde-
pendently. Training and testing may also include fine-tuning
ML model hyperparameters that control options, such as the
rate at which a model learns and its complexity (strongly
related to the model’s overfitting). When an acceptable level
of performance is reached by the model, the next step is to
verify the performance using a new set of field-recorded data.

The process of evaluating several fault detection and clas-
sification models has consistently shown that these classifi-
ers perform better when both simulated and field-recorded
data are used for training. In the best-case scenario, using
field-recorded data only, when all the time windows used
for training were inspected visually and the labels were
improved accordingly, the resulting weighted F score was
0.87. However, when the same process was repeated using an
integrated dataset composed of simulated and field-recorded
data, the resulting weighted F) score was 0.98. The substan-
tial improvement in performance emphasizes the impor-
tance of data balance when developing these models. There
is immense potential for fully automated fault detection and
classification in the field with the right practices of data col-
lection and categorization. )

Yet, the best model did not achieve 100% accuracy,
which sparks interest in understanding where these models
might make mistakes. The domain expert’s insight is once
again essential at this point. Inspecting the results of the line
fault detection and classification algorithm emphasized the
attributes of line faults that need further attention during the
feature engineering stage. One example of a recurring mis-
classification appears in Figure 3, where two different line
faults and how they may be represented by the PMU data are
illustrated. While line faults are localized events, in some
instances [Figure 3(a)], a fault is detected by all PMUs; in
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. The scarcity of relevant examples in data can hinder the
potential of an ML algorithm; this translates into the need
for well-documented structured data.

other instances [Figure 3(b)], it is seen by only one PMU.
Therefore, the voltage features need to be aggregated and
normalized before they are used to train ML models. These
types of conclusions help guide future studies.

In summary, automated analysis of faults using AI tech-
niques dramatically reduces the time and effort that must be
spent to analyze faults. Even when faults do not need imme-
diate maintenance attention, a record of reoccurring faults
on a line or in an area may be an indication of an underly-
ihg problem that may escalate later. As a result, having an
automated tool that detects and classifies faults and keeps a
record may be a proactive measure to prevent major outages
in the future.

Automated Prediction of Outage State
of Risk in Distribution Systems

Issues With Existing Solutions

Outages in distribution systems occur relatively frequently,
but the impacts may not be noticed by consumers for the
following reasons: 1) the outages may be mitigated by an
autoreclosing action of circuit breakers aimed at de-energiz-
ing the system briefly to eliminate temporary faults, 2) util-
ity personnel take quick action using advanced online con-
trol means to restore power from alternative sources, or 3)
utility staff locate the fault accurately by automated means
and send crews to repair and restore system rather quickly,

" in the case of permanent faults.

By introducing advanced distribution management sys-
tems, the ability to automatically locate faults has improved,
but the problem of differentiating among multiple possible
locations still demands additional analysis and field inspec-
tion. It is especially challenging in distribution grids with
radial topology, due to the high density of feeders and a
lack of distributed sensors. Measurements taken only at
the feeder root (substation) may render a result that shows
a fault at multiple locations, due to an inability to differenti-
ate which feeder and/or lateral created the electrical distance
(impedance) between the root and the fault. Recently, accu-
rate automated fault location techniques have been developed
based on data collected from different intelligent electronic
devices, such as smart meters, power quality meters, digi-
tal relays, and a variety of sensors deployed in distribution
systems. Such techniques use voltage sag or traveling-wave
data to precisely determine fault location, which significantly
reduces mitigation time by utility personnel. Despite all the
technological advances, the current practice in utilities is to
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figure 3. A fault seen (a) by all PMUs and (b) by only one.

perform reactive measures that are deployed only after the
outage has occurred. This emphasizes two drivers of the reli-
ability issue in distribution system operation: utilities focused
on revenue and assets and customers focused on power qual-
ity and needs, as summarized in Figure 4.

As Figure 4 demonstrates, the existing practice of reac-
tive outage mitigation and management separates the utility
focus on system restoration and asset management as major
goals driving system recovery; this leaves the issue of power
quality and customer needs to customers to deal with during
outages. Such practice does not take advantage of predictive
methods that, if feasible, would allow utilities to not only
focus on restoring the system after outages occur but also

~ help consumers by giving them options on how to mitigate

the outage impacts until the service is restored.

Advantages of Predicting the State of Risk

of Outages by Correlating Diverse Data

The state of risk (SoR) for distribution outages reflects how
likely an outage may be in a certain location, at a predefined
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approach, as opposed to a reactive approach; rather than
acting only after the outage has occurred, utilities and con-
sumers may take mitigating actions beforehand, which leads
to managing the adverse effects of outages and potentially
reducing losses.

time interval. Outage SoR prediction leads to a proactive
{

figure 4. Different assessments of outages. ;
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« We explore the adoption of risk-based outage man-
agement, as it enables different customers to be notified
about a potential outage in advance. Such an approach may
require two-step action: 1) predicting outages using Al
methods and 2) developing management strategies on how
to mitigate fault impacts by reducing the risk on utilities
and consumers. This new paradigm is illustrated in Fig-
ure 5, where weather and other environmental data relating

Raw and Hazard

Curated Data Map

Historical Vulnerability
Outages Map

Warning to
Utility Staff

Warning to
Customers

to causes of outages are correlated with data that have his-
torically been related to outages and then merged through
ML/AI techniques to create risk maps (an example of a risk
map is presented in Figure 6), which are multiplications of
hazard maps and vulnerability maps reflecting the direct
causes of outages. .

To predict outage occurrences in the grid, one needs to
associate them with causes. In recent years, environment-
related outages have been on the
rise. As widely reported, over 75%
of distribution system outages are
caused by weather or tree-related

. causes which, in turn, also include
Prngiil:i on reasons for equipment failures.

Map Harsh weather often leads to
outages in distribution grids, due to
high winds, tree branches touching
the wires, debris blown over the
lines, lightning strikes, and so on.
Also, harsh weather contributes to
wear and tear on equipment since
Utility most of the equipment is still lo-
Action ;

cated outdoors. Since most outages
are related to environmental con-
ditions, the use of some informa-
tion that reflects these conditions
is needed, and then a correlation to
outages is performed. As an exam-
ple, Table 2 lists the properties and

Emergency
Mitigation

figure 5. The new two-step SoR outage prediction approach. The (a) first step and
{b) second step.
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figure 6. The outage risk prediction represented in a geographi

types of data that may be used to
determine weather hazards (prob-
ability of bad weather occurring)
and vulnerabilities (conditional
probability of harsh weather caus-
ing faults) that, when multiplied,
create the SoR estimate. The SoR
reflects the probability of an out-
age. Further details of how such
data may be correlated to calculate
hazards and vulnerabilities using
Al to predict the SoR of outages
are presented next.

Al Approach: From Data

to Model

Weather forecasts and histori-
cal weather records are the core
data sources for outage prediction
models. With the advance of new-
generation weather models, atmo-
spheric conditions can be predicted
in a very detailed way. Several rel-
evant weather parameters become
readily available for use. These in-
clude, but are not limited to, wind

c information system.
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table 2. Types and properties of weather and other environmental data that may be used for SoR prediction.

“Velocity  Volume
. Teinporal Spatial :
Source Data Type Resolution Resolution .| Measurements
Automated Surface Land based 1 min 900 stations | Air temperature; dew point; relative
Observing System , humidity; wind direction, speed, and
gusts; altimeter; sea level pressure; . -
| B | precipitation; visibilty
Level-2 next- Radar data | 5 min 16Q high-. | Precipitation and atmospheric movement
generation resolution . C T e
weather radar Doppler )
. radar sites :
NOAA satellite Satellite data ‘ Hdufly, daily,‘ 4km Cloﬁd coy , tége, hydrolgglclobserva Z‘onéif
database ' ) monthly | {precipitation, cloud, liquid water, = """
‘ ' ‘total precipitable water, snow cover), =+
| pollution monitoring © -« Sl
Vaisala National ‘| Lightning data Instantaneous  |:Median Date and time, 'Iatitu‘dé and longitude, peak-
Lightning Detection - ’ .| Jocation amplitude, polarity, type of event (cloud or
Network | accuracy: | cloud to ground) ; ) '
200-500 m B e ;
National Digital Weather forecast 3h 5 km Wind speed, direction, and, usts, Arey,la‘tive‘ :
Forecast Database data : humidity; convective hazard outlook;
: tornado probability; thunderstorm
1 probability o
Texas Parks and Texas ecological Static 10m Distribution of different tree sf:iédés '
Wildlife Department . | mapping systems '
| data E
_‘3 Texas Natural NAP Year 50 cm— High Resolution Imagery
& | Resources Information Tm- ‘ o
- System :
NASA 3D global vegetation *| Static 1 km Canopy height data
map ' ‘
National Cooperative | Gridded Soil Static 10m Soil type
Soil Survey Survey Geographic ‘
Database
Historical outage Instantaneous | Feeder Location, start and end tirﬁe and date, -
data section number of customers affected, cause code
Tree trimming data Day Feeder Feeder location, date, trimming period,
number of customers affected, cost of
trimming ’
Network geographic. | Static 'Infinity Pole location, material/class, and height;
information system (shapefile) | feeder location, conductor size, count, and
data - - material; nominal voltage
Utili Historical Day Tower Start and ehd date and time, location, t pé
ty maintenance data location (maintenance, replacement), cost, number
of customers affected
Insulator asset data Static Infinity Surge impédanées of towers and ground
{shapefile) | wires, footing resistance, component basic
insulation level ' =
In-field ' Ingtaintaneous Tower ‘ Léakage Cu,rirrehi‘tﬁagnimde, flashover
measurements g ~ location voltage, electric field distribution,
corona discharge detection, infrared
| reflection thermography, visual inspection
reports ) ) X
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hours ahead.

direction and wind speed, precipitation levels, temperatures
at several altitudes, atmospheric pressure, relative humidity,
cloud cover, and the Lightning Potential Index, among others.

The relevant datasets are not limited to weather. Several
other factors play a role in distribution outages. Vegetation
data provide insights into where trees are located and how
close they are to power lines. The types of trees can help
estimate their growth rates when combined with precipita-
tion and temperature data. The underlying soils influence
vegetation growth, and relevant data on soil types can also
be obtained and used.

Direct lightning strikes to phase wires cause high voltage
that translates to insulation flashovers. Also, indirect light-
ning strikes near power lines induce a high voltage in the
lines, causing outages. For these reasons, lightning detec-
tion network data have become useful in outage manage-
ment. Several commercial vendors provide data for lightning
strike locations. The data include several parameters: time
of a lightning strike, type of lightning strike, maximum cur-
rent, time rise, and so on. If properly processed, these vari-
ables can be utilized in ML models for outage prediction.

Once all the available relevant data are gathered, the
next step is to put them all together, considering the differ-
ence in the properties, as described in Table 2. The process
is referred to as spatiotemporal correlation of data and is
meant to identify the environmental conditions around the
network at the time when an outage has happened in the past
(i.e., capturing what the weather and other conditions were
like when an outage occurred).

These occurrences (examples) are referred to as train-
ing datasets. The underlying idea is that as historical outage
examples are gathered, information about what has led to an
outage is accumulated. For instance, an outage can tend to
occur when the wind speed over an area with power lines is
higher than 18 m/s. However, to give the model information
about normal operating conditions, several points in time
when no outage has occurred are also selected. This infor-
mation complements the training dataset. Ideally, one would
need a balance between outage examples and examples of
normal operations. In this case, the data model would have a
better differentiating ability; that is, it would classify a point
in time as an outage or no outage more accurately.

The next step is to wrangle the data into a suitable form

* for ML algorithms. To be used by the ML model, the data go

through cleansing, scaling, and transformation in a sequen-
tial order. This way, the data are wrangled to obtain a pro-
cessed, structured, and clean training dataset.
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It is harder to predict accurate SoRs for a smaller area of focus
on a long-term horizon than it is for a large territory a couple of

Features and Model Implementation

Once the training dataset is prepared, it is fed to the ML
algorithm. The algorithm then “learns” the intrinsic depen-
dencies between outage occurrences and the relevant data.
The benefit of ML is that, given sufficient examples, it can
infer the knowledge hidden in the data. The benefit of ML

over classic deterministic approaches is that ML algorithms

allow for understanding phenomena by using data that
reflect what actually happened in systems. This augments
the analysis by utilizing predetermined scenarios, which is
the approach taken in the analysis that is based on classi-
cal physics-based models. If enough data are gathered on
the phenomena (in our case, power outages) and an under-
lying correlation exists (environmental impacts lead to out-
ages), then the ML would be able to “dig out,” or mine, the
knowledge without human intervention. At the same time,
the benefit also creates a limitation: the quality of the ML
model can be only as good as the data it was trained on.
Subsequently, the scarcity of relevant examples in data can
hinder the potential of an ML algorithm; this translates into
the need for well-documented structured data. We advocate
for adopting a data-oriented culture in every utility.

Critical features of an outage SoR prediction are its spa-
tial and temporal applications. The outage SoR predictive
model can be adopted for a variety of temporal horizons and
spatial resolutions. For immediate and short-term actions,
as an example, a model may be trained to predict outages
in the next 24-48 h by utilizing a state-of-the-art weather
forecast. For long-term planning, a model may be trained
using prevailing climate conditions to evaluate the system’s
susceptibility to upcoming seasonal weather changes. On
a spatial dimension, the model can output SoR prediction
estimates for the entire service territory or focus on a spe-
cific part, such as a single feeder or feeders connected to
the same substation. The selection of a spatial and tempo-
ral resolution comes with considerations for the accuracy
of predictions. It is harder to predict accurate SoRs for a
smaller area of focus on a long-term horizon than it is for a
large territory a couple of hours ahead. The model’s perfor-
mance is proportional to the spatial resolution and inversely
proportional to the temporal horizon.

The balance between spatiotemporal resolution (i.e., how
far in time one needs the predictions and how spatially gran-
ular they need to be) drives the accuracy of the model for
each application. Spatiotemporal resolution is also depen-
dent on the mitigation actions that each stakeholder is will-
ing and able to take during a certain period and on a given
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The models are not perfect and make mistakes, which is
expected, given the probabilistic nature of outage occurrence

spatial scale. Leaving too short a time to react diminishes
the value of SoR outages, while having too broad an area
of focus might limit the effectiveness of mitigation actions.
The optimal spatiotemporal resolution is achieved through
several iterations of adjustments in a period when the utility
- and customers provide their feedback so that the needs and
limitations are incorporated into the solution.

Result Evaluation and Utilization

Once the model is trained and optimal temporal and spatial
resolutions are agreed upon, one needs to evaluate the poten-
tial performance of the SoR prediction model. The standard
way of testing an ML application is to see how it performs
on data that it has never been given before. In such a man-
ner, it is ensured that the evaluation of the performance is
carried out objectively. Testing ML algorithms on data that
were used during the training phase produces overoptimistic
results since the algorithm is already optimized for such data.

To quantify the performance of models, researchers use
a different set of metrics. Each metric measures a specific
ability of a model and is not as useful when used in iso-
lation from other metrics. For example, the precision met-
ric shows a measure of events that are correctly classified
as having an outage out of all the events with outages. If
that had been a single metric used for evaluation, the model
could have classified all the events as an outage and achieved
100% precision! Hence, the model would be useless. That is
why the metrics are used in combination with one another,
as described next. Given a balanced dataset, the precision
during the testing phase can reach up to 78%, with a cor-
responding recall of around 67%.

One can think of a data model as a decision-making
machine: it answers the question of whether a given period
has been an outage. The models are not perfect and make mis-
takes, which is expected, given the probabilistic nature of out-
age occurrence and data imprecision or uncertainty. The mis-
takes, or errors, of the models can be of two types: 1) a type 1
error, or a false positive, appears when an event is classified as
an outage when there was no outage, while 2) a type 2 error,
or a false negative, happens when an outage is classified as
normal operation. The importance of differentiating between
the two is in the unequal costs of errors for different types of
customers and utilities. For instance, it might appear excessive
to dispatch portable generation into a residential area when
the risk of an outage is high. However, the same elevated risk
levels, if threatening the operations of a hospital, may require
ensuring a secure power supply by any means.
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and data imprecision or uncertainty.

To coordinate mitigation actions on the utilities’ side,
we created a tool allowing personnel to have access to the
prediction of SoR levels. The tool creates a visual represen-
tation of outage SoR levels overlapping a map of the dis-
tribution feeders. Such geographic representations of SoR
predictions are referred to as risk maps. An example of a
risk map is provided in Figure 6. The map conveys the con-
ditional probability of outage occurrence in a given region
and time, subject to a probability of given hazardous envi-
ronmental conditions affecting the grid during that time.
This may also be viewed as a multiplication of the two prob-
abilities. The risk analysis can be much more complex by
introducing the probability of other causal impacts, such as
fire, animal intrusion, or human negligence, but such com-
plexity is beyond the scope of our study at this time. Since
we are dealing with probabilities that reflect uncertainty
about whether an event will occur or not, the extremes of
zero and one are reflective of the potential that the event
never occurs or always occurs.

Given a set of risk maps for different time horlzons, utll—
ity staff can effectively select and execute necessary miti-
gation measures. The measures can be differentiated for
different parts of the system, based on the potential losses
from outage occurrences. At the same time, risk maps allow
utility personnel to understand the overall risk levels in the
distribution grid. Such information can help plan the number
of repair crews for the day ahead. For example, if the risk
levels stay elevated after 5 p.m., the staff coordinator notifies
the crews on call that they will likely be called for repairs
that evening.

The predicted SoRs are also useful for alerting custom-
ers about potential outages in their area. Given an advance
notification, customers may adjust their plans and prepare
for possible outages according to their exposure to outage
impacts. Big industrial customers may suffer heavy losses
from unproduced goods or restarts of power-sensitive pro-
duction lines. Small businesses lose customers if an out-
age happens during business hours. Incurring reputational
damages may affect business in the long run. For example,
food spoilage from disrupted refrigeration exacerbates
the problem.

In summary, outages significantly disrupt everyday
activities, leisure time, planned meetings, and overall qual-
ity of life, but SoR prediction allows utilities and consum-
ers to plan mitigation measures ahead of time and proac-
tively manage the risk; this changes the level of the outage
impacts. The rise of remote work postpandemic intensifies
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figure 7. The SoR prediction application.

the direct impact on an individual’s ability to perform work
duties, potentially hindering career growth and leading to
unemployment. Vulnerable populations, such as those
dependent on power for medical appliances and the elderly
or handicapped, are particularly affected by outages, which
can profoundly impact their lives. All such negative impacts
can be significantly reduced because of the ML use for SoR
outage prediction. )

Research findings highlight that a simple 1-h advance
notification to customers regarding potential outages can
result in a substantial reduction in outage costs in some
cases. Notifying customers about potential outages trans-
forms an unforeseen and forced event into a planned occur-
rence with an expected probability.

Implementation and benefits of the proposed risk-based
framework can be summarized in a simple diagram, given
in Figure 7. Relevant data sources are correlated together
to produce training and testing datasets for ML algorithms.
The pretrained models are then utilized on real-time data
input to produce outage prediction in the form of SoR maps.
The SoR maps are then utilized to devise optimized mitiga-
tion actions to reduce the impacts of outages.

Conclusions

The use cases discussed in this article illustrate how AI may
be used to handle the analysis of faults in transmission sys-
tems and the management of outages in the distribution sys-
tem. In both cases, several advantages are recognized:

v Al allows for the development of automated solutions
that correlate large amounts of data in a short period
of time, a performance unmatched by humans.

v The Al approach enables operators, protection en-
gineers, and asset and outage management crews to
develop mitigation actions ahead of time, enabling a
reduction of impacts.
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as training personnel for utilizing
the results.
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